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Abstract. |Kernel two-sample testing is a useful statistical tool in deter-
mining whether data samples arise from different distributions without
imposing any parametric assumptions on those distributions. However,
raw data samples can expose sensitive information about individuals who
participate in scientific studies, which makes the current tests vulnerable
to privacy breaches. Hence, we design a new framework for kernel two-
sample testing conforming to differential privacy constraints, in order to
guarantee the privacy of subjects in the data. Unlike existing differen-
tially private parametric tests that simply add noise to data, kernel-based
testing imposes a challenge due to a complex dependence of test statistics
on the raw data, as these statistics correspond to estimators of distances
between representations of probability measures in Hilbert spaces. Our
approach considers finite dimensional approximations to those represen-
tations. As a result, a simple chi-squared test is obtained, where a test
statistic depends on a mean and covariance of empirical differences be-
tween the samples, which we perturb for a privacy guarantee. We inves-
tigate the utility of our framework in two realistic settings and conclude
that our method requires only a relatively modest increase in sample
size to achieve a similar level of power to the non-private tests in both
settings.
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1 Introduction

Several recent works suggest that it is possible to identify subjects that have
participated in scientific studies based on publicly available aggregate statistics
(cf. [211,24] among many others). The differential privacy formalism [8] provides a
way to quantify the amount of information on whether or not a single individual’s
data is included (or modified) in the data and also provides rigorous privacy
guarantees in the presence of arbitrary side information.

An important tool in statistical inference is two-sample testing, in which
samples from two probability distributions are compared in order to test the

* denote authors with equal contribution.
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null hypothesis that the two underlying distributions are identical against the
general alternative that they are different. In this paper, we focus on the non-
parametric, kernel-based two-sample testing approach and investigate the utility
of this framework in a differentially private setting. The kernel-based two-sample
testing was introduced by Gretton et al [I5], [16] who considers an estimator of
maximum mean discrepancy (MMD) [3], the distance between embeddings of
probability measures in a reproducing kernel Hilbert space (RKHS) (See [27] for
a recent review), as a test statistic for the nonparametric two-sample problem.

Many existing differentially private testing methods are based on categorical
data, i.e. counts [12] [I3] 29], in which case a natural way to achieve privacy is
simply adding noise to these counts. However, when we consider a more gen-
eral input space X for testing, the amount of noise needed to privatise the data
essentially becomes the order of diameter of the input space (explained in Ap-
pendix ??). For spaces such as R, the level of noise that needs to be added can
destroy the utility of the data as well as that of the test.

Here we take an alternative approach and privatise only the quantities that
are required for the test. In particular, for the two-sample testing, we only re-
quire the empirical kernel embedding 3; 3. k(x;, ) corresponding to a dataset,
where x; € X and k is some positive definite kernel. Now, as the kernel em-
bedding lives in Hy, a space of functions, a natural way to protect them is to
add Gaussian process noise as suggested in [20] (discussed in Appendix ??). Al-
though sufficient for situations where the functions themselves are of interest,
embeddings impaired by a Gaussian process does not lie in the same RKHS
[31], and hence one cannot estimate the RKHS distances between such noisy
embeddings. Alternatively, one could consider adding noise to an estimator of
MMD [16]. However, asymptotic null distributions of these estimators are data
dependent and the test thresholds are typically computed by permutation test-
ing or by eigendecomposing centred kernel matrices of the data [I7]. In this case
neither of these approaches is available in a differentially private setting as they
both require further access to data.

Contribution In this paper, we build a differentially private two-sample testing
framework, by considering analytic representations of probability measures [6]
23], aimed at large scale testing scenarios. Through this formulation, we are able
to obtain a test statistic that is based on means and covariances of feature vectors
of the data. This suggests that privatisation of summary statistics of the data is
sufficient to make the testing differential private, implying a reduction of level
of noise needed versus adding to the data directly (as summary statistics are
less sensitive to individual changes). Further, we show that while the asymptotic
distribution under the null hypothesis of the test statistic does not depend on
the data, unlike the non-private case, using the asymptotic null distribution to
compute p-values can lead to grossly miscalibrated Type I control. Hence, we
propose a remedy for this problem, and give approximations of the finite-sample
null distributions, yielding good Type I error control and power-privacy tradeoffs
experimentally in Sec. [6]
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Related work To the best of our knowledge, this paper is the first to propose a
two sample test in a differential private setting. Although, there are various dif-
ferentially private hypothesis test in the literature, most of these revolve around
categorical data [12] 13l 29] on chi-squared tests. This is very different to our
work, which considers the problem of identifying whether two distributions are
equal to each other. Further, while there are several works that connect kernel
methods with differential privacy, including [2] 20} 22], none of these attempts to
make the kernel-based two sample testing procedure private. It is also important
to emphasise that in a hypothesis testing, it is not sufficient to make the test
statistic differentially private, as one has to carefully construct the distribution
under the null hypothesis in a differential private manner, taking into account
the level of noise added.

Motivation and setting We now present the two privacy scenarios that we
consider and motivate their usage. In the first scenario, we assume there is a
trusted curator and also an untrusted tester, in which we want to protect data
from. In this setting, the trusted curator has access to the two datasets and
computes the mean and covariance of the empirical differences between the fea-
ture vectors. The curator can protect the data in two different ways: (1) perturb
mean and covariance separately and release them; or (2) compute the statistic
without perturbations and add noise to it directly. The tester can now take these
perturbed quantities and performs the test at a desired significance level. Here,
we separate the entities of tester and curator, as sometimes a decision whether
to reject or not is of interest, for example one can imagine that the tester may
require the test-statistic/p-values for multiple hypothesis testing corrections. In
the second scenario, we assume that there are two data-owners, each having
one dataset each, and a tester. In this case, as no party trust each other, each
data-owner has to perturb their own mean and covariance of the feature vectors
and release them to the tester. Under these two settings, we will exploit var-
ious differentially private mechanisms and empirically study the utility of the
proposed framework. We start by providing a brief background on kernels, dif-
ferential privacy and the two privacy settings we consider in this paper in Sec.
We derive essential tools for the proposed test in Sec. [3]and Sec. [d] and describe
approximations to finite-sample null distributions in Sec. |5} Finally, we illustrate
the effectiveness of our algorithm in Sec. [6]

2 Background

2.1 Mean embedding and smooth characteristic function tests

First introduced by [6] and then extended and further analyzed by [23], these two
tests are the state-of-the-art kernel based testing approaches applicable to large
datasets. Here, we will focus on the approach by [23], and in particular on the
mean embedding (ME) and on a characterisation approach based on the smooth
characteristic function (SCF). Assume that we observe samples {x;}" ; ~ P
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and {y;}", ~ @, where P and (Q are some probability measures on RP. Now
our goal is to test the null hypothesis Hy : P = @ against all alternatives.
Both ME and SCF tests consider finite-dimensional feature representations of
the empirical measures P, and @Q,, corresponding to the samples {x;} , ~ P
and {y;}1~; ~ Q respectively. The ME test considers feature representation
given by ¢p, = >0 | [k(x;,T1), -+, k(x;, Ty)] € R’, for a given set of test
locations {T;}7_,, i.e. it evaluates the kernel mean embedding LS k(i)
of P, at those locations. We write w,, = ¢p, — g, to be the difference of the
feature vectors of the empirical measures P, and @,,. If we write

Z; = [k(XuTl) —k(yi,T1), -+ k(xi, Ty) — ]f(}’uTJ)},

then w,, = %Z?:l z;. We also define the empirical covariance matrix X, =

ﬁ Z?:l(zi —wy)(z; — wy) . The final statistic is given by
Sn =" WI(ETL + ’YnI)ilwna (1)

where, as [23] suggest, a regularization term ~,I is added onto the empirical
covariance matrix for numerical stability. This regularization parameter will also
play an important role in analyzing sensitivity of this statistic in a differentially
private setting. Following [23], Theorem 2], one should take 7, — 0 as n — oo,
and in particular, -, should decrease at a rate of O(n~/%). The SCF setting
uses the statistic of the same form, but considers features based on empirical
characteristic functions [28]. Thus, it suffices to set z; € R’ to

2 = [g(xi) cos(x] Tj) = g(yi) cos(y; Tj),
J

9(x) sin(x{ Ty) — g(yo) sin(y; Ty)|_ .

where {T} }jfl is a given set of frequencies, and g is a given function which has an
effect of smoothing the characteristic function estimates (cf. [6] for derivation).
The test then proceeds in the same way as the ME version. For both cases,
the distribution of the test statistic under the null hypothesis Hy : P = @
converges to a chi-squared distribution with J degrees of freedom. This follows
from a central limit theorem argument whereby /nw,, converges in law to a
zero-mean multivariate normal distribution A/(0, %) where ¥ = E[zz "], while
3, + 7. I — X in probability.

While [6] uses random distribution features (i.e. test locations/frequencies
{T},}; are sampled randomly from a predefined distribution), [23] selects test lo-
cations/frequencies {7}, which maximize the test power, yielding interpretable
differences between the distributions under consideration. Throughout the pa-
per, we assume that we use bounded kernels in the ME test (e.g. Gaussian and
Laplace Kernel), in particular k(x,y) < x/2, Vx,y, and that the weighting
function in the SCF test is also bounded: h(x) < /2 Hence, ||z;]|s < #V/J in
both cases, for any i € [1,n].



A Differentially Private Kernel Two-Sample Test 5

2.2 Differential privacy

Given an algorithm M and neighbouring datasets D, D’ differing by a single
entry, the privacy loss of an outcome o is

L) = log w_ (2)
P?“(M(D/) = O)

The mechanism M is called e-DP if and only if |L(?)| < ¢,Vo,D,D’. A weaker

version of the above is (¢, §)-DP, if and only if |L(°)| < ¢, with probability at least

1 — 0. The definition states that a single individual’s participation in the data

do not change the output probabilities by much, hence this limits the amount

of information that the algorithm reveals about any one individual.

A differentially private algorithm is designed by adding noise to the algo-
rithms’ outputs. Suppose a deterministic function h : D — RP computed on
sensitive data D outputs a p-dimensional vector quantity. In order to make h
private, we can add noise in function h, where the level of noise is calibrated
to the global sensitivity GSp, [7], defined by the maximum difference in terms
of Ly-norm ||h(D) — h(D’)||2, for neighboring D and D’ (i.e. differ by one data
sample). In the case of Gaussian mechanism (Theorem 3.22 in [9]), the output
is perturbed by

h(D) = h(D) + N (0, GS20°1,)

The perturbed function h(D) is then (e,8)-DP, where o > +/21log(1.25/0) /e,
for € € (0,1) (See the proof of Theorem 3.22 in [9] why ¢ has such a form).
When constructing our tests, we will use two important properties of differen-
tial privacy. The composability theorem [7] tells us that the strength of privacy
guarantee degrades with repeated use of DP-algorithms. In particular, when
two differentially private subroutines are combined, where each one guarantees
(e1,01)-DP and (e, d2)-DP respectively by adding independent noise, the pa-
rameters are simply composed by (€1 + €2, d1 + d2). Furthermore, post-processing
invariance [7] tells us that the composition of any arbitrary data-independent
mapping with an (e, §)-DP algorithm is also (e, §)-DP. Here below in the next
section, we discuss the two privacy settings which we are considering for our
study in this paper.

2.3 Privacy settings

We consider the two different privacy settings as shown in Fig. [T}

(A) Trusted-curator (TC) setting There is a trusted entity called curator
that handles datasets and outputs the private test statistic, either in terms of
perturbed w,, and 27“ or in terms of perturbed test statistic 5,,. An untrusted
tester performs a chi-square test given these quantities.
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Curator Dataowner Dataowner

(A) Trusted-Curator Setting (B) No-Trusted-Entity Setting

Fig. 1: Two privacy settings. (A) A trusted curator releases a private test statis-
tic or private mean and covariance of empirical differences between the features.
(B) Data owners release private feature means and covariances calculated from
their samples. In both cases, an untrusted tester performs a test using the private
quantities.

(B) No-trusted-entity (NTE) setting Each data owner outputs private
mean and covariance of the feature vectors computed on their own dataset,
meaning that the owner of dataset D, outputs w) and 2:; and the owner of
dataset D, outputs wY and 2%. An untrusted tester performs a chi-squared test
given these quantities.

It is worth noting that the NTE setting is different from the typical two-party
model considered in the differential privacy literature. In the two-party model,
it is typically assumed that Alice owns a dataset D, and Bob owns a dataset D,,
and they wish to compute some functionality f(Dg,D,) in a differentially private
manner. In this case, the interest is to obtain a two-sided e-differentially private
protocol for f, i.e., each party’s view of the protocol should be a differentially
private function of the other party’s input. For instance, the probability of Alice’s
views conditioned on D, and D, should be e multiplicatively close to each other,
where D, and D, are adjacent datasets [I4] 26]. On the other hand, in our NTE
setting, we are not considering a joint function that takes two datasets. Rather,
we consider a function (statistics) which each data-owner computes given their
own dataset independent of the dataset that the other party has. We would like
to analyze how the performance of the test run by an untrusted third party using
those separately released DP statistics from each party degrades with the level
of DP guarantees.

3 Trusted-curator setting

In this setting, a trusted curator releases either a private test statistic or private
mean and covariance which a tester can use to perform a chi-square test. Given
a total privacy budget (¢, ), when we perturb mean and covariance separately,
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we spend (€1, d1) for mean perturbation and (€3, d2) for covariance perturbation,
such that € = €1 + €9 and 6 = ;1 + Ia.

3.1 Perturbing mean and covariance

Mean perturbation We obtain a private mean by adding Gaussian noise based
on the analytic Gaussian mechanism recently proposed in [I]. The main reason
for using this Gaussian mechanism over the original [9] is that it provides a DP
guarantee with smaller noise.

For w,, : D — R’ that has the global L2-sensitivity G:So(w,,), the analytic
Gaussian mechanism produces w,, (D) = w,,(D)+n,  where n~AN (07,021, ;).
Then w,, (D) is (€1, 01 )-differentially private mean vector if oy, follows the regime
in Theorem 9 of [9], here implicitly o, depends on GS3(w,),e; and d;. As-
suming an entry difference between two parts of datasets D = (D,,D,) and
D' = (D, D,) the global sensitivity is simply

— - ’
GSa(w,) = max [wa(D) = w, (D)

YT (3)

= max +||z; — zj|z <

P4y

where z; is as the corresponding feature maps defined in Sec.

Covariance perturbation To obtain a private covariance, we consider [10]

which utilises Gaussian noise. Here since the covariance matrix is given by
_ n T 1 n T . . .

¥, =A—-2gw,w,, where A = —5 37" 7z, we can simply privatize the

covariance by simply perturbing the 2nd-moment matrix A and using the pri-

vate mean w,, i.e., 3, = A — #vvn\?vl. To construct the 2nd-moment matrix

A that is (€2, 62)-differentially private, we use A = A + W, where ¥ is obtained
as follows:

1. Sample from 1 ~ N(07/821J(J+1)/2), where £ is a function of global sensi-
tivity GS(A), €2, 02, outlined in Theorem ?7? in the appendix.

2. Construct an upper triangular matrix (including diagonal) with entries from
.

3. Copy the upper part to the lower part so that resulting matrix ¥ becomes
symmetric.

Now using the composability theorem [7] gives us that 3, is (¢, 0)-differentially
private.

3.2 Perturbing test statistic

The trusted-curator can also release a differentially private statistic, to do this
we use the analytic Gaussian mechanism as before, perturbing the statistic by
adding Gaussian noise. To use the mechanism, we need to calculate the global
sensitivity needed of the test statistic s, = w;l'— (Xn+ynl )_lwn, which we provide
in this Theorem (proof in Appendix ?7):



8 A. Raj et al.

Theorem 1. Given the definitions of w,, and A,,, and the L2-norm bound on
4k2J/T (1 n HQJ)

nYn n—1)’
where v, is a regularization parameter, which we set to be smaller than the

smallest eigenvalue of A.

z;’s, the global sensitivity GSs(sy,) of the test statistic sy, is

4 No-trusted-entity setting

In this setting, the two samples {x;}*; ~ P and {Yj};lil ~ @ reside with dif-

i=
ferent data owners each of which wish to protect their samples in a differentially
private manner. Note that in this context we allow the size of each sample to be
different. The data owners first need to agree on the given kernel k as well as

'
on the test locations {Tj}'j]:l. We denote now z¥ = {k(xi,Tl), e 7k(Xi,TJ):|
J
in the case of the ME test or z¥ = [h(xi) cos(x; Tj), h(x;) sin(x;rTj)} in the
j=1
case of the SCF test. Also, we denote

1 n 1 Nx
X x x x x x x \ T
an - E zZ; 2)nx - E (zi _an)(zi _an)
Mx i1 nx — 1
i= =

and similarly for the sample {y; };Zl ~ (. The respective means and covariances
w,, , 25 and W%y, E%y are computed by their data owners, which then impair
them independently with noise according to the sensitivity analysis described
in Section As a result we obtain differentially private means and covari-
ances wy , X7 and wY_, f]%y at their respective users. All these quantities are
then released to the tester whose role is to compute the test statistic and the
corresponding p-value. In particular, the tester uses the statistic given by
Ny Ny

§nx,ny = m(vvﬁx - WZy)T(Enx7ny + ’YnI)il(‘;V::x - W%y)a

(nx—1)B%_+(ny—1)%_ . .
Z ¥ is the pooled covariance estimate.

where ¥, . = T

5 Analysis of null distributions

In the previous sections, we discussed necessary tools to make the kernel two
sample tests private in two different settings by considering sensitivity analysis
of quantities of interest[] In this section, we consider the distributions of the
test statistics under the null hypothesis P = @ for each of the two settings.

5.1 Trusted-curator setting: perturbed mean and covariance

In this scheme, noise is added both to the mean vector w,, and to the covariance
matrix X, (by dividing the privacy budget between these two quantities). Let

4 See Appendix ?? and ?? for other possible approaches.
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us denote the perturbed mean by w, and perturbed covariance with 3,.. The
noisy version of the test statistic §,, is then given by

Sp =nw, (2, +v0) W, (4)

where 7, is a regularization parameter just like in the non-private statistic .
We show below that the asymptotic null distribution (as sample size n — 00) of
this private test statistic is in fact identical to that of the non-private test statis-
tic. Intuitively, this is to be expected: as the number of samples increases, the
contribution to the aggregate statistics of any individual observation diminishes,
and the variance of the added noise goes to zero.

Theorem 2. Assuming the Gaussian noise for w, with the sensitivity bound in
and the perturbation mechanism introduced in Sectz'onfor i]n, S, and s,
converge to the same limit in distribution, as n — 0o. Also, under the alternate,
5, = sn(1+¢€) and € goes down as O(n=1+7).

Proof is provided in Appendix ??. We here assume that under the alternate
the relation w,) X~'w, > O(n~7) for v < 1 holds. Based on the Theorem, it is
tempting to ignore the additive noise and rely on the asymptotic null distribu-
tion. However, as demonstrated in Sec. [6] such tests have a grossly mis-calibrated
Type I error, hence we propose a non-asymptotic regime in order to improve ap-
proximations of the null distribution when computing the test threshold.

In particular, let’s start by recalling that we previously relied on v/nw,, con-
verging to a zero-mean multivariate normal distribution N (0,X), with ¥ =
E[zz "] [6]. In the private setting, we will also approximate the distribution of
\/nw,, with a multivariate normal, but consider explicit non-asymptotic co-
variances which appear in the test statistic. Namely, the covariance of /nw,,
is 3 + no2l and its mean is 0, so we will approximate its distribution by
N(0,2 + noZI). The test statistic can be understood as a squared norm of

_ ~1/2
the vector /n (En + Yl ) W,,. Under the normal approximation to /nw,
and by treating 3, as fixed (note that this is a quantity released to the tester),
- —1/2
vn (En + ’an) W, is another multivariate normal, i.e. (0, C), where

C=(,+7D) Y22+ no2)(Z, + 1)~V

The overall statistic thus follows a distribution given by a weighted sum Z}]:1 Aj X?
of independent chi-squared distributed random variables, with the weights A;
given by the eigenvalues of C. Note that this approximation to the null distri-
bution depends on a non-private true covariance ¥. While that is clearly not
available to the tester, we propose to simply replace this quantity with the pri-
vatized empirical covariance, i.e. 3, so that the tester approximates the null
distribution with Z}]ﬂ 5\j X?, where :\j are the eigenvalues of

C= (in +'7n1)_1(2n + nO.IQII)?
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Ti:_nvii, where {7;} are the eigenvalues of 3,, (note that \; — 1 asn —
oo recovering back the asymptotic null). This approach, while a heuristic, gives
a correct Type I control, good power performance and is differentially private.
This is unlike the approach which relies on the asymptotic null distribution and

ignores the presence of privatizing noise. We demonstrate this empirically in

Sec. [6l

ie A\ =

5.2 Trusted-curator setting: perturbed test statistic

In this section, we will consider how directly perturbing the test statistic impacts
the null distribution. To achieve private test statistics, we showed that we can
simply add Gaussian noiseﬂ using the Gaussian mechanism, described in Section
[3:2] Similarly to Theorem [2] we have a similar theorem below, which says that
the perturbed statistic then has the same asymptotic null distribution as the
original statistic.

Theorem 3. Using the noise variance U%(E, 0,mn) defined by the upper bound in
Theorem Sn and s, converge to the same limit in distribution, as n — oo.
More specifically, the error between s, and s, goes down approzrimately at the
rate of O(n=1/2).

The proof follows immediately from o, (e, d,n) — 0, as n — oo. The specific order
of convergence directly comes after applying the Chebysev inequality since the
variance o2 is of the order of O(n™!). As in the case of perturbed mean and
covariance, we consider approximating the null distribution with the sum of the
chi-squared with J degrees of freedom and a normal N (0, 0727 (e,9,n)), i.e., the
distribution of the true statistic is approximated with its asymptotic version,
whereas we use exact non-asymptotic distribution of the added noise. The test
threshold can then easily be computed by a Monte Carlo test which repeatedly
simulates the sum of these two random variables. It is important to note that
since 0727(6,(5, n) is independent of the data (Appendix ?7?), an untrusted tester
can simulate the approximate null distribution without compromising privacy.

5.3 No-trusted-entity setting

Similarly as in section as nx,ny — oo such that ny/ny — p € (0,1),
asymptotic null distribution of this test statistic remains unchanged as in the
non-private setting, i.e. it is the chi-squared distribution with J degrees of free-
dom. However, by again considering the non-asymptotic case and applying a
chi-squared approximation, we get improved power and type I control. In par-
ticular, the test statistic is close to a weighted sum 25:1 )‘jX? of independent
® While this may produce negative privatized test statistics, the test threshold is
appropriately adjusted for this. See Appendix ?? and 7?7 for alternative approaches
for privatizing the test statistic.
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chi-square distributed random variables, with the weights ); given by the eigen-
values of
NxNy

S —1/2 2 2 S —1/2
C= m(EnX7ny+’an) / <2x/nx+2y/ny+(0nx+0ny)I)(Enx,ny+7nl) /
where ¥* and XY are the true covariances within each of the samples, O’%x and
aiy are the variances of the noise added to the mean vectors w,, and wy,
respectively. While 3* and 37 are clearly not available to the tester, the tester

can replace them with their privatized empirical versions f]ﬁx and i}gy and

compute eigenvalues S\j of

C = (S, tud) (S, ract B, [y (07, 407, 1) (S 3 ])
x y

Note that this is a differentially private quantity. Similarly as in the trusted-
curator setting, we demonstrate that this corrected approximation to the null
distribution leads to significant improvements in power and Type I control.

6 Experiments

Here we demonstrate the effectiveness of our private kernel two-sample testﬁ on
both synthetic and real problems, for testing Hg : P = Q). The total sample size
is denoted by N and the number of test set samples by n. We set the significance
level to o = 0.01. Unless specified otherwise use the isotropic Gaussian kernel
with a bandwidth 6 and fix the number of test locations to J = 5. Under the
trusted-curator (TC) setting, we use 20% of the samples N as an independent
training set to optimize the test locations and 6 using gradient descent as in [23].
Under the no-trusted-entity (NTE) setting, we randomly sample J locations and
calculate the median heuristic bandwidth [I§].

For all our experiments, we average them over 500 runs, where each run re-
peats the simulation or randomly samples without replacement from the data
set. We then report the empirical estimate of P(3,, > T, ), computed by propor-
tion of times the statistic §,, is greater than the T, where T, is the test threshold
provided by the corresponding approximation to the null distribution. Regular-
ization parameter v = 7, is fixed to 0.001 for TC under perturbed test statistics
(TCS), with the choice of this investigated in Figure ??. In the trusted-curator
mean covariance perturbation (TCMC) and NTE, given the privacy budget of
(€,8), we use (0.5¢,0.59) to perturb the mean and covariance seperately. We com-
pare these to its non-private counterpart ME and SCF, as there are no available
appropriate baseline to compare against. We will also demonstrate the impor-
tance of using an approximated finite-null distribution versus the asymptotic
null distribution. More details and experiments can be found in Appendix ?7.

5 Code is available at |https://github.com/hcllaw /private_tst
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6.1 Synthetic data

We demonstrate our tests on 4 separate synthetic problems, namely, Same Gaus-
sian (SG), Gaussian mean difference (GMD), Gaussian variance difference (GVD)
and Blobs, with the specifications of P and ) summarized in Table. 2. The same
experimental setup was used in [23]. For the Blobs dataset, we use the SCF ap-
proach as the baseline, and also the basis for our algorithms, since [0} 23] showed
that SCF outperforms the ME test here.

Data P Q

SG N(0, I50) N(0, I50)

GMD N(0, I1g0) N((1,0,...,0)7, Ip0)

GVD N(O,I50) N(O,diag(?,l,...,l))

Blobs data. Sample from Q.

Blobs data. Sample from P.
T o, LA

AOZH

¥

iR

Fig. 2: Blobs data sampled from P on the left and from Q in the right.

Varying privacy level ¢ We now fix the test sample size n to be 10 000,
and vary € between 0 and 5 with a fixed § = le — 5. The results are shown in
the top row of Figure 4] For SG dataset, where Hg : P = @ is true, we can
see that if one simply applies the asymptotic null distribution of a x? on top,
we will obtain a massively inflated type I error. This is however not the case
for TCMC, TCS and NTE, where the type I error is approximately controlled
at the right level, this is shown more clearly in Figure 7?7 in the Appendix. In
GMD, GVD and Blobs dataset, the null hypothesis does not hold, and we see
that our algorithms indeed discover this difference. As expected we observe a
trade-off between privacy level and power, for increasing privacy (decreasing e),
we have less power. These experiments also reveals the order of performance
of these algorithms, i.e. TCS > TCMC > NTE. This is not surprising, as for
TCMC and NTE, we are pertubing the mean and covariance separately, rather
than the statistic directly which is the direct quantity we want to protect. The
power analysis for the SVD and Blobs dataset also reveal the interesting nature
of sampling versus optimisation in our two settings. In the SVD dataset, we
observe that NTE performs better than TCS and TCMC, however if we use the
same test locations and bandwidth of NTE for TCS and TCMC, the order of
performance is as we expect, better for sampling over optimization. However,
in the Blobs dataset, we observe that NTE has little or no power, because this
dataset is sensitive to the choice of test frequency locations, highlighting the
importance of optimisation in this case.
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Fig. 3: Type I error for the under25 only test, Power for the under25 vs 25t035
test over 500 runs, with n = 2500, § = 1le~5. *-asym represents using the asymp-
totic x2 null distribution.

Varying test sample size n We now fix € = 2.5, § = 1.07° and vary n from
1000 to 15 000. The results are shown in the bottom row of Figure[d] The results
for the SG dataset further reinforce the importance of not simply using the
asymptotic null distribution, as even at very large sample size, the type I error
is still inflated when naively computing the test threshold form a chi-squared
distribution. This is not the case for TCMC, TCS and NTE, where the type
I error is approximately controlled at the correct level for all sample sizes, as
shown in Figure 77 in the Appendix.

6.2 Real data: Celebrity age data

We now demonstrate our tests on a real life celebrity age dataset [30], con-
taining 397 949 images of 19 545 celebrities and their corresponding age la-
bels. Here, we will follow the preprocessing of [25], where images from the same
celebrity are placed into the same bag, and the bag label is calculated as the mean
age of that celebrity’s images and use this to construct two datasets, under25
and 25t035. Here the under25 dataset is the images where the corresponding
celebrity’s bag label is < 25, and the 25t035 dataset is the images correspond-
ing to the celebrity’s bag label that is between 25 and 35. The dataset under25
contains 58095 images, and the dataset 25t035 contains 126415 images. For this
experiment, we will focus on using the ME version of the test and consider the

kernel
k(x,y) = exp (_Ilso<x>2—92so(y>ll)

where () : R?56x256 _ R409 jg the feature map learnt by the CNN in [30],
mapping the image in the original pixel space to the last layer. For our experi-
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ment, we take N = 3125, and use 20% of the data for sampling test locations,
and calculation of the median heuristic bandwidth. Note here we do not perform
optimization, due to the large dimension of the feature map ¢. We now perform
two tests, for one test we compare samples from under25 only (i.e. Hy: P = Q
holds), and the other we compares samples from under25 to samples from 25t035
(i.e. Ho : P = @ does not hold). The results are shown in Figure [3|for ¢ from 0.1
to 0.7. We observe that in the under25 only test, the TCMC, TCS and NTE all
achieve the correct Type I error rate, this is unlike their counterpart that uses
the x? asymptotic null distribution. In the under25 vs 25t035 two sample test,
we see that our algorithms can achieve a high power (with little samples) at a
high level of privacy, protecting the original images from malicious intent.

Table 1: Synthetic problems (Null hypothesis Hg holds only for SG). Gaussian
Mixtures in R?, also studied in [6] 19} 23].

7 Conclusion

While kernel-based hypothesis testing provides flexible statistical tools for data
analysis, its utility in differentially private settings is not well understood. We
investigated differentially private kernel-based two-sample testing procedures, by
making use of the sensitivity bounds on the quantities used in the test statis-
tics. While asymptotic null distributions for the modified procedures remain un-
changed, ignoring additive noise can lead to an inflated number of false positives.
Thus, we propose new approximations of the null distributions under the private
regime which give improved Type I control and good power-privacy tradeoffs, as
demonstrated in extensive numerical evaluations.
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