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Abstract. In this paper, we first identify activation shift, a simple but
remarkable phenomenon in a neural network in which the preactivation
value of a neuron has non-zero mean that depends on the angle between
the weight vector of the neuron and the mean of the activation vector in
the previous layer. We then propose linearly constrained weights (LCW)
to reduce the activation shift in both fully connected and convolutional
layers. The impact of reducing the activation shift in a neural network
is studied from the perspective of how the variance of variables in the
network changes through layer operations in both forward and back-
ward chains. We also discuss its relationship to the vanishing gradient
problem. Experimental results show that LCW enables a deep feedfor-
ward network with sigmoid activation functions to be trained efficiently
by resolving the vanishing gradient problem. Moreover, combined with
batch normalization, LCW improves generalization performance of both
feedforward and convolutional networks.

Keywords: Artificial neural networks · Feedforward neural networks ·
Vanishing gradient problem · Analysis of variance.

1 Introduction

Neural networks with a single hidden layer have been shown to be universal
approximators [9, 12]. However, an exponential number of neurons may be nec-
essary to approximate complex functions. One solution to this problem is to use
more hidden layers. The representation power of a network increases exponen-
tially with the addition of layers [2, 22]. Various techniques have been proposed
for training deep nets, that is, neural networks with many hidden layers, such
as layer-wise pretraining [8], rectified linear units [13, 17], residual structures [6],
and normalization layers [5, 11].

In this paper, we first identify the activation shift that arises in the calculation
of the preactivation value of a neuron. The preactivation value is calculated as
the dot product of the weight vector of a neuron and an activation vector in the
previous layer. In a neural network, an activation vector in a layer can be viewed
as a random vector whose distribution is determined by the input distribution
and the weights in the preceding layers. The preactivation of a neuron then
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has a non-zero mean depending on the angle between the weight vector of the
neuron and the mean of the activation vector in the previous layer. The angles
are generally different according to the neuron, indicating that neurons have
distinct mean values, even those in the same layer.

We propose the use of so-called linearly constrained weights (LCW) to re-
solve the activation shift in both fully connected and convolutional layers. An
LCW is a weight vector subject to the constraint that the sum of its elements
is zero. We investigate the impact of resolving activation shift in a neural net-
work from the perspective of how the variance of variables in a neural network
changes according to layer operations in both forward and backward directions.
Interestingly, in a fully connected layer in which the activation shift has been
resolved by LCW, the variance is amplified by the same rate in both forward
and backward chains. In contrast, the variance is more amplified in the forward
chain than in the backward chain when activation shift occurs in the layer. This
asymmetric characteristic is suggested to be a cause of the vanishing gradient
in feedforward networks with sigmoid activation functions. We experimentally
demonstrate that we can successfully train a deep feedforward network with sig-
moid activation functions by reducing the activation shift using LCW. Moreover,
our experiments suggest that LCW improves generalization performance of both
feedforward and convolutional networks when combined with batch normaliza-
tion (BN) [11].

In Section 2, we give a general definition of activation shift in a neural net-
work. In Section 3, we propose LCW as an approach to reduce activation shift
and present a technique to efficiently train a network with LCW. In Section 4
we study the impact of removing activation shift in a neural network from the
perspective of variance analysis and then discuss its relationship to the vanishing
gradient problem. In Section 5, we review related work. We present empirical
results in Section 6 and conclude the study in Section 7.

2 Activation Shift

We consider a standard multilayer perceptron (MLP). For simplicity, the number
of neurons m is assumed to be the same in all layers. The activation vector in

layer l is denoted by al =
(
al1, . . . , a

l
m

)> ∈ Rm. The input vector to the network
is denoted by a0. The weight vector of the i-th neuron in layer l is denoted
by wl

i ∈ Rm. It is generally assumed that ‖wl
i‖ > 0. The activation of the i-th

neuron in layer l is given by ali = f
(
zli
)

and zli = wl
i · al−1 + bli, where f is a

nonlinear activation function, bli ∈ R is the bias term, and zli ∈ R denotes the
preactivation value. Variables zli and ali are regarded as random variables whose
distributions are determined by the distribution of the input vector a0, given
the weight vectors and the bias terms in the preceding layers.

We introduce activation shift using the simple example shown in Fig. 1.
Fig. 1(a) is a heat map representation of a weight matrix W l ∈ R100×100, whose
i-th row vector represents wl

i. In Fig. 1(a), each element of W l is independently
drawn from a uniform random distribution in the range (−1, 1). Fig. 1(b) shows
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(a) Weight W l.
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(b) Activation Al−1.
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(c) Preactivation Zl.

Fig. 1: Activation shift causes a horizontal stripe pattern in preactivation Zl =
W lAl−1, in which each element of W l and Al−1 is randomly generated from
the range (−1, 1) and (0, 1), respectively.

an activation matrix Al−1 ∈ R100×100, whose j-th column vector represents
the activation vector corresponding to the j-th sample in a minibatch. Each
element of Al−1 is randomly sampled from the range (0, 1). We multiply W l

andAl−1 to obtain the preactivation matrix Zl, whose i-th row vector represents
preactivation values of the i-th neuron in layer l, which is shown in Fig. 1(c). It
is assumed that bias terms are all zero. Unexpectedly, a horizontal stripe pattern
appears in the heat map of Zl even though both W l and Al−1 are randomly
generated. This pattern is attributed to the activation shift, which is defined as
follows:

Definition 1. Pγ is an m-dimensional probability distribution whose expected
value is γ1m, where γ ∈ R and 1m is an m-dimensional vector whose elements
are all one.

Proposition 1. Assume that the activation vector al−1 follows Pγ . Given a
weight vector wl

i ∈ Rm such that ‖wl
i‖ > 0, the expected value of wl

i · al−1
is |γ|

√
m‖wl

i‖ cos θli, where θli is the angle between wl
i and 1m.

Proofs of all propositions are provided in Appendix A in the supplementary
material.

Definition 2. From Proposition 1, the expected value of wl
i ·al−1 depends on θli

as long as γ 6= 0. The distribution of wl
i · al−1 is then biased depending on θli;

this is called activation shift.

In Fig. 1, each column vector of Al−1 follows Pγ with γ = 0.5. Therefore, the
i-th row of Zl is biased according to the angle between wl

i and 1m. We can

generalize Proposition 1 for any m-dimensional distribution P̂ instead of Pγ by

stating that the distribution of wl · âl−1 is biased according to θ̂li unless ‖µ̂‖ = 0
as follows:

Proposition 2. Assume that the activation vector âl−1follows an m-dimensional
probability distribution P̂ whose expected value is µ̂ ∈ Rm. Given wl

i ∈ Rm such
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that ‖wl
i‖ > 0, it follows that E(wl

i · âl−1) = ‖wl
i‖ ‖µ̂‖ cos θ̂li if ‖µ̂‖ > 0; other-

wise, E(wl
i · âl−1) = 0, where θ̂li is the angle between wl

i and µ̂.

From Proposition 2, if al−1 follows P̂ with the mean vector µ̂ such that ‖µ̂‖ >
0, the preactivation zli is biased according to the angle between wl

i and µ̂.
Note that differences in E(zli) are not resolved by simply introducing bias

terms bli, because bli are optimized to decrease the training loss function and
not to absorb the differences between E(zli) during the network training. Our
experiments suggest that pure MLPs with several hidden layers are not trainable
even though they incorporate bias terms. We also tried to initialize bli to absorb
the difference in E(zli) at the beginning of the training, though it was unable to
train the network, especially when the network has many hidden layers.

3 Linearly Constrained Weights

There are two approaches to reducing activation shift in a neural network. The
first one is to somehow make the expected value of the activation of each neu-
ron close to zero, because activation shift does not occur if ‖µ̂‖ = 0 from
Proposition 2. The second one is to somehow regularize the angle between wl

i

and E
(
al−1

)
. In this section, we propose a method to reduce activation shift in

a neural network using the latter approach. We introduce WLC as follows:

Definition 3. WLC is a subspace in Rm defined by

WLC := {w ∈ Rm | w · 1m = 0} .

We call weight vector wl
i in WLC the linearly constrained weights (LCWs).

The following holds for w ∈ WLC:

Proposition 3. Assume that the activation vector al−1 follows Pγ . Given wl
i ∈

WLC such that ‖wl
i‖ > 0, the expected value of wl

i · al−1 is zero.

Generally, activation vectors in a network do not follow Pγ , and consequently,
LCW cannot resolve the activation shift perfectly. However, we experimentally
observed that the activation vector approximately follows Pγ in each layer.
Fig. 2(a) shows boxplot summaries of ali in a 10-layer sigmoid MLP with LCW,
in which the weights of the network were initialized using the method that will
be explained in Section 4. We used a minibatch of samples in the CIFAR-10
dataset [14] to evaluate the distribution of ali. In the figure, the 1%, 25%, 50%,
75%, and 99% quantiles are displayed as whiskers or boxes. We see that ali dis-
tributes around 0.5 in each neuron, which suggests that al ∼ Pγ approximately
holds in every layer. We also observed the distribution of ali after 10 epochs of
training, which are shown in Fig. 2(b). We see that al are less likely follow Pγ ,
but ali takes various values in each neuron. In contrast, if we do not apply LCW
to the network, the variance of ali rapidly shrinks through layers immediately
after the initialization as shown in Fig. 3, in which weights are initialized by the
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(a) Immediately after the initialization.

(b) After 10 epochs training.

Fig. 2: Boxplot summaries of ali on the first 20 neurons in layers 1,5, and 9 of
the 10-layer sigmoid MLP with LCW.

method in [3]. Experimental results in Section 6 suggest that we can train MLPs
with several dozens of layers very efficiently by applying the LCW. The effect of
resolving the activation shift by applying LCW will be theoretically analyzed in
Section 4.

It is possible to force al to follow Pγ by applying BN to preactivation zli.
The distribution of zli is then normalized to have zero-mean and unit variance,
and consequently, ali = f(zli) are more likely to follow the same distribution,
indicating that al ∼ Pγ holds. As will be discussed in Section 5, BN itself
also has an effect of reducing activation shift. However, our experimental results
suggest that we can train deep networks more smoothly by combining LCW and
BN, which will be shown in Section 6.

3.1 Learning LCW via Reparameterization

A straightforward way to train a neural network with LCW is to solve a con-
strained optimization problem, in which a loss function is minimized under the
condition that each weight vector is included inWLC. Although several methods
are available to solve such constrained problems, for example, the gradient pro-
jection method [15], it might be less efficient to solve a constrained optimization
problem than to solve an unconstrained one. We propose a reparameterization
technique that enables us to train a neural network with LCW using a solver for
unconstrained optimization. The constraints on the weight vectors are embedded
into the structure of the neural network by the following reparameterization.
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Fig. 3: Boxplot summaries of ali on neurons in layers 1,5, and 9 of the 10-layer
sigmoid MLP without LCW, in which weights are initialized by the method in [3].

Reparameterization: Let wl
i ∈ Rm be a weight vector in a neural network. To

apply LCW to wl
i, we reparameterize wl

i using vector vli ∈ Rm−1 as wl
i = Bmv

l
i,

where Bm ∈ Rm×(m−1) is an orthonormal basis of WLC, written as a matrix of
column vectors.

It is obvious that wl
i = Bmv

l
i ∈ WLC. We then solve the optimization prob-

lem in which vli is considered as a new variable in place of wl
i. This optimization

problem is unconstrained because vli ∈ Rm−1. We can search for wl
i ∈ WLC

by exploring vli ∈ Rm−1. The calculation of an orthonormal basis of WLC is
described in Appendix B in the supplementary material. Note that the pro-
posed reparameterization can be implemented easily and efficiently using modern
frameworks for deep learning based on GPUs.

3.2 LCW for Convolutional Layers

We consider a convolutional layer with Cout convolutional kernels. The size of
each kernel is Cin×Kh×Kw, where Cin, Kh, and Kw are the number of the input
channels, height of the kernel, and width of the kernel, respectively. The layer
outputs Cout channels of feature maps. In a convolutional layer, activation shift
occurs at the channel level, that is, the preactivation has different mean value
in each output channel depending on the kernel of the channel. We propose a
simple extension of LCW for reducing the activation shift in convolutional layers
by introducing a subspace Wkernel

LC in RCin×Kh×Kw defined as follows:

Wkernel
LC :=

w ∈ RCin×Kh×Kw

∣∣∣∣∣
Cin∑
i=1

Kh∑
j=1

Kw∑
k=1

wi,j,k = 0

 ,

where wi,j,k indicates the (i, j, k)-th element of w. SubspaceWkernel
LC is a straight-

forward extension ofWLC to the kernel space. To apply LCW to a convolutional
layer, we restrict each kernel of the layer in Wkernel

LC . It is possible to apply
the reparameterization trick described in the previous subsection to LCW for
convolutional layers. We can reparameterize the kernel using an orthonormal
basis of Wkernel

LC in which the kernel in RCin×Kh×Kw is unrolled into a vector of
length CinKhKw.
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4 Variance Analysis

In this section, we first investigate the effect of removing activation shift in a
neural network based on an analysis of how the variance of variables in the net-
work changes through layer operations both in forward and backward directions.
Then, we discuss its relationship to the vanishing gradient problem.

4.1 Variance Analysis of a Fully Connected Layer

The forward calculation of a fully connected layer is zl = W lal−1+bl, whereW l =
(wl

1, . . . ,w
l
m)>. We express the j-th column vector ofW l as w̃l

j . If we denote the
gradient of a loss function with respect to parameter v as ∇v, the backward cal-
culation regarding al−1 is ∇al−1 = (W l)>∇zl . The following proposition holds
for the forward computation, in which Im is the identity matrix of order m×m,
V indicates the variance, and Cov denotes the variance-covariance matrix.

Proposition 4. Assuming that wl
i ∈ WLC, E(al−1) = γal−11m with γal−1 ∈ R,

Cov(al−1) = σ2
al−1Im with σal−1 ∈ R, and bl = 0, it holds that E(zli) = 0

and V (zli) = σ2
al−1‖wl

i‖2.1

We also have the following proposition for the backward computation.

Proposition 5. Assuming that E(∇zl) = 0 and Cov(∇zl) = σ2
∇

zl
Im with σ∇

zl
∈

R, it holds that E(∇al−1
j

) = 0 and V (∇al−1
j

) = σ2
∇

zl
‖w̃l

j‖2.

For simplicity, we assume that ∀i, ‖wl
i‖2 = ηl and ∀j, ‖w̃l

j‖2 = ξl. Proposition 4

then indicates that, in the forward computation, V (zli), the variance of the out-
put, becomes ηl times larger than that of the input, V (al−1i ). Proposition 5
indicates that, in the backward chain, V (∇al−1

i
), the variance of the output, be-

comes ξl times larger than that of the input, V (∇zli). If W l is a square matrix,

then ηl = ξl (see Appendix A for proof), meaning that the variance is amplified
at the same rate in both the forward and backward directions. Another impor-
tant observation is that, if we replace W l with κW l, the rate of amplification of
the variance becomes κ2 times larger in both the forward and backward chains.
This property does not hold if wl

i 6∈ WLC, because in this case E(zli) 6= 0 because
of the effect of the activation shift. The variance is then more amplified in the
forward chain than in the backward chain by the weight rescaling.

4.2 Variance Analysis of a Nonlinear Activation Layer

The forward and backward chains of the nonlinear activation layer are given
by ali = f(zli) and ∇zli = f ′(zli)∇ali , respectively. The following proposition holds

if f is the ReLU [13, 17] function.

1 A similar result is discussed in [10], but our result is more general because we do
not assume the distribution of al−1 to be Gaussian distribution, which is assumed
in [10].
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Proposition 6. Assuming that zli and ∇ali independently follow N (0, σ2
zli

) and

N (0, σ2
∇

al
i

), respectively, where N (µ, σ2) indicates a normal distribution with

mean µ and variance σ2, it holds that

V (ali) =
σ2
zli

2

(
1− 1

π

)
and V (∇zli) =

σ2
∇

al
i

2
.

We denote the rate of amplification of variance in the forward and backward
directions of a nonlinear activation function by φfw := V (ali)/V (zli) and φbw :=
V (∇zli)/V (∇ali), respectively. Proposition 6 then indicates that the variance is
amplified by a factor of φfw = 0.34 in the forward chain and by a factor of φbw =
0.5 in the backward chain through the ReLU activation layer.

If f is the sigmoid activation, there is no analytical solution for the variance
of ali and ∇zli . We therefore numerically examined φfw and φbw for the sig-

moid activation under the conditions that zli follows N (0, σ̂2) for σ̂ ∈ {0.5, 1, 2}
and ∇ali follows N (0, 1). As a result, we obtained (φfw, φbw) = (0.236, 0.237),

(0.208, 0.211), and (0.157, 0.170) for σ̂ = 0.5, 1, and 2, respectively. It suggests
that the difference between φfw and φbw in the sigmoid activation layer decreases
as the variance of zli decreases.

4.3 Relationship to the Vanishing Gradient Problem

We consider an MLP in which the number of neurons is the same in all hidden
layers. We initialize weights in the network by the method based on minibatch
statistics: weights are first generated randomly, then rescaled so that the pre-
activation in each layer has unit variance on the minibatch of samples. In fully
connected layers with standard weights, the variance of variables in the network
is more amplified in the forward chain than in the backward chain by the weight
rescaling, as discussed in Subsection 4.1. In contrast, in the sigmoid activation
layers, the rate of amplification of the variance is almost the same in the for-
ward and backward directions, as mentioned in the previous subsection. Then,
the variance of the preactivation gradient decreases exponentially by rescaling
the weights to maintain the variance of the preactivation in the forward chain,
resulting in the vanishing gradient, that is, the preactivation gradient in earlier
layers has almost zero variance, especially when the network have many layers.

In contrast, when the LCW is applied to the network, the variance is am-
plified at the same rate in both the forward and backward chains through fully
connected layers regardless of the weight rescaling. In this case, the preactiva-
tion gradient has a similar variance in each layer after the initialization, assuming
that the sigmoid activation is used. Concretely, the variance is amplified by ap-
proximately 0.21 through the sigmoid activation layers in both the forward and
backward chains. Then, fully connected layers are initialized to have the ampli-
fication rate of 1/0.21 to keep the preactivation variance in the forward chain.
The gradient variance is then also amplified by 1/0.21 in the backward chain of
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fully connected layers with LCW, indicating that the gradient variance is also
preserved in the backward chain.

From the analysis in the previous subsections, we also see that normal fully
connected layer and the ReLU layer have opposite effect on amplifying the vari-
ance in each layer, This may be another explanation why ReLU works well in
practice without techniques such as BN.

4.4 Example

For example, we use a 20-layered MLP with sigmoid activation functions. The
weights of the MLP are initialized according to the method described in the pre-
vious subsection. We randomly took 100 samples from the CIFAR-10 dataset and
input them into the MLP. The upper part of Fig. 4 (a) shows boxplot summaries
of the preactivation in each layer. The lower part shows boxplot summaries of the
gradient with respect to the preactivation in each layer, in which the standard
cross-entropy loss is used to obtain the gradient. From Fig. 4 (a), we see that
the variance of the preactivation is preserved in the forward chain, whereas the
variance of the preactivation gradient rapidly shrinks to zero in the backward
chain, suggesting the vanishing gradient.

Next, LCW is applied to the MLP, and then, the weighs are initialized by the
same procedure. Fig. 4 (b) shows the distribution of the preactivation and its
gradient in each layer regarding the same samples from CIFAR-10. In contrast
to Fig. 4 (a), the variance of the preactivation gradient does not shrink to zero
in the backward chain. Instead we observe that the variance of the gradient
slightly increases through the backward chain. This can be explained by the fact
that the variance is slightly more amplified in the backward chain than in the
forward chain through the sigmoid layer, as discussed in Subsection 4.2. These
results suggest that we can resolve the vanishing gradient problem in an MLP
with sigmoid activation functions by applying LCW and by initializing weights
to preserve the preactivation variance in the forward chain.

5 Related work

Ioffe and Szegedy [11] proposed the BN approach for accelerating the training of
deep nets. BN was developed to address the problem of internal covariate shift,
that is, training deep nets is difficult because the distribution of the input to
a layer changes as the weights of the preceding layers change during training.
BN is widely adopted in practice and shown to accelerate the training of deep
nets, although it has recently been argued that the success of BN does not stem
from the reduction of the internal covariate shift [20]. BN computes the mean
and standard deviation of zli based on a minibatch, and then, normalizes zli
by using these statistics. Gülçehre and Bengio [5] proposed the standardization
layer (SL) approach, which is similar to BN. The main difference is that SL
normalizes ali, whereas BN normalizes zli. Interestingly, both BN and SL can
be considered mechanisms for reducing the activation shift. On one hand, SL
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(a) MLP with standard weights.

(b) MLP with LCWs.

Fig. 4: Boxplot summaries of the preactivation (top) and its gradient (bottom)
in 20-layered sigmoid MLPs with standard weights (a) and LCWs (b).

reduces the activation shift by forcing ‖µ̂‖ = 0 in Proposition 2. On the other
hand, BN reduces the activation shift by removing the mean from zli for each
neuron. A drawback of both BN and SL is that the model has to be switched
during inference to ensure that its output depends only on the input and not
the minibatch. In contrast, the LCW proposed in this paper do not require any
change in the model during inference.

Salimans and Kingma [19] proposed weight normalization (WN) in which
a weight vector wl

i ∈ Rm is reparameterized as wl
i = (gli/‖vli‖)vli, where gli ∈

R and vli ∈ Rm are new parameters. By definition, WN does not have the
property of reducing the activation shift, because the degrees of freedom of wl

i

are unchanged by the reparameterization. They also proposed a minibatch-based
initialization by which weight vectors are initialized so that zli has zero mean and
unit variance, indicating that the activation shift is resolved immediately after
the initialization. Our preliminary results presented in Section 6 suggest that
to start learning with initial weights that do not incur activation shift is not
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sufficient to train very deep nets. It is important to incorporate a mechanism
that reduces the activation shift during training.

Ba et al. [1] proposed layer normalization (LN) as a variant of BN. LN
normalizes zli over the neurons in a layer on a sample in a minibatch, whereas
BN normalizes zli over the minibatch on a neuron. From the viewpoint of reducing
the activation shift, LN is not as direct as BN. Although LN does not resolve the
activation shift, it should normalize the degree of activation shift in each layer.

Huang et al. [10] proposed centered weight normalization (CWN) as an ex-
tension of WN, in which parameter vli in WN is reparameterized by vli =
ṽli − 1m(1>mṽ

l
i)/m with ṽli ∈ Rm. CWN therefore forces a weight vector wl

i

to satisfy both ‖wl
i‖ = 1 and 1>mw

l
i = 0. CWN was derived from the observation

that, in practice, weights in a neural network are initially sampled from a dis-
tribution with zero-mean. CWN and LCW share the idea of restricting weight
vectors so that they have zero mean during training, although they come from
different perspectives and have different implementations. The main differences
between CWN and LCW are the following: CWN forces weight vectors to have
both unit norm and zero mean, whereas LCW only forces the latter from the
analysis that the latter constraint is essential to resolve the activation shift;
LCW embeds the constraint into the network structure using the orthonormal
basis of a subspace of weight vectors; the effect of reducing activation shift by
introducing LCW is analyzed from the perspective of variance amplification in
both the forward and backward chains.

Miyato et al. [16] proposed spectral normalization (SN) that constrains the
spectral norm, that is, the largest singular value, of a weight matrix equal to
1. SN was introduced to control the Lipschitz constant of the discriminator in
the GAN framework [4] to stabilize the training. The relationship between the
spectral norm of weights and the generalization ability of deep nets is discussed
in [23]. However, controlling the spectral norm of weight matrices is orthogonal
to the reduction of the activation shift.

He et al. [6] proposed residual network that consists of a stack of residual
blocks with skip connections. If we denote the input to the l-th residual block
by xl ∈ Rm, the output xl+1, which is the input to the next residual block,
is given by xl+1 = xl + F l(x

l), where F l : Rm → Rm is a mapping defined
by a stack of nonlinear layers. In contrast to the original residual network that
regard the activation as xl, He et al. [7] proposed preactivation structure in
which the preactivation is regarded as xl. Residual network will indirectly reduce
the impact of the activation shift. The reason is explained below: In a residual
network, it holds that xL = x0 +

∑L−1
l=0 F l(x

l). The activation shift can occur
in each of F l(x

l), that is, each output element of F l(x
l) has different mean.

However, the shift pattern is almost random in each F l(x
l), and consequently,

the mean shift in xL can be moderate because it is the average over these
random shifts. This may be another reason why residual networks are successful
in training deep models.
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6 Experiments

We conducted experiments using the CIFAR-10 and CIFAR-100 datasets [14],
which consist of color natural images each of which is annotated corresponding
to 10 and 100 classes of objects, respectively. We preprocessed each dataset by
subtracting the channel means and dividing by the channel standard deviations.
We adopted standard data augmentation [6]: random cropping and horizontal
flipping.

All experiments were performed using Python 3.6 with PyTorch 0.4.1 [18]
on a system running Ubuntu 16.04 LTS with GPUs. We implemented LCW
using standard modules equipped with PyTorch. As implementation of BN, SL,
WN, and SN, we employed corresponding libraries in PyTorch. We implemented
CWN by modifying modules for WN.

6.1 Deep MLP with Sigmoid Activation Functions

We first conducted experiments using an MLP model with 50 hidden layers,
each containing 256 hidden units with sigmoid activation functions, followed by
a softmax layer combined with a cross-entropy loss function. We applied each of
LCW, BN, SL, WN, CWN, and SN to the model, and compared the performance.
We also considered models with each of the above techniques (other than BN)
combined with BN. These models are annotated with, for example, “BN+LCW”
in the results.

Models with LCW were initialized following the method described in Sec-
tion 4.3. Models with WN or CWN were initialized according to [19]. Models
with BN, SL, or SN were initialized using the method proposed in [3]. Each
model was trained using a stochastic gradient descent with a minibatch size
of 128, momentum of 0.9, and weight decay of 0.0001 for 100 epochs. The learn-
ing rate starts from 0.1 and is multiplied by 0.95 after every epoch until it reaches
the lower threshold of 0.001.

Fig. 5 shows the curve of training loss, test loss, training accuracy, and test
accuracy of each model on each dataset, in which the horizontal axis shows the
training epoch. The results of MLPs with WN or SN are omitted in Fig. 5,
because the training of these models did not proceed at all. This result matches
our expectation that reducing the activation shift is essential to train deep neural
networks, because WN and SN themselves do not have the effect of reducing
activation shift as discussed in Section 5. We see that LCW achieves higher rate
of convergence and gives better scores with respect to the training loss/accuracy
compared with other models. However, with respect to the test loss/accuracy, the
scores of LCW are no better than that of other models. This result suggests that
LCW has an ability to accelerate the network training but may increase the risk
of overfitting. In contrast, combined with BN, LCW achieves better performance
in test loss/accuracy, as shown by the results annotated with “BN+LCW” in
Fig. 5. We think such improvement was provided because LCW accelerated the
training while the generalization ability of BN was maintained.
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(a) Results for the CIFAR-10 dataset.
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(b) Results for the CIFAR-100 dataset.

Fig. 5: Training loss (upper left), test loss (upper right), training accuracy (lower
left), and test accuracy (lower right) of 50-layer MLPs for CIFAR-10 (a) and
CIFAR-100 (b).
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Table 1: Test accuracy/loss of convolutional models for CIFAR-10 and CIFAR-
100 datasets.

CIFAR-10 CIFAR-100
Model Test Accuracy Test Loss Test Accuracy Test Loss

VGG19 0.936 0.354 0.732 1.788
VGG19+LCW 0.938 0.332 0.741 1.569
VGG19+WN 0.931 0.391 0.725 1.914
VGG19+CWN 0.934 0.372 0.727 1.827
VGG19+SN 0.936 0.358 0.733 1.644

ResNet18 0.952 0.204 0.769 0.978
ResNet18+LCW 0.952 0.187 0.770 0.955
ResNet18+WN 0.951 0.206 0.777 0.947
ResNet18+CWN 0.948 0.216 0.781 0.949
ResNet18+SN 0.952 0.206 0.780 1.015

6.2 Deep Convolutional Networks with ReLU Activation Functions

In this subsection, we evaluate LCW using convolutional networks with ReLU
activation functions. As base models, we employed the following two models:
VGG19: A 19-layer convolutional network in which 16 convolutional layers are
connected in series, followed by three fully connected layers with dropout [21].
We inserted BN layers before each ReLU layer in VGG19, although the original
VGG model does not include BN layers.2

ResNet18: An 18-layer convolutional network with residual structure [6], which
consists of eight residual units each of which contains two convolutional layers in
the residual part. We employed the full preactivation structure proposed in [7].
In ResNet18, BN layers are inserted before each ReLU layer.

We applied LCW, WN, CWN, or SN to VGG19 and ResNet18, respectively,
and compared the performance including the plain VGG19 and ResNet18 mod-
els. Each model was trained using a stochastic gradient descent with a minibatch
size of 128, momentum of 0.9, and weight decay of 0.0005. For the CIFAR-10
dataset, we trained each model for 300 epochs with the learning rate that starts
from 0.1 and is multiplied by 0.95 after every three epochs until it reaches 0.001.
For the CIFAR-100 dataset, we trained each model for 500 epochs with the
learning rate multiplied by 0.95 after every five epochs.

Table 1 shows the test accuracy and loss for the CIFAR-10 and CIFAR-100
datasets, in which each value was evaluated as the average over the last ten
epochs of training. We see that LCW improves the generalization performance
of VGG19 with respect to both the test accuracy and loss. The improvement is
more evident for the CIFAR-100 dataset. The curve of training loss and accuracy
of VGG19-based models for CIFAR-100 are shown in Fig. 6. We see that LCW
enhances the rate of convergence, which we think lead to the better performance.
In contrast, the improvement brought by LCW is less evident in ResNet18, in
particular, with respect to the test accuracy. We observed little difference in

2 This is mainly because VGG was proposed earlier than BN.
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Fig. 6: Training loss (left) and training accuracy (right) of the VGG19-based
models for the CIFAR-100 dataset.

the training curve of ResNet18 with and without LCW. A possible reason for
this is that the residual structure itself has an ability to mitigate the impact
of the activation shift, as discussed in Section 5, and therefore the reduction of
activation shift by introducing LCW was less beneficial for ResNet18.

7 Conclusion

In this paper, we identified the activation shift in a neural network: the pre-
activation of a neuron has non-zero mean depending on the angle between the
weight vector of the neuron and the mean of the activation vector in the previous
layer. The LCW approach was then proposed to reduce the activation shift. We
analyzed how the variance of variables in a neural network changes through layer
operations in both forward and backward chains, and discussed its relationship to
the vanishing gradient problem. Experimental results suggest that the proposed
method works well in a feedforward network with sigmoid activation functions,
resolving the vanishing gradient problem. We also showed that existing methods
that successfully accelerate the training of deep neural networks, including BN
and residual structures, have an ability to reduce the effect of activation shift,
suggesting that alleviating the activation shift is essential for efficient training
of deep models. The proposed method achieved better performance when used
in a convolutional network with ReLU activation functions combined with BN.
Future work includes investigating the applicability of the proposed method for
other neural network structures, such as recurrent structures.
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