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Abstract. Conditional Generative Models are now acknowledged an
essential tool in Machine Learning. This paper focuses on their con-
trol. While many approaches aim at disentangling the data through the
coordinate-wise control of their latent representations, another direc-
tion is explored in this paper. The proposed CompVAE handles data
with a natural multi-ensemblist structure (i.e. that can naturally be de-
composed into elements). Derived from Bayesian variational principles,
CompVAE learns a latent representation leveraging both observational
and symbolic information. A first contribution of the approach is that
this latent representation supports a compositional generative model,
amenable to multi-ensemblist operations (addition or subtraction of ele-
ments in the composition). This compositional ability is enabled by the
invariance and generality of the whole framework w.r.t. respectively, the
order and number of the elements. The second contribution of the paper
is a proof of concept on synthetic 1D and 2D problems, demonstrating
the efficiency of the proposed approach.
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1 Introduction

Representation learning is at the core of machine learning, and even more so since
the inception of deep learning [2]. As shown by e.g., [3, 12], the latent represen-
tations built to handle high-dimensional data can effectively support desirable
functionnalities. One such functionality is the ability to directly control the ob-
served data through the so-called representation disentanglement, especially in
the context of computer vision and image processing [26, 20] (more in section 2).

This paper extends the notion of representation disentanglement from a la-
tent coordinate-wise perspective to a semi-structured setting. Specifically, we
tackle the ensemblist setting where a datapoint can naturally be interpreted as
the combination of multiple parts. The contribution of the paper is a genera-
tive model built on the Variational Auto-Encoder principles [17, 28], controlling
the data generation from a description of its parts and supporting ensemblist
operations such as the addition or removal of any number of parts.
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The applicative motivation for the presented approach, referred to as Compo-
sitional Variational AutoEncoder (CompVAE), is the following. In the domain
of Energy Management, a key issue is to simulate the consumption behavior
of an ensemble of consumers, where each household consumption is viewed as
an independent random variable following a distribution law defined from the
household characteristics, and the household consumptions are possibly corre-
lated through external factors such as the weather, or a football match on TV
(attracting members of some but not all households). Our long term goal is to
infer a simulator, taking as input the household profiles and their amounts: it
should be able to simulate their overall energy consumption and account for their
correlations. The data-driven inference of such a programmable simulator is a
quite desirable alternative to the current approaches, based on Monte-Carlo pro-
cesses and requiring either to explicitly model the correlations of the elementary
random variables, or to proceed by rejection.

Formally, given the description of datapoints and their parts, the goal of
CompVAE is to learn the distribution laws of the parts (here, the households)
and to sample the overall distribution defined from a varying number of parts
(the set of households), while accounting for the fact that the parts are not
independent, and the sought overall distribution depends on shared external
factors: the whole is not the sum of its parts.

The paper is organized as follows. Section 2 briefly reviews related work
in the domain of generative models and latent space construction, replacing our
contribution in context. Section 3 gives an overview of CompVAE, extending the
VAE framework to multi-ensemblist settings. Section 4 presents the experimental
setting retained to establish a proof of concept of the approach on two synthetic
problems, and section 5 reports on the results. Finally section 6 discusses some
perspectives for further work and applications to larger problems.

2 Related Work

Generative models, including VAEs [17, 28] and GANs [9], rely on an embedding
from the so-called latent space Z onto the dataspace X. In the following, data
space and observed space are used interchangeably. It has long been observed
that continuous or discrete operations in the latent space could be used to pro-
duce interesting patterns in the data space. For instance, the linear interpolation
between two latent points z and z′ can be used to generate a morphing between
their images [27], or the flip of a boolean coordinate of z can be used to add
or remove an elementary pattern (the presence of glasses or moustache) in the
associated image [7].

The general question then is to control the flow of information from the
latent to the observed space and to make it actionable. Several approaches, either
based on information theory or on supervised learning have been proposed to
do so. Losses inspired from the Information Bottleneck [32, 30, 1] and enforcing
the independence of the latent and the observed variables, conditionally to the
relevant content of information, have been proposed: enforcing the decorrelation
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of the latent coordinates in β-VAE [12]; aligning the covariances of latent and
observed data in [19]; decomposing the latent information into pure content and
pure noise in InfoGAN [3]. Independently, explicit losses have been used to yield
conditional distributions in conditional GANs [23], or to enforce the scope of a
latent coordinate in [18, 33], (e.g. modelling the light orientation or the camera
angle).

The structure of the observed space can be mimicked in the latent space,
to afford expressive yet trainable model spaces; in Ladder-VAE [31], a sequence
of dependent latent variables are encoded and reversely decoded to produce
complex observed objects. Auxiliary losses are added in [22] in the spirit of semi-
supervised learning. In [16], the overall generative model involves a classifier,
trained both in a supervised way with labelled examples and in an unsupervised
way in conjuction with a generative model.

An important case study is that of sequential structures: [5] considers fixed-
length sequences and loosely mimicks an HMM process, where latent variable
zi controls the observed variable xi and the next latent zi+1. In [13], a linear
relation among latent variables zi and zi+1 is enforced; in [6], a recurrent neural
net is used to produce the latent variable encoding the current situation. In a
more general context, [34] provides a generic method for designing an appro-
priate inference network that can be associated with a given Bayesian network
representing a generative model to train.

The injection of explicit information at the latent level can be used to sup-
port ”information surgery” via loss-driven information parcimony. For instance
in the domain of signal generation [4], the neutrality of the latent representation
w.r.t. the locutor identity is enforced by directly providing the identity at the la-
tent level: as z does not need to encode the locutor information, the information
parcimony pressure ensures z independence wrt the locutor. Likewise, fair gen-
erative processes can be enforced by directly providing the sensitive information
at the latent level [35]. In [21], an adversarial mechanism based on Maximum
Mean Discrepancy [10] is used to enforce the neutrality of the latent. In [24], the
minimization of the mutual information is used in lieu of an adversary.

Discussion. All above approaches (with the except of sequential settings [5, 13],
see below) handle the generation of a datapoint as a whole naturally involving
diverse facets; but not composed of inter-related parts. Our goal is instead to
tackle the proper parts-and-whole structure of a datapoint, where the whole is
not necessarily the simple sum of its parts and the parts of the whole are in-
terdependent. In sequential settings [5, 13], the dependency of the elements in
the sequence are handled through parametric restrictions (respectively consid-
ering fixed sequence-size or linear temporal dependency) to enforce the proper
match of the observed and latent spaces. A key contribution of the proposed
CompVAE is to tackle the parts-to-whole structure with no such restrictions,
and specifically accommodating a varying number of parts − possibly different
between the training and the generation phases.
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3 Overview of CompVAE

This section describes the CompVAE model, building upon the VAE principles
[17] with the following difference: CompVAE aims at building a programmable
generative model pθ, taking as input the ensemble of the parts of a whole ob-
served datapoint. A key question concerns the latent structure most appropriate
to reflect the ensemblist nature of the observed data. The proposed structure
(section 3.1) involves a latent variable associated to each part of the whole. The
aggregation of the part is achieved through an order-invariant operation, and
the interactions among the parts are modelled at an upper layer of the latent
representation.

In encoding mode, the structure is trained from the pairs formed by a whole,
and an abstract description of its parts; the latent variables are extracted along
an iterative non-recurrent process, oblivious of the order and number of the parts
(section 3.2) and defining the encoder model qφ.
In generative mode, the generative model is supplied with a set of parts, and
accordingly generates a consistent whole, where variational effects operate jointly
at the part and at the whole levels.

Notations. A datapoint x is associated with an ensemble of parts noted {`i}.
Each `i belongs to a finite set of categories Λ. Elements and parts are used
interchangeably in the following. In our illustrating example, a consumption
curve x involves a number of households; the i-th household is associated with
its consumer profile `i, with `i ranging in a finite set of profiles. Each profile
in Λ thus occurs 0, 1 or several times. The generative model relies on a learned
distribution pθ(x|{`i}), that is decomposed into latent variables: a latent variable
named wi associated to each part `i, and a common latent variable z.

x

z

w̃

∑
w1`1

w2`2

wK`K

. . . . . .

Fig. 1. Bayesian network representation of the CompVAE generative model.

3.1 CompVAE: Bayesian architecture

The architecture proposed for CompVAE is depicted as a graphical model on
Fig. 1. As said, the i-th part belongs to category `i and is associated with a latent
variable wi (different parts with same category are associated with different
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latent variables). The ensemble of the wis is aggregated into an intermediate
latent variable w̃. A key requirement is for w̃ to be invariant w.r.t. the order
of elements in x. In the following w̃ is set to the sum of the wi, w̃ =

∑
i wi.

Considering other order-invariant aggregations is left for further work.
The intermediate latent variable w̃ is used to condition the z latent variable;
both w̃ and z condition the observed datapoint x. This scheme corresponds to
the following factorization of the generative model pθ:

pθ(x, z, {wi}|{`i}) = pθ(x|z, w̃)pθ(z|w̃)
∏
i

pθ(wi|`i) (1)

In summary, the distribution of x is conditioned on the ensemble {`i} as follows:
The i-th part of x is associated with a latent variable wi modeling the generic
distribution of the underlying category `i together with its specifics. Variable w̃
is deterministically computed to model the aggregation of the wi, and finally z
models the specifics of the aggregation.

Notably, each wi is linked to a single `i element, while z is global, being
conditioned from the global auxiliary w̃. The rationale for introducing z is to
enable a more complex though still learnable distribution at the x level − com-
pared with the alternative of conditioning x only on w̃. It is conjectured that an
information-effective distribution would store in wi (respectively in z) the local
information related to the i-th part (resp. the global information describing the
interdependencies between all parts, e.g. the fact that the households face the
same weather, vacation schedules, and so on). Along this line, it is conjectured
that the extra information stored in z is limited compared to that stored in the
wis; we shall return to this point in section 4.1.

The property of invariance of the distribution w.r.t. the order of the `i is
satisfied by design. A second desirable property regards the robustness of the
distribution w.r.t. the varying number of parts in x. More precisely, two require-
ments are defined. The former one, referred to as size-flexibility property, is that
the number K of parts of an x is neither constant, nor bounded a priori. The
latter one, referred to as size-generality property is the generative model pθ to
accommodate larger numbers of parts than those seen in the training set.

3.2 Posterior inference and loss

Letting pD(x|{`i}) denote the empirical data distribution, the learning criterion
to optimize is the data likelihood according to the sought generative model pθ:
EpD log pθ(x|{`i}).
The (intractable) posterior inference of the model is approximated using the
Evidence Lower Bound (ELBO) [14], following the Variational AutoEncoder
approach [17, 28]. Accordingly, we proceed by optimizing a lower bound of the
log-likelihood of the data given pθ, which is equivalent to minimizing an upper
bound of the Kullback-Leibler divergence between the two distributions :

DKL(pD‖pθ) ≤ H(pD) + E
x∼pD

LELBO(x) (2)
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The learning criterion is, with qφ(z, {wi}|x, {`i}) the inference distribution:

LELBO(x) = E
z,{wi}∼qφ

log
qφ(z, {wi}|x, {`i})
pθ(z|w̃)

∏
i pθ(wi|`i)

− E
z,{wi}∼qφ

log pθ(x|z, w̃)
(3)

The inference distribution is further factorized as qφ({wi}|z, x, {li})qφ(z|x),
yielding the final training loss:

LELBO(x) = E
z,{wi}∼qφ

log
qφ({wi}|x, z, {`i})∏

i pθ(wi|`i)

+ E
z,{wi}∼qφ

log
qφ(z|x)

pθ(z|w̃)

− E
z,{wi}∼qφ

log pθ(x|z, w̃)

(4)

The training of the generative and encoder model distributions is described
in Alg. 1.

θ, φ← Random initialization;
while Not converged do

x, {`i} ← Sample minibatch;
z ← Sample from qφ(z|x);
{wi} ← Sample from qφ({wi}|x, z, {`i});
Lw ← DKL(qφ({wi}|x, z, {`i})‖Πipθ(wi|`i));
Lz ← log

qφ(z|x)
pθ(z|w̃)

;

Lx ← − log pθ(x|z, w̃);
LELBO ← Lw + Lz + Lx;
θ ← Update(θ,∇θLELBO);
φ← Update(φ,∇φLELBO);

end
Algorithm 1: CompVAE Training Procedure.

3.3 Discussion

In CompVAE, the sought distributions are structured as a Bayesian graph (see
pθ in Fig. 1), where each node is associated with a neural network and a prob-
ability distribution family, like for VAEs. This neural network takes as input
the parent variables in the Bayesian graph, and outputs the parameters of a
distribution in the chosen family, e.g., the mean and variance of a Gaussian dis-
tribution. The reparametrization trick [17] is used to back-propagate gradients
through the sampling.
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A concern regards the training of latent variables when considering Gaussian
distributions. A potential source of instability in CompVAE comes from the fact
that the Kullback-Leibler divergence between qφ and pθ (Eq. (4)) becomes very
large when the variance of some variables in pθ becomes very small1. To limit
this risk, some care is exercized in parameterizing the variances of the normal
distributions in pθ to making them lower-bounded.

Modelling of qφ({wi}|x, z, {`i}). The latent distributions pθ(z|w̃), pθ(wi|`i)
and qφ(z|x) are modelled using diagonal normal distributions as usual. Regard-
ing the model qφ({wi}|z, x, {`i}), in order to be able to faithfully reflect the
generative model pθ, it is necessary to introduce the correlation between the wis
in qφ({wi}|z, x, {`i}) [34].

As the aggregation of the wi is handled by considering their sum, it is natural
to handle their correlations through a multivariate normal distribution over the
wi. The proposed parametrization of such a multivariate is as follows. Firstly,
correlations operate in a coordinate-wise fashion, that is, wi,j and wi′,j′ are only
correlated if j = j′. The parametrization of the wis ensures that: i) the variance
of the sum of the wi,j can be controlled and made arbitrarily small in order
to ensure an accurate VAE reconstruction; ii) the Kullback-Leibler divergence
between qφ({wi}|x, z, {`i}) and

∏
i pθ(wi|`i) can be defined in closed form.

The learning of qφ({wi}|x, z, {`i}) is done using a fully-connected graph neu-
ral network [29] leveraging graph interactions akin message-passing [8]. The
graph has one node for each element `i, and every node is connected to all
other nodes. The state of the i-th node is initialized to (preφ(x), z, eφ(`i) + εi),
where preφ(x) is some learned function of x noted, eφ(`i) is a learned embedding
of `i, and εi is a random noise used to ensure the differentiation of the wis. The
state of each node of the graph at the k-th layer is then defined by its k − 1-th
layer state and the aggregation of the state of all other nodes:{

h
(0)
i = (preφ(x), z, eφ(`i) + εi)

h
(k)
i = f

(k)
φ

(
h
(k−1)
i ,

∑
j 6=i g

(k)
φ (h

(k−1)
j )

) (5)

where f
(k)
φ and g

(k)
φ are learned neural networks: g

(k)
φ is meant to embed

the current state of each node for an aggregate summation, and f
(k)
φ is meant

to ”fine-tune” the i-th node conditionally to all other nodes, such that they
altogether account for w̃.

4 Experimental Setting

This section presents the goals of experiments and describes the experimental
setting used to empirically validate CompVAE.

1 Single-latent variable VAEs do not face such problems as the prior distribution pθ(z)
is fixed, it is not learned.
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4.1 Goals of experiments

As said, CompVAE is meant to achieve a programmable generative model. From
a set of latent values wi, either derived from pθ(wi|`i) in a generative context,
or recovered from some data x, it should be able to generate values x̂ matching
any chosen subset of the wi. This property is what we name the ”ensemblist dis-
entanglement” capacity, and the first goal of these experiments is to investigate
whether CompVAE does have this capacity.

A second goal of these experiments is to examine whether the desired prop-
erties (section 3.1) hold. The order-invariant property is enforced by design. The
size-flexibility property will be assessed by inspecting the sensitivity of the ex-
traction and generative processes to the variability of the number of parts. The
size-generality property will be assessed by inspecting the quality of the gen-
erative model when the number of parts increases significantly beyond the size
range used during training.

A last goal is to understand how CompVAE manages to store the information
of the model in respectively the wis and z. The conjecture done (section 3.1)
was that the latent wis would take in charge the information of the parts, while
the latent z would model the interactions among the parts. The use of synthetic
problems where the quantity of information required to encode the parts can be
quantitatively assessed will permit to test this conjecture. A related question is
whether the generative model is able to capture the fact that the whole is not
the sum of its parts. This question is investigated using non-linear perturbations,
possibly operating at the whole and at the parts levels, and comparing the whole
perturbed x obtained from the `is, and the aggregation of the perturbed xis
generated from the `i parts. The existence of a difference, if any, will establish
the value of the CompVAE generative model compared to a simple Monte-Carlo
simulator, independently sampling parts and thereafter aggregating them.

4.2 1D and 2D Proofs of concept

Two synthetic problems have been considered to empirically answer the above
questions.2

In the 1D synthetic problem, the set Λ of categories is a finite set of frequencies
λ1 . . . λ10. A given ”part” (here, curve) is a sine wave defined by its frequency
`i in Λ and its intrinsic features, that is, its amplitude ai and phase κi. The
whole x associated to {`1, . . . `K} is a finite sequence of size T , deterministically
defined from the non-linear combination of the curves:

x(t) = K tanh

(
C

K

K∑
i=0

ai cos

(
2π`i
T

t+ κi

))

withK the number of sine waves in x, C a parameter controlling the non-linearity
of the aggregation of the curves in x, and T a global parameter controlling the

2 These problems are publicly available at https://github.com/vberger/compvae .
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sampling frequency. For each part (sine wave), ai is sampled from N (1; 0.3), and
κi is sampled from N

(
0; π2

)
.

The part-to-whole aggregation is illustrated on Fig. 2, plotting the non-linear
transformation of the sum of 4 sine waves, compared to the sum of non-linear
transformations of the same sine waves. C is set to 3 in the experiments.

tanh of sum sum of tanh

Fig. 2. Non-linear part-to-whole aggregation (purple) compared to the sum of non-
linear perturbations of the parts (green). Better seen in color. Both curves involve a
non-linear transform factor C = 3.

This 1D synthetic problem features several aspects relevant to the empirical
assessment of CompVAE. Firstly, the impact of adding or removing one part
can be visually assessed as it changes the whole curve: the general magnitude of
the whole curve is roughly proportional to its number of parts. Secondly, each
part involves, besides its category `i, some intrinsic variations of its amplitude
and phase. Lastly, the whole x is not the sum of its parts (Fig. 2).

The generative model pθ(x|z,
∑
i wi) is defined as a Gaussian distribution

N (µ;∆(σ)), the vector parameters µ and σ of which are produced by the neural
network.

In the 2D synthetic problem, each category in Λ is composed of one out of
five colors ({red, green, blue, white, black}) associated with a location (x, y) in
[0, 1]× [0, 1]. Each `i thus is a colored site, and its internal variability is its inten-
sity. The whole x associated to a set of `is is an image, where each pixel is colored
depending on its distance to the sites and their intensity (Fig. 3). Likewise, the
observation model pθ(x|z,

∑
i wi) is a Gaussian distribution N (µ;∆(σ)), the pa-

rameters µ and σ of which are produced by the neural network. The observation
variance is shared for all three channel values (red, green, blue) of any given
pixel.

The 2D problem shares with the 1D problem the fact that each part is defined
from its category `i (resp. a frequency, or a color and location) on the one
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Fig. 3. 2D visual synthetic examples, including 1 to 4 sites (top to bottom). Note that
when neighbor sites have same color, the image might appear to have been generated
with less sites than it actually has.

hand, and its specifics on the other hand (resp, its amplitude and frequency, or
its intensity); additionally, the whole is made of a set of parts in interaction.
However, the 2D problem is significantly more complex than the 1D, as will be
discussed in section 5.2.

4.3 Experimental setting

CompVAE is trained as a mainstream VAE, except for an additional factor of
difficulty: the varying number of latent variables (reflecting the varying number
of parts) results in a potentially large number of latent variables. This large size
and the model noise in the early training phase can adversely affect the training
procedure, and lead it to diverge. The training divergence is prevented using a
batch size set to 256. The neural training hyperparameters are dynamically tuned
using the Adam optimizer [15] with α = 10−4, β1 = 0.5 and β2 = 0.9, which
empirically provide a good compromise between training speed, network stability
and good convergence. On the top of Adam, the annealing of the learning rate α
is achieved, dividing its value by 2 every 20,000 iterations, until it reaches 10−6.

For both problems, the data is generated on the fly during the training,
preventing the risk of overfitting. The overall number of iterations (batches) is
up to3 500,000. The computational time on a GPU GTX1080 is 1 day for the
1D problem, and 2 days for the 2D problem.

Empirically, the training is facilitated by gradually increasing the number K
of parts in the datapoints. Specifically, the number of parts is uniformly sampled
in [[1,K]] at each iteration, with K = 2 at the initialization and K incremented
by 1 every 3,000 iterations, up to 16 parts in the 1D problem and 8 in the 2D
problem.

3 Experimentally, networks most often converge much earlier.
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5 CompVAE: Empirical Validation

This section reports on the proposed proofs of concept of the CompVAE ap-
proach.

5.1 1D Proof of Concept

Fig. 4 displays in log-scale the losses of the wis and z latent variables along time,
together with the reconstruction loss and the overall ELBO loss summing the
other three (Eq. (4)). The division of labor between the wis and the z is seen
as the quantity of information stored by the wis increases to reach a plateau at
circa 100 bits, while the quantity of information stored by z steadily decreases
to around 10 bits. As conjectured (section 3.1), z carries little information.

1

10
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1000

0 50000 100000 150000 200000

lo
ss

in
b

it
s

Iterations
ELBO
x loss

z loss
wi losses

Fig. 4. CompVAE, 1D problem: Losses of the latent variables respectively associated
to the parts (wi, green), to the whole (z, blue), and the reconstruction loss of x (yellow),
in log scale. Better seen in color.

Note that the x reconstruction loss remains high, with a high ELBO even at
convergence time, although the generated curves ”look good”. This fact is ex-
plained from the high entropy of the data: on the top of the specifics of each part
(its amplitude and phase), x is described as a T -length sequence: the temporal
discretization of the signal increases the variance of x and thus causes a high
entropy, which is itself a lower bound for the ELBO. Note that a large fraction
of this entropy is accurately captured by CompVAE through the variance of the
generative model pθ(x|z, w̃).

The ability of ”ensemblist disentanglement” is visually demonstrated on Fig.
5: considering a set of `i, the individual parts wi are generated (Fig. 5, left) and
gradually integrated to form a whole x (Fig. 5, right) in a coherent manner.
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Fig. 5. CompVAE, 1D problem: Ensemblist recomposition of the whole (right column)
from the parts (left column). On each row is given the part (left) and the whole (right)
made of this part and all above parts.

The size-generality property is satisfactorily assessed as the model could be
effectively used with a number of parts K ranging up to 30 (as opposed to 16
during the training) without requiring any re-training or other modification of
the model (results omitted for brevity).

5.2 2D Proof of Concept

As shown in Fig. 6, the 2D problem is more complex. On the one hand, a 2D
part only has a local impact on x (affecting a subset of pixels) while a 1D part
has a global impact on the whole x sequence. On the other hand, the number
of parts has a global impact on the range of x in the 1D problem, whereas each
pixel value ranges in the same interval in the 2D problem. Finally and most
importantly, x is of dimension 200 in the 1D problem, compared to dimension
3, 072 (3×32×32) in the 2D problem. For these reasons, the latent variables here
need to store more information, and the separation between the wi (converging
toward circa 200-300 bits of information) and z (circa 40-60 bits) is less clear.

Likewise, x reconstruction loss remains high, although the generated images
”look good”, due to the fact that the loss precisely captures the discrepancies in
the pixel values that the eye does not perceive.

Finally, the ability of ”ensemblist disentanglement” is inspected by incre-
mentally generating the whole x from a set of colored sites (Fig. 7). The top
row displays the colors of `1 . . . `5 from left to right. On the second row, the
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Fig. 6. CompVAE, 2D problem: Losses of the latent variables respectively associated
to the parts (wi, green), to the whole (z, blue), and the reconstruction loss of x (yellow),
in log scale. Better seen in color.

i-th square shows an image composed from `1 . . . `i by the ground truth genera-
tor, and rows 3 to 6 show images generated by the model from the same `1 . . . `i.
While the generated x generally reflects the associated set of parts, some advents
of black and white glitches are also observed (for instance on the third column,
rows 3 and 5). These glitches are blamed on the saturation of the network (as
black and white respectively are represented as (0, 0, 0) and (1, 1, 1) in RGB),
since non linear combinations of colors are used for a good visual rendering4.

6 Discussion and Perspectives

The main contribution of the paper is the generative framework CompVAE, to
our best knowledge the first generative framework able to support the genera-
tion of data based on a multi-ensemble {`i}. Built on the top of the celebrated
VAE, CompVAE learns to optimize the conditional distribution pθ(x|{`i}) in
a theoretically sound way, through introducing latent variables (one for each
part `i), enforcing their order-invariant aggregation and learning another latent
variable to model the interaction of the parts. Two proofs of concepts for the
approach, respectively concerning a 1D and a 2D problem, have been established
with respectively very satisfactory and satisfactory results.

This work opens several perspectives for further research. A first direction
in the domain of computer vision consists of combining CompVAE with more

4 Color blending in the data generation is done taking into account gamma-correction.
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Fig. 7. CompVAE, 2D problem. First row: parts `1 . . . `5. Second row: the i-th square
depicts the x defined from `1 to `i as generated by the ground truth. Rows 3-6: different
realizations of the same combination by the trained CompVAE - see text. Best viewed
in colors.

advanced image generation models such as PixelCNN [25] in a way similar to
PixelVAE [11], in order to generate realistic images involving a predefined set of
elements along a consistent layout.

A second perspective is to make one step further toward the training of fully
programmable generative models. The idea is to incorporate explicit biases on
the top of the distribution learned from unbiased data, to be able to sample
the desired sub-spaces of the data space. In the motivating application domain
of electric consumption for instance, one would like to sample the global con-
sumption curves associated with high consumption peaks, that is, to bias the
generation process toward the top quantiles of the overall distribution.
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