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Abstract. Many real-world security scenarios can be modeled via a
game-theoretic framework known as a security game in which there is
a defender trying to protect potential targets from an attacker. Recent
work in security games has shown that deceptive signaling by the de-
fender can convince an attacker to withdraw his attack. For instance,
a warning message to commuters indicating speed enforcement is in
progress ahead might lead to them driving more slowly, even if it turns
out no enforcement is in progress. However, the results of this work are
limited by the unrealistic assumption that the attackers will behave with
perfect rationality, meaning they always choose an action that gives them
the best expected reward. We address the problem of training boundedly
rational (human) attackers to comply with signals via repeated interac-
tion with signaling without incurring a loss to the defender, and offer the
four following contributions: (i) We learn new decision tree and neural
network-based models of attacker compliance with signaling. (ii) Based
on these machine learning models of a boundedly rational attacker’s re-
sponse to signaling, we develop a theory of signaling in the Goldilocks
zone, a balance of signaling and deception that increases attacker com-
pliance and improves defender utility. (iii) We present game-theoretic
algorithms to solve for signaling schemes based on the learned models
of attacker compliance with signaling. (iv) We conduct extensive human
subject experiments using an online game. The game simulates the sce-
nario of an inside attacker trying to steal sensitive information from com-
pany computers, and results show that our algorithms based on learned
models of attacker behavior lead to better attacker compliance and im-
proved defender utility compared to the state-of-the-art algorithm for
rational attackers with signaling.

Keywords: Security · Stackelberg Games · Behavioral Modeling and
Learning · Bounded Rationality · Signaling · Deception.
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1 Introduction

Imagine a highway on which many commuters with a tendency to speed travel
each day. Suppose the police have a limited amount of time to patrol this high-
way, but still want to stop people from speeding. One solution is to use decep-
tive signals, or warnings. For example, a sign noting that speed enforcement
is in progress ahead could be used, even if this is not actually the case. It is
easy to imagine that if this sign were displayed very often with no real police
patrols, the commuters would quickly realize and continue speeding. However,
if the commuters knew there was a good chance of actually being stopped and
issued a ticket, they would probably slow down. The question is how often can
the police display the sign deceptively (without enforcing speed) and still cause
the commuters to slow down?

This is the question answered by Xu et al. with their framework for deceptive
signaling in Stackelberg Security Games (SSGs) [30]. SSGs model the interac-
tion between an attacker and a defender (in our example, the commuters and
the police), and have successfully helped security agencies worldwide optimize
the use of limited security resources to mitigate attacks across domains from
protecting ports and flights, to mitigating the poaching of endangered animals
[2, 13, 21, 26, 28]. (We use the term attack broadly to refer to any unwanted be-
havior or illegal activity, such as speeding.) With the addition of signaling, Xu et
al.’s framework allows the defender to strategically reveal information about her
defensive strategy to the attacker [30]. On seeing a signal (e.g, a warning that
speed enforcement is in effect), a compliant attacker will withdraw his attack to
the defender’s benefit. The main advantage of signaling is the ability to deter
attacks using deception, instead of deploying scarce or costly defensive resources.

This signaling framework was shown in simulation to improve the defender
utility against a perfectly rational attacker (who always takes the action with the
best utility for him) compared to the traditional SSG model. Unfortunately, real-
world attackers are almost always boundedly rational (not always selecting the
action with the best utility). Therefore, we focus on finding methods to improve
the compliance rates of boundedly rational attackers, who may not comply even
if it is rational to do so, but instead learn to react via repeated interactions with
signals. This framework could be used to deter boundedly rational attackers
in a variety of real-world settings where attackers might repeatedly interact
with signals. For instance, speeding commuters, fare evaders on public transit
[17], opportunistic criminals looking for chances to strike [34], or cyber-attackers
repeatedly probing a system [18].

In order to increase the compliance of boundedly rational attackers, we focus
on the frequency of signaling, or deciding how often to signal, and use machine
learning models and optimization to learn the overall number of warnings to
show, as showing too many warnings can cause attackers to simply ignore them.
A key result of this paper is the discovery of a Goldilocks zone for signaling—a
careful balance of signaling and deception that considers underlying character-
istics of individual targets—via the use of machine learning models of attacker
behavior, which leads to an increase in human attacker compliance and an im-
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provement of defender utility. Our main contributions are as follows: (i) We learn
new models of attacker compliance with regard to signaling based on decision
trees and neural networks. (ii) Utilizing insights from these learned models we
propose a theory of signaling in the Goldilocks zone, a balance of signaling and
deception that increases the compliance of boundedly rational adversaries while
mitigating losses to the defender. (iii) We present game-theoretic algorithms to
solve for signaling schemes based on the learned models. (iv) Using an online
game based on the scenario of an inside attacker, we conduct extensive human
subject experiments, which show that against boundedly rational subjects, our
new modeling-based signaling algorithms outperform the state-of-the-art algo-
rithm designed for perfectly rational attackers.

2 Related Work

Two key game-theoretic frameworks, which have been studied and applied exten-
sively, are SSGs, which model interactions between a defender and an attacker
[1, 14, 29], and signaling games, which model an interaction between two parties
in which one party (the sender) reveals some hidden information to the other
(the receiver), with the goal of influencing his behavior [22, 25]. With the grow-
ing interest in the use of deception for security, particularly in the cyber realm
[7], game theory researchers have also begun incorporating deception into the
security and signaling game frameworks [10, 19, 36]. Recent work has combined
the security and signaling game frameworks with deception, such that the de-
fender strategically reveals (possibly deceptive) information about her defensive
strategy to the attacker in hopes of causing him to withdraw his attack [12, 31].

However, previous work in game-theoretic frameworks with deception has not
investigated human behavior in response to deception, but has instead assumed
all respondents are perfectly rational. This is a major limitation to translating
these frameworks for use in the real world. In contrast, we focus on this combined
signaling-security game framework with boundedly rational attackers who need
to be trained to comply with signaling, which has not previously been considered.

There is extensive work modeling the behavior of boundedly rational attack-
ers in classic SSGs without signaling. Early models relied on specific assumptions
about attacker behavior [24], using functional forms based on these assumptions
such as quantal response [20, 32] or prospect theory [33]. More recent work has
turned to machine learning models, which use real-world data and do not rely
on specific assumptions about attacker behavior [15, 35]. Two methods that have
been used to predict the behavior of humans in game-theoretic settings are de-
cision trees, which have been used to predict the actions of poachers in Green
Security Games [13], and neural networks, which have recently been used to pre-
dict the distribution of actions for a player in normal-form, simultaneous move
games [11]. We use both of these models, but in contrast to previous work, we
are the first to address human behavior with regard to signaling in a SSG.
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3 Background
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Fig. 1. The signaling scheme
for a target t.

In a SSG, there is a set of targets T =
{t1, t2, . . . , tn} which the defender protects by al-
locating K < n resources over them. A pure de-
fense strategy is an allocation of the resources,
with a mixed strategy being a randomization over
these pure strategies. Without scheduling con-
straints, a mixed strategy can be equivalently rep-
resented as marginal coverage probabilities over
the targets, denoted z = {zt}, with zt ∈ [0, 1],
and

∑
t zt = K, where zt is the probability of pro-

tecting target t [14]. The attacker is aware of z (but not the pure strategy) and
chooses a target t to attack accordingly. If the defender is protecting t, the at-
tacker incurs a penalty of U ca(t) < 0 and the defender is rewarded with U cd(t) ≥ 0.
If t is unprotected, the attacker gets a reward of Uua (t) > 0 and the defender
gets a penalty of Uud (t) < 0. Xu et al. [30] introduced a two-stage SSG with a
signaling scheme, allowing the defender to influence the attacker’s decision mak-
ing to her benefit by exploiting the fact that the attacker is unaware of the pure
strategy at any given time. A round of the two-stage game plays out as follows:

1. The defender allocates her resources, covering a random subset of the targets
based on her mixed strategy z.

2. Aware of the defender’s mixed strategy, the attacker chooses a target, t, to
attack accordingly.

3. The defender sends a (possibly deceptive) signal to the attacker regarding
the current protection status of t.

4. Based on the information given in the signal, the attacker chooses to either
(1) continue attacking or (2) withdraw his attack yielding payoffs of zero for
both players.

The first stage (steps 1 & 2) is identical to the classic SSG. The second stage
(steps 3 & 4) introduces signaling. We can formalize a signaling scheme as follows:

Definition 1 (Signaling Scheme [30]). Given (t, zt) and a signal σ, a sig-
naling scheme regarding t consists of probabilities (pt, qt) with 0 ≤ pt ≤ zt and
0 ≤ qt ≤ 1− zt, such that pt and qt are the probabilities of showing σ given that
t is currently covered and uncovered, respectively.

Figure 1 visualizes a signaling scheme for a target t, where zt is the coverage
probability, pt [qt] is the probability of signaling given t is covered [uncovered]. A
signaling scheme tells the defender how often to warn the attacker broken down
into the cases (1) when the warning is true (pt) and (2) when it is false (qt). For
instance, with probability (1− zt), t is not protected by a defensive resource. In
this case, we will send a deceptive signal telling the attacker t is protected with
probability qt

1−zt . Intuitively, it is the optimal combination of bluffing and truth
telling to ensure the attacker always believes the bluff. The goal is to bluff as
much as possible while maintaining this belief.
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4 Signaling Schemes for Boundedly Rational Attackers

While previous work focused on a perfectly rational attacker [30], we devise a
signaling scheme that increases the compliance of (human) boundedly rational
attackers. We let xt [yt] be the probability the adversary attacks the chosen
target t given a signal is shown [no signal is shown]. For a perfectly rational
attacker [30], xt = 0 and yt = 1. As we show in Section 7, humans do not behave
in such a deterministic manner, so our goal is to find a signaling scheme (pt and
qt) that provides the most benefit to the defender, despite human behavior. We
measure benefit by the expected utility of the defender, defined as follows, where
gt is the probability that the attacker selects t, term (i) is the expected defender
utility given no signal is shown, and term (ii) is the expected defender utility
otherwise. In each term, we sum up the total expected utility for target t, which
has defender reward U cd(t) and penalty Uud (t):

Ud =
∑

t
gt[yt(zt − pt)U cd(t) + yt(1− zt − qt)Uud (t)︸ ︷︷ ︸

(i)

+xtptU
c
d(t) + xtqtU

u
d (t)︸ ︷︷ ︸

(ii)

]

In the signaling scheme proposed by Xu et al. [30] (hereafter referred to as the
peSSE algorithm), term (ii) is always equal to zero (i.e. xt = 0), which is the
optimal solution for a perfectly rational attacker. It is the maximum amount of
signaling that can be shown and still cause the attacker to withdraw anytime
he sees a signal. Further, under the peSSE scheme, the defender only employs
deception when a signal is shown. When no signal is shown, it is always true that
the given target is uncovered (i.e. zt−pt = 0), and the attacker will succeed. We
refer to this type of scheme, as a 1-way deceptive signaling scheme.

As we show in Section 7, in the presence of a boundedly rational attacker,
using a signaling scheme, even one designed for perfectly rational attackers,
improves defender utility when compared to the traditional SSG framework.
We also show that boundedly rational attackers display a training effect via
experience with signals. As they experience signals and the consequences of
attacking, they become more compliant—attacking less frequently as time goes
on. However, under the peSSE scheme, this decrease in attack probability is both
gradual and small in magnitude. Therefore, we seek a way to both increase the
overall rate of compliance and to speed up the training process without incurring
additional loss to the defender. The natural starting point based on insights from
literature on using warnings to deter risky cyber behavior [16], is to adjust the
false positive (deception) rate. We used a regression tree to learn the probability
of attack given a signal (xt), based on features of each target, including the rate
of deception. However, in order to handle instances in which there is no signal—a
sure loss to the defender—the optimization process suggested more signaling. We
will show this led to the defender being worse off than under the peSSE scheme.

Given these results, we hypothesized that the overall frequency of signaling,
not just the deception rate, also has an impact on attacker behavior. In par-
ticular, that a high frequency of signaling was causing the attacker to become
desensitized and less compliant. Therefore, we propose a new scheme which we
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call a 2-way deceptive signaling scheme, which lowers the overall frequency of
showing a signal without changing the deception rate, and introduces uncer-
tainty for the attacker when no signal is shown. As shown in Section 7, 2-way
signaling schemes result in faster training of the attacker, an overall increase
in compliance, and better expected utility for the defender against boundedly
rational attackers. In a 2-way signaling scheme, we decrease pt and qt propor-
tionally to reduce the frequency of signaling, while adding uncertainty about
the protection status of t when no signal is shown. We formally define the new
scheme as follows:

Definition 2 (2-Way Signaling Scheme). Let f be a vector such that f ∈ R|T |
and ft ∈ [0, 1] for all t ∈ T . Then,

(i) pt = ftzt (ii) qt = −ptU ca(t)/Uua (t)
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Fig. 2. The (p, q)-feasible
regions for the peSSE and
2-way signaling schemes.

In equation (ii), we ensure that the expected
value when a signal is shown is equal to zero for all
targets. This keeps the deception rate consistent
with the peSSE scheme, allowing us to focus on the
effect of signaling frequency without confounding
the effect of changes in deception rate. Intuitively,
ft is the proportion of signals shown compared to
the peSSE strategy. For example, if ft = 0.5, we
show half as many signals as the peSSE strategy.

We can visualize 2-way signaling in relation
to the peSSE scheme by looking at the feasible
region of (p, q) in the optimization used to solve
for the peSSE scheme (Figure 2). Figure 2 gives the
intuition for part two of the following theorem (its proof is in the appendix)4:

Theorem 1. Given a 2-way deception scheme with ft ∈ (0, 1) ∀ t, if the attacker
is perfectly rational, then:

(i) The attacker’s expected utility per target will be equal to his expected utility
under the peSSE signaling scheme.

(ii) The defender’s expected utility per target will be worse than hers under the
peSSE signaling scheme.

Two-way signaling makes the signaling scheme sub-optimal for the defender
against a perfectly rational attacker, but as we show in Section 7, it improves
her utility against boundedly rational attackers. The question is how to choose
the correct value of ft?

As a baseline, we uniformly reduce the signaling frequency on all targets
(ft = 0.75,∀t), and show that this leads to faster training of subjects, an im-
provement in the end compliance rate, and an improvement in expected utility

4 Link:https://www.dropbox.com/s/uum5tpnb4h1gmym/ECMLSupplement.pdf?dl =
0
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for the defender. However, we hypothesize that we can do better by exploiting
the boundedly rational attackers’ differing preferences over the targets [20, 23].
We consider learned models of attacker behavior with regard to signaling to de-
termine optimal frequencies of signaling across targets, leading us to find the
Goldilocks zone for signaling for each target (Section 6.3), which outperforms
the baseline’s uniform reduction of signaling.

5 Learning Models of Attacker Compliance

Round Model Accuracy Precision Recall

Round 1: DT 0.711 0.714 0.986
NN 0.783 0.783 1.0

Round 2: DT 0.725 0.727 0.995
NN 0.720 0.731 0.973

Round 3: DT 0.690 0.705 0.944
NN 0.683 0.744 0.822

Round 4: DT 0.654 0.660 0.935
NN 0.623 0.680 0.786

Table 1. Accuracy of Attacker Models

Recent work has shown machine
learning models of human behavior
to outperform classic statistically-
based behavioral models such as
SUQR [9]. Therefore, to model the
attacker’s response to signaling, we
chose two machine learning meth-
ods: (i) a decision tree (DT), which
has shown recent success in appli-
cations to patrol planning to stop
poachers [8]; and (ii) a neural net-
work (NN), which is generally con-
sidered the state-of-the-art in pre-
dictive modeling.

We compiled a data set of 17, 786 instances on which subjects saw a signal,
from three different experiments—peSSE, deception-based, and 2-way signaling
baseline (see Section 7.1). The features of each data point were the attacker
reward and penalty (Uua (t) & U ca(t)), the coverage probability (zt), and the sig-
naling frequency (pt + qt), for the attacker’s target selection t. We predicted the
subject’s action (1=Attack, 0 = Withdraw). In order to account for the fact that
the level of experience with signals so far has an impact on subject behavior, we
separated the data by round, resulting in four data sets with 4448, 4475, 4229,
and 4634 instances, respectively. We trained DT and NN models on each round
separately. The DT model was trained in R using the rpart library, which utilizes
the CART algorithm to create classification trees [27]. The complexity param-
eter (CP) was set to 0.003 to avoid over-fitting. The NN was built in Python
using the Keras5 library. The network was composed of two hidden layers with
50 and 100 nodes, respectively. For training, a weighted categorical crossentropy
loss function was used, where the “attack” class (1) was weighted by 0.4 and
the “withdraw” class (0) was weighted by 0.6 due to class imbalance. The Nes-
terov Adam optimizer was used with Glorot normal initialization. The number
of nodes, optimizer, and initialization were determined using randomized search
hyperparameter optimization from scikit-learn6. This was repeated for multiple

5 https://keras.io
6 https://scikit-learn.org/stable/
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weights, and the best combination on the validation set was used. Table 1 shows
the precision, recall, and mean accuracy on 100 random 80/20 splits of the data.

Despite similar accuracy, the models have different strengths. The DT model
can give more insight into the features that are most important for increasing
compliance. In fact, rpart gives an importance value to each variable, and con-
sistent with our hypothesis, frequency is the most important feature. However,
the DT model has a more coarse-grained set of predicted attack probabilities.
The NN model is a black-box when it comes to explaining the importance of
different features, but gives more fine-grained predictions of attack probability.
In the following, we propose new game-theoretic algorithms to find the corre-
sponding optimal signaling scheme for the defender based on both models. As
we show in Section 7, both methods outperform the peSSE algorithm, with the
NN method only slightly outperforming the DT scheme. Thus, practitioners can
choose a method based on the trade-off between performance and explainability
best suited to their application.

6 Using Learned Models of Behavior to Compute a
Signaling Scheme

Using the DT and NN models of attacker compliance, our goal is to compute
a signaling scheme that maximizes defender expected utility as expressed in
Section 4. Evidence from initial experiments show that when there is no signal
participants always attack, so we simplify the computation, letting yt = 1.0, and
encode the probability of attack given a signal (xt) as a function of the models’
predictions. We focus only on finding the signaling probabilities (pt, qt), setting
the coverage (zt) using the algorithm given in [30] and using experimental data
to set the selection probabilities (gt).

6.1 Decision Tree Based Signaling Scheme

1
0.72

1
0.64

1
0.61

1
0.65

1
0.57

0
0.48

1
0.59

1
0.71

1
0.83

Freq < 0.77

Freq < 0.62

Coverage ≥ 0.39

Penalty ≥ 6

≥ 0.77

< 6

 < 0.39

≥ 0.62

Fig. 3. The DT modeling the
probability of attack given a
signal for Round 2 of the In-
sider Attack Game.

Our goal is to determine what signaling frequency
to set in order to maximize the defender’s ex-
pected utility, where the attacker’s response to
signaling is given by a DT. For example, Figure 3,
where each node lists the predicted action (0=
No Attack, 1= Attack) and the percentage of at-
tacks (1′s) at the node (xt). We will use a mixed-
integer linear program (MILP) to find the optimal
frequencies. Here we introduce general techniques
for building a MILP from the DT model. ( The full
MILP based on Figure 3 is in the appendix.)

We begin by linearizing the expression of de-
fender utility introduced in Section 4, which re-
quires introducing two additional variables, mt =
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xtqt and nt = xtpt:

Ud =
∑

t
gt[(zt − pt)U cd(t) + (1− zt − qt)Uud (t) + ntU

c
d(t) +mtU

u
d (t)]

Each branch splits the data on one of four features—attacker reward (Uua ),
attacker penalty (U ca), and coverage probability (zt), and signaling frequency
(pt + qt). We define binary variables to represent the frequency branches. For
each branch on frequency of α, we define a binary variable bt such that bt = 1 if
pt + qt ≥ α and bt = 0 otherwise. This is enforced by the following constraints,
where M, ε > 0 are a large and small constants, respectively:

α− (1− bt)M ≤ pt + qt ≤ α+ btM − ε

For each leaf, we define constraints that enforce that the correct predicted value
is substituted for (xt), constraining the values of mt and nt. For example, the
constraints on mt associated with the fourth leaf in Figure 3 are as follows:

0.71qt−btM−(1−ct)M≤mt≤0.71qt+btM+(1−ct)M

where bt and ct are the binary variables associated with branching on frequency =
0.77 and = 0.62, respectively. These constraints enforce that xt = 0.71, meaning
mt = 0.71qt, when bt = 0 and ct = 1, which is equivalent to frequency ∈
[0.62, 0.77).

6.2 Neural Network Based Signaling Scheme

To optimize over the black-box NN model, we optimize over a piece-wise linear
(PWL) approximation of the predictions using the technique described in [8].
We let ft define frequency (pt + qt) according to definition 2, and introduce the
constraint, pt = ftzt ∀ t ∈ T

Then, we let χt(ft) be the black-box function predicting attack probability
given a signal (xt), according to the static features zt, U

c
a(t), and Uua (t), taking ft

as an argument. We build a data set (Dχ) of sample predictions at m levels of ft
for each of the T targets, defined by zt, U

u
a , and U ca. Using Dχ, we construct the

PWL approximation, representing any value ft ∈ [0, 1] and it’s prediction χ(ft),
as a convex combination of its nearest neighbors in the data set for t. Let B ∈ Dχ

be the break points of the PWL function. We define sets of weights λt,i such that
they belong to a Specially Ordered Set of Type 2 —a set of variables in which
at most two can be non-zero, and the non-zero variables must be consecutive.
We can then approximate χt(ft) as a convex combination of (Xt, λt) as χ̄t(ft) =∑
i λt,iχt(Bt,i). We replace xt with this expression to formulate defender utility:

Ud=
∑

t
gt[yt(zt−pt)U cd(t)+yt(1−zt−qt)Uud (t) (1)

+ (
∑

i
λt,iχ̄t(Bt,i))ptU

c
d(t)+(

∑
i
λt,iχ̄t(Bt,i))qtU

u
d (t)]
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6.3 Signaling in the Goldilocks Zone

We now show empirically that using a learned model of attacker behavior should
improve on a scheme that uniformly reduces signaling frequency on all targets.
First, we show there is an expression which can be used to compute the optimal
value of ft for each target individually.

Theorem 2. Finding an optimal NN-based signaling scheme is equivalent to
minimizing ft(yt− χ̄(ft))(U

c
d(t)Uua (t)−Uud (t)U ca(t)) for each t ∈ T individually,

where χ̄(ft) is the piecewise-linear version of χ(ft). Specifically, if U cd(t)Uua (t)−
Uud (t)U ca(t) < 0[> 0], it is equivalent to maximizing [minimizing] ft(yt − χ̄(ft))
for all t ∈ T .

In our experimental setting, the utilities satisfy U cd(t)Uua (t)−Uud (t)U ca(t) < 0,
and since the attacker empirically always attacks when no signal is presented
(yt = 1), we have the following simplified corollary following from Theorem 2:

Corollary 1. The optimal NN-based solution coincides with peSSE when ft(1−
χ(ft)) is monotonically increasing for all t.

We refer to the value of ft given by this computation as the Goldilocks zone
for each target. To give a better intuition about finding the Goldilocks zone,
we visualize the trend of the function described in Theorem 2, ft(1 − χ(ft)),
using the DT’s and NN’s predictions of χ(ft) (dropping the bar over χ(ft) for
simplicity and setting yt = 1, per our setup). The graphs in Figure 4 show a plot
of ft(1 − χ(ft)) on the y-axis at 20 levels of ft (x-axis) for two of the targets
from round 2 of our experiment. Observe that the relationship between ft and
ft(yt −χ(ft)) is different for the two targets. Notice that for Target 1 (left), the
baseline value of f = 0.75 (yellow dot) is sub-optimal in that it signals too little
compared to the optimal NN scheme. However, for Target 4 (right), the baseline
signals too often compared to the optimal NN solution. Notice that this is also
true for the DT scheme. By optimizing over our learned models, we can find
the Goldilocks zone for signaling for each target. As we show in Section 7, the
learning-based signaling schemes actually outperform the baseline in practice.

In general, we find that for more conservative, and thus typically less desirable
targets, like Target 1 (reward 5/ penalty 3), the optimal signaling rate is higher,
with ft tending toward 1. With more risky, but more appealing, targets such as
Target 4 (reward 8/ penalty 9), the Goldilocks zone is lower, with ft tending
toward 0.5. A table of the values of ft for all of the targets under the evaluated
signaling schemes can be found in the appendix.

7 Experiments and Results

To evaluate the signaling schemes, we recruited human subjects from Amazon
Mechanical Turk to play an online game based on the inside attacker scenario
described in [4]. Before starting the game, subjects were given instructions about
how it worked, took a short quiz on the instructions, and played a practice round
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of 5 trials, allowing them to get a sense for the game. Subjects played four rounds
of 25 trials each. To study how the subjects’ behavior changed with repeated
exposure to signaling, the four rounds were played in a fixed order. Each round
had six targets (computers) with a different coverage and payoff structure (see
Table 1 in [4], as well as the online appendix). After selecting a target t, with
probability (pt + qt), the subject is shown a warning message. Given a warning
and the probability it is false, the subjects then decided whether or not to attack.
For consistency, the subjects were also given the choice to attack or withdraw
even when no signal was shown. Screenshots of the game interface and details
about the participant pool and payment structure can be found in the appendix.

7.1 Evaluated Algorithms

Fig. 4. The relationship between ft & (1− xt)ft given by
the NN and DT for targets 1 (left) and 4 (right) in round 2 of

the insider attack game. For some targets, the baseline
signaling frequency is too low [high].

We compare the solu-
tion quality of the sig-
naling schemes given
by the following al-
gorithms: (i) no-signaling
algorithm—the defender
plays according to the
SSE (equivalently, ft =
0 ∀ t); (ii) peSSE—
the optimal signaling
scheme for a perfectly
rational attacker [30]
(equivalently, ft =
1 ∀ t); (iii) 2-way signaling baseline—we set ft = 0.75 ∀ t; (iv) DT based al-
gorithm; (v) NN based algorithm; and (vi) deception-based algorithm.

Evaluation Criteria. We evaluate the algorithms with regard to the average
defender expected utility, which is defined for each trial as follows:

1

N

m∑
i=1

Ai[(−1)(1− zt)]

where Ai is the action take by the attacker at round i (Ai = 1 being attack and
Ai = 0 being withdraw), N is the number of participants, and m is the number
of trials. We report p−values for a 2-tailed t-test comparing mean expected
defender utility per trial. The net score was computed across rounds (e.g, earning
20 points in round 1 and -10 points in round 2 would result in a net score of 10),
so we report statistics at both the round and aggregate levels.

7.2 Human Subject Results
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Fig. 5. Comparison of average
expected defender utility at the

round (top) and aggregate
(bottom) levels

Signaling Works. Figure 5 (top) shows the
average defender expected utility (y-axis) for
each round of the insider attack game. It
shows that there is significant benefit (p <
0.01) to the defender when using signaling
against boundedly rational attackers com-
pared to using no signaling, even when using
the peSSE algorithm, designed for perfectly ra-
tional attackers. This is also true at the aggre-
gate level (p < 0.01) (Figure 5 (bottom)).

Signaling Frequency Matters. At the aggre-
gate level, all three 2-way signaling schemes
outperformed the peSSE algorithm at p < 0.01
(Figure 5 (bottom)). As we hypothesized, re-
ducing the frequency of signaling improves
performance against boundedly rational at-
tackers.

Learning-Based Schemes Perform Best. As
can be seen in Figure 5, the signaling algorithms based on learned models of
attacker behavior performed the best, outperforming both the peSSE and 2-way
baseline schemes. The DT scheme outperformed the peSSE in rounds 1 (p < 0.01),
2 (p < 0.01), and 4 (p < 0.08) with no significant difference in round 3. It outper-
formed the baseline in rounds 2 (p < 0.03) and 4 (p < 0.01), with no significant
difference in utility in rounds 1 and 3. The NN-based algorithm outperformed
peSSE in all rounds (p < 0.01). It also outperformed the baseline in rounds 2
(p < 0.08), 3 and 4 (both p < 0.01), with no significant difference in round 1.

The Goldilocks Zone for Signaling. A key finding of of our experiments is that
using learned models of subject behavior to find the proper signaling frequency
(the Goldilocks zone) increases its impact, which aligns with our theoretical
results (Section 6.3). Figure 6 (left), shows the average percent of trials in each
round on which subjects saw a signal across the four signaling algorithms. The
baseline algorithm signals the least and also achieves almost the best compliance
(Figure 6 (right), the average rate of attack given a signal). The DT and NN based
algorithms have middling signaling frequencies on average, and also middling
levels of compliance, raising the question: How do they outperform the baseline
scheme?

Although the baseline achieves high rates of compliance in the signaling case,
we did not achieve compliance in the no-signaling case with any of the algorithms.
(The average attack rate on instances of no-signal was upwards of 96% across
all conditions.) As Figure 6 (middle) shows, the baseline has a much higher rate
of no-signal instances, which are almost always attacked, resulting in high losses
for the defender. The DT and NN schemes give up some compliance in the case
of a signal by signaling in a more middling range, but make up for this loss by
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Fig. 6. The balance between lowering signaling probability, to increase compliance, and
allowing many instances with no signal. (left) Probability of Showing a Signal. (middle)
Probability of Showing No Signal. (right) Probability of Attack Given a Signal.

having less no signal instances. In general, lowering the signaling frequency can
increase compliance with regard to signals, but must be carefully balanced so
that instances in which no signal is shown do not offset the gain to the defender.

The learning based approaches do not just find a uniform frequency of sig-
naling somewhere between ft = 0.75 and ft = 1. As mentioned in Section 6.3,
the NN-based algorithm tends to increase the rate of signaling on less desirable
targets, while decreasing it on more popular targets. This varied signaling fre-
quency tuned to the features of each target is what causes the middling range
of frequency on average, and also what allows the model-based algorithms to
outperform the baseline, by performing better at the target level. Additional
discussion of the performance of individual targets can be found in the appendix.
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Fig. 7. The average percent of signals attacked (y-axis) up to the current trial
(x-axis).

Exploiting the Training Effect. Boundedly rational subjects adjust their response
to signaling given repeated exposure to signals and the consequences of attacking.
The y-axis of Figure 7 shows the average percent of signals attacked up to the
current trial, which is given on the x-axis. It shows that initially subjects behave
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in a very exploratory manner, attacking frequently. However, as time passes
they become more compliant. In rounds 1-3, the average rate of signaling of
the NN signaling scheme falls between the peSSE and baseline algorithms, but
in round 4 the NN signaling scheme is equal to the peSSE scheme (see Figure 6
(right)). Yet, the the defender’s expected utility is significantly better than in
the peSSE experiment. As expected, using 2-way signaling in rounds 1-3 leads to
an increased rate of compliance by the final round, as well as a sharp and early
drop in attack probability over the course of the first two rounds, compared to
the peSSE scheme. Boosting the level of signaling in the fourth round exploits
this improved compliance rate, taking advantage of the benefit of signaling to
increase the defender’s expected utility. We see a similar effect with the DT

algorithm. However, this effect is not exploited by the baseline algorithm, which
uniformly reduces signaling in all four rounds, and actually performs significantly
worse than the peSSE scheme in round 4 (see Figure 5), even though the level
of compliance with signaling is much lower.
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Fig. 8. Average expected defender
utility (top) and attack probability
(bottom) between the deception-
based, peSSE, and no-signaling
schemes.

Only Learning the Deception Rate Does Not
Work. As discussed in Section 4, we compared
peSSE with a regression tree-based algorithm
that learned the optimal deception rate, but
ignored signaling frequency. This method led
to significantly lower defender expected utility
(p < 0.01) (Figure 8) and significantly higher
attack probability (p < 0.06) (Figure 8), as
by not accounting for the frequency of signal-
ing, it signals too much, causing subjects to
become desensitized and non-compliant.

8 Conclusions and Future Work

We have shown that using machine learn-
ing to model an attacker’s response to decep-
tive signaling leads to an optimal signaling
scheme to deter boundedly rational attack-

ers. We present decision tree- and neural network-based signaling schemes to
find the Goldilocks zone for signaling. We show via human subject experiments
that learning-based signaling schemes improve defender performance, and that
these schemes lead humans to become more compliant over repeated interaction.
Whereas our results are based on the Mechanical Turk population and game set-
ting, further testing should use realistic simulation with expert participants [6]
or even occur ”in the wild” [5]. Personalized signaling schemes [3] and defending
against adversary manipulation of the system should also be studied.
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