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Abstract. Crowdsourcing has emerged as a powerful paradigm for effi-
ciently labeling large datasets and performing various learning tasks, by
leveraging crowds of human annotators. When additional information is
available about the data, constrained or semi-supervised crowdsourcing
approaches that enhance the aggregation of labels from human annota-
tors are well motivated. This work deals with constrained crowdsourced
classification with instance-level constraints, that capture relationships
between pairs of data. A Bayesian algorithm based on variational infer-
ence is developed, and its quantifiably improved performance, compared
to unsupervised crowdsourcing, is analytically and empirically validated
on several crowdsourcing datasets.
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1 Introduction

Crowdsourcing, as the name suggests, harnesses crowds of human annotators,
using services such as Amazon’s Mechanical Turk [16], to perform various learning
tasks such as labeling, image tagging and natural language annotations, among
others [11]. Even though crowdsourcing can be efficient and relatively inexpensive,
inference of true labels from the noisy responses provided by multiple annotators
of unknown expertise can be challenging, especially in the typical unsupervised
scenario, where no ground-truth data is available.

It is thus practical to look for side information that can be beneficial to the
crowdsourcing task, either from experts or from physical constraints associated
with the task. For example, queries with known answers may be injected in
crowdsourcing tasks in Amazon’s Mechanical Turk, in order to assist with the
evaluation of annotator reliability. Methods that leverage such information fall
under the constrained or semi-supervised learning paradigm [5]. Seeking improved
performance in the crowdsourcing task, we focus on constrained crowdsourcing,
and investigate instance-level or pairwise constraints, such as must- and cannot-
link constraints, which show up as side information in unsupervised tasks, such
as clustering [3]. Compared to label constraints, instance-level ones provide
‘weaker information,’ as they describe relationships between pairs of data, instead
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of anchoring the label of a datum. Semi-supervised learning with few label
constraints is typically employed when acquiring ground-truth labels is time
consuming or expensive, e.g. annotation of biomedical images from a medical
professional. Instance-level constraints on the other hand are used when domain
knowledge is easier to encode between pairs of data, e.g. road lane identification
from GPS data.

To accommodate such available information, the present work capitalizes on
recent advances in Bayesian inference. Relative to deterministic methods, the
Bayesian approach allows for seamless integration of prior information for the
crowdsourcing task, such as annotator performance from previous tasks, and at
the same time enables uncertainty quantification of the fused label estimates
and parameters of interest. Our major contributions can be summarized as
follows: (i) We develop a Bayesian algorithm for crowdsourcing with pairwise
constraints; (ii) We derive novel error bounds for the unsupervised variational
Bayes crowdsourcing algorithm, in Thm. 1. These error bounds are extended
for the proposed constrained algorithm in Thm. 2; and (iii) Guided by the
aforementioned theoretical analysis, we provide a constraint selection scheme.
In addition to the error bounds, the performance of the proposed algorithm
is evaluated with extensive numerical tests. Those corroborate that there are
classification performance gains to be harnessed, even when using weaker side
information, such as the aforementioned must- and cannot-link constraints.
Notation: Unless otherwise noted, lowercase bold fonts, x, denote vectors,
uppercase ones, X, represent matrices, and calligraphic uppercase, X , stand
for sets. The (i, j)th entry of matrix X is denoted by [X]ij . Pr or p denotes
probability, or the probability mass function; ∼ denotes “distributed as,” |X |
is the cardinality of set X , E[·] denotes expectation, and 1(A) is the indicator
function for the event A, that takes value 1, when A occurs, and is 0 otherwise.

2 Problem formulation and preliminaries

Consider a dataset consisting of N data {xn}Nn=1, with each datum belonging
to one of K classes with corresponding labels {yn}Nn=1; that is, yn = k if xn
belongs to class k. Consider now M annotators that observe {xn}Nn=1, and provide

estimates of labels. Let y̌
(m)
n ∈ {1, . . . ,K} be the label estimate of xn assigned

by the m-th annotator. If an annotator has not provided a response for datum n

we set y̌
(m)
n = 0. Let Y̌ be the M ×N matrix of annotator responses with entries

[Y̌]mn = y̌
(m)
n , and y := [y1, . . . , yN ]> the N × 1 vector of ground truth labels.

The task of crowdsourced classification is: Given only the annotator responses in
Y̌, the goal is find the ground-truth label estimates {ŷn}Nn=1.

Per datum xn, the true label yn is assumed drawn from a categorical distri-
bution with parameters π := [π1, . . . , πK ]>, where πk := Pr(yn = k). Further,
consider that each learner has a fixed probability of deciding that a datum
belongs to class k′, when presented with a datum of class k; thus, annotator
behavior is presumed invariant across the dataset.The performance of an an-
notator m is then characterized by the so-called confusion matrix Γ(m), whose
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(k, k′)-th entry is [Γ(m)]k,k′ := γ
(m)
k,k′ = Pr

(
y̌

(m)
n = k′|yn = k

)
. The K ×K con-

fusion matrix showcases the statistical behavior of an annotator, as each row
provides the annotator’s probability of deciding the correct class, when pre-
sented with a datum from each class. Collect all annotator confusion matrices
in Γ := [Γ(1), . . . ,Γ(m)]. Responses of different annotators per datum n are
presumed conditionally independent, given the ground-truth label yn; that is,

p
(
y̌

(1)
n = k1, . . . , y̌

(M)
n = kM |yn = k

)
=
∏M
m=1 p

(
y̌

(m)
n = km|yn = k

)
. The latter

is a standard assumption that is commonly employed in crowdsourcing works [7,
13, 36]. Finally, most annotators are assumed to be better than random.

2.1 Prior works

Arguably the simplest approach to fusing crowdsourced labels is majority voting,
where the estimated label of a datum is the one most annotators agree upon. This
presumes that all annotators are equally “reliable,” which may be unrealistic.
Aiming at high-performance label fusion, several approaches estimate annotator
parameters, meaning the confusion matrices as well as class priors. A popular
approach is joint maximum likelihood (ML) estimation of the unknown labels y,
and the aforementioned confusion matrices using the expectation-maximization
(EM) algorithm [7]. As EM guarantees convergence to a locally optimal solution,
alternative estimation methods have been recently advocated. Spectral methods
invoke second- and third-order moments of annotator responses to infer the
unknown annotator parameters [13, 36, 31, 12].

A Bayesian treatment of crowdsourced learning, termed Bayesian Classifier
Combination was introduced in [15]. This approach used Gibbs sampling to
estimate the parameters of interest, while [28] introduced a variational Bayes
EM (VBEM) method for the same task. Other Bayesian approaches infer com-
munities of annotators, enhancing the quality of aggregated labels [34, 19]. For
sequential or networked data, [23, 20, 32, 33] advocated variational inference and
EM-based alternatives. All aforementioned approaches utilize only Y̌. When
features {xn}Nn=1 are also available, parametric models [22], approaches based
on Gaussian Processes [26, 25], or deep learning [1, 24, 27, 2] can be employed to
classify the data, and simultaneously learn a classifier.

Current constrained or semi-supervised approaches to crowdsourcing extend
the EM algorithm of Dawid and Skene [30], by including a few ground-truth
labels. The model in [35] includes a graph between datapoints to enable label
prediction for data that have not been annotated, while [17] puts forth a max-
margin majority vote method when label constraints are available. When features
{xn}Nn=1 are available, [14] relies on a parametric model to learn a binary classifier
from crowd responses and expert labels.

The present work develops a Bayesian constrained approach to crowdsourced
classification, by adapting the popular variational inference framework [4]. In
addition, it provides novel performance analysis for both Bayesian unsupervised
and semi-supervised approaches. The proposed method does not require features



4 P. A. Traganitis and G. B. Giannakis

{xn}Nn=1, but relies only on annotator labels – a first attempt at incorporating
instance-level constraints for the crowdsourced classification task.

3 Variational inference for crowdsourcing

Before presenting our constrained approach, this section will recap a Bayesian
treatment of the crowdsourcing problem. First, variational Bayes is presented in
Sec. 3.1, followed by an inference algorithm for crowdsourcing [28] in Sec. 3.2. A
novel performance analysis for the VBEM algorithm is also presented in Sec. 3.2.

3.1 Variational Bayes

Consider a set of observed data collected in X, and a set of latent variables and
parameters in Z that depend on X. Variational Bayes seeks Z that maximize the
marginal of X, by treating both latent variables and parameters as random [4].
EM in contrast treats Z as deterministic and provides point estimates. The
log-marginal of X can be written as

ln p(X) =

∫
q(Z) ln

p(X,Z)

q(Z)
dZ−

∫
q(Z) ln

p(Z|X)

q(Z)
dZ = L(q) + KL(q||p) (1)

where L(q) :=
∫
q(Z) ln p(X,Z)

q(Z) dZ, and KL(q||p) = −
∫
q(Z) ln p(Z|X)

q(Z) dZ denotes

the Kullback-Leibler divergence between pdfs q and p [6]. This expression is
maximized for q(Z) = p(Z|X), however when p(Z|X) is an intractable pdf,
one may seek distributions q from a prescribed tractable family Q, such that
KL(q||p) is minimized. One such family is the family of factorized distributions,
which also go by the name of mean field distributions. Under the mean field
paradigm, the variational distribution q(Z) is decomposed into a product of single
variable factors, q(Z) =

∏
i q(Zi), with q(Zi) denoting the variational distribution

corresponding to the variable Zi.
It can be shown that the optimal updates for each factor are given by [4]

ln q∗(Zi) = E−Zi [ln p(X,Z)] + c (2)

where c is an appropriate constant, and the −Zi subscript denotes that the
expectation is taken w.r.t. the terms in q that do not involve Zi, that is

∏
j 6=i q(Zj).

These optimal factors can be estimated iteratively, and such a procedure is
guaranteed to converge at least to a local maximum of (1).

3.2 Variational EM for crowdsourcing

Next, we will outline how variational inference can be used to derive an iterative
algorithm for crowdsourced classification [28]. The Bayesian treatment of the
crowdsourcing problem dictates the use of prior distributions on the parameters of
interest, namely π, and Γ. The probabilities π are assigned a Dirichlet distribution
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prior with parameters α0 := [α0,1, . . . , α0,K ]>, that is π ∼ Dir(π;α0), whereas

for an annotator m, the columns {γ(m)
k }Kk=1 of its confusion matrix are considered

independent, and γ
(m)
k is assigned a Dirichlet distribution prior with parameters

β
(m)
0,k := [β

(m)
0,k,1, . . . , β

(m)
0,k,K ]>, respectively. These priors on the parameters of

interest are especially useful when only few data have been annotated, and can
also capture annotator behavior from previous crowdsourcing tasks. The joint
distribution of y, Y̌,π and Γ is

p(y,π, Y̌,Γ;α0,B0) =

N∏
n=1

πyn

M∏
m=1

K∏
k′=1

(γ
(m)
yn,k′

)
δ
(m)

n,k′p(π;α0)p(Γ; B0) (3)

with B0 collecting all prior parameters β
(m)
0,k for k = 1, . . . ,K and m = 1, . . . ,M ,

and δ
(m)
n,k := 1(y̌

(m)
n = k). The parametrization on α0,B0 will be henceforth

implicit for brevity.
With the goal of estimating the unknown variables and parameters of interest,

we will use the approach outlined in the previous subsection, to approximate
p(y,π,Γ|Y̌) using a variational distribution q(y,π,Γ). Under the mean-field class,
this variational distribution factors across the unknown variables as q(y,π,Γ) =
q(y)q(π)q(Γ). Since the data are assumed i.i.d. [cf. Sec. 2], q(y) is further

decomposed into q(y) =
∏N
n=1 q(yn). In addition, since annotators are assumed

independent and the columns of their confusion matrices are also independent,

we have q(Γ) =
∏M
m=1

∏K
k=1 q(γ

(m)
k ). The variational Bayes EM algorithm is an

iterative algorithm, with each iteration consisting of two steps: the variational
E-step, where the latent variables y are estimated; and the variational M-step,
where the distribution of the parameters of interest π,Γ are estimated.

At iteration t + 1, the variational distribution for the unknown label yn is
given by

ln qt+1(yn) = E−yn
[
ln p(y,π, Y̌,Γ)

]
+ c. (4)

The subscript of q denotes the iteration index. The expectation in (4) is taken
w.r.t. the terms in qt that do not involve yn, that is

∏
n′ 6=n qt(yn′)qt(π)qt(Γ).

Upon expanding p(y,π, Y̌,Γ), (4) becomes

ln qt+1(yn) = Eπ [lnπyn ] + EΓ

[
M∑
m=1

K∑
k′=1

δ
(m)
n,k′ ln γ

(m)
yn,k′

]
+ c. (5)

Accordingly, the update for the class priors in π is

ln qt+1(π) = E−π
[
ln p(y,π, Y̌,Γ)

]
+ c (6)

where the expectation is taken w.r.t. qt+1(y)qt(Γ). Based on (6), it can be shown
[28] that

qt+1(π) ∝ Dir(π;αt+1) (7)

where αt+1 := [αt+1,1, . . . , αt+1,K ]> with αt+1,k = Nt+1,k + α0,k, Nt+1,k :=∑N
n=1 qt+1(yn = k). As a direct consequence of this, the term involving π in (5)
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is given by Eπ [lnπk] = ψ (αt,k)−ψ (ᾱt) , with ψ denoting the digamma function,

and ᾱt :=
∑K
k=1 αt,k.

For the k-th column of Γ(m) the update takes the form

ln qt+1(γ
(m)
k ) = E−γ(m)

k

[
ln p(y,π, Y̌,Γ)

]
+ c (8)

Using steps similar to the update of q(π), one can show that

qt+1(γ
(m)
k ) ∝ Dir(γ

(m)
k ;β

(m)
t+1,k) (9)

with β
(m)
t+1,k := [β

(m)
t+1,k,1, . . . , β

(m)
t+1,k,1], β

(m)
t+1,k,k′ := N

(m)
t+1,k,k′+β

(m)
0,k,k′ andN

(m)
t+1,k,k′ :=∑N

n=1 qt+1(yn = k)δ
(m)
n,k′ . Consequently at iteration t + 1, and upon defining

β̄
(m)
t+1,k :=

∑K
` β

(m)
t+1,k,`, we have EΓ[ln γ

(m)
k,k′ ] = ψ

(
β

(m)
t+1,k,k′

)
− ψ

(
β̄

(m)
t+1,k

)
. Given

initial values for Eπ [lnπyn ] and EΓ

[∑M
m=1 ln γ

(m)

yn,y̌
(m)
n

]
per variational E-step,

first the variational distribution for each datum q(yn) is computed using (4).
Using the recently computed q(y) at the variational M-step, the variational distri-
bution for class priors q(π) is updated via (6) and the variational distributions for

each column of the confusion matrices q(γ
(m)
k ) are updated via (8). The E- and

M-steps are repeated until convergence. Finally, the fused labels ŷ are recovered
at the last iteration T as

ŷn = argmax
k

qT (yn = k). (10)

The overall computational complexity of this algorithm is O(NKMT ). The
updates of this VBEM algorithm are very similar to the corresponding updates
of the EM algorithm for crowdsourcing [7].

Performance analysis Let π∗ comprise the optimal class priors, Γ∗ the optimal

confusion matrices, and µm := Pr(y̌
(m)
n 6= 0) the probability an annotator will

provide a response. The following theorem establishes that when VBEM is
properly initialized, the estimation errors for π,Γ and the labels y are bounded.
Such proper initializations can be achieved, for instance, using the spectral
approaches of [36, 31, 12].

Theorem 1. Suppose that γ
∗(m)
k,k′ ≥ ργ for all k, k′,m, π∗k ≥ ρπ for all k, and that

VBEM is initialized so that |E[πk]− π∗k| ≤ επ,0 for all k and |E[γ
(m)
k,k′ ]− γ

∗(m)
k,k′ | ≤

εγ,0 for all k, k′,m. It then holds w.p. at least 1−ν that for iterations t = 1, . . . , T ,
update (4) yields

max
k
|qt(yn = k)− 1(yn = k)| ≤ εq,t := K exp(−U)

U := D + fπ(επ,t−1) +Mfγ(εγ,t−1),
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where D is a quantity related to properties of the dataset and the annotators, while
fπ, fγ are decreasing functions. Consequently for k, k′ = 1, . . . ,K, m = 1, . . . ,M
updates (6) and (8) yield respectively

|E[πk]− π∗k| ≤ επ,k,t :=
N(εq,t + gπ(ν)) + α0,k + ρπᾱ0

N + ᾱ0
(11)

|E[γ
(m)
k,k′ ]− γ

∗(m)
k,k′ | ≤ ε

(m)
γ,k,k′,t :=

2N(gγ(ν) + εq,t) + β
(m)
0,k,k′ + β̄

(m)
0,k

Nµmπ∗k −N
gγ(ν)

γ
∗(m)

k,k′
−Nεq,t + β̄

(m)
k

(12)

with gπ(ν) and gγ(ν) being decreasing functions of ν and επ,t := maxk επ,k,t, εγ,t :=

maxk,k′,m ε
(m)
γ,k,k′,t .

Detailed theorem proofs are deferred to Appendix A of the supplementary
material. Theorem 1 shows that lowering the upper bound on label errors εq,

will reduce the estimation error upper bounds of {γ(m)
k,k′} and π. This in turn can

further reduce εq,t, as it is proportional to επ, and εγ . With a VBEM algorithm
for crowdsourcing and its performance analysis at hand, the ensuing section
will introduce our constrained variational Bayes algorithm that can incorporate
additional information to enhance label aggregation.

4 Constrained crowdsourcing

This section deals with a constrained (or semi-supervised) variational Bayes
approach to crowdsourcing. Here, additional information to the crowdsourcing
task is available in the form of pairwise constraints, that indicate relationships
between pairs of data. Throughout this section, NC will denote the number of
available constraints that are collected in the set C.

First, we note that when label constraints are available, the aforementioned
VBEM algorithm can readily handle them, in a manner similar to [30]. Let C
denote the set of indices for data with label constraints {yn}n∈C available. These
constraints can then be incorporated by fixing the values of {q(yn)}n∈C to 1 for
all iterations. The variational distributions for data n 6∈ C are updated according
to (5), while confusion matrices and prior probabilities according to (8) and (6),
respectively.

Next, we consider the case of instance-level constraints, which are the main
focus of this work. Such information may be easier to obtain than the la-
bel constraints of the previous subsection, as pairwise constraints encapsulate
relationships between pairs of data and not “hard” label information. The
pairwise constraints considered here take the form of must-link and cannot-
link relationships, and are collected respectively in the sets CML and CCL, and
C = CML ∪ CCL, NML = |CML|, NCL = |CCL|. All constraints consist of tuples
(i, j) ∈ {1, . . . , N} × {1, . . . , N}. A must-link constraint (i, j), i 6= j indicates
that two data points, xi and xj must belong to the same class, i.e. yi = yj ,
whereas a cannot-link constraint (i′, j′) indicates that two points xi′ and xj′ are
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not in the same class; yi′ 6= yj′ . Note that instance level constraints naturally
describe a graph G, whose N nodes correspond to the data {xn}Nn=1, and whose
(weighted) edges are the available constraints. This realization is the cornerstone
of the proposed algorithm, suggesting that instance-level constraints can be
incorporated in the crowdsourcing task by means of a probabilistic graphical
model.

Specifically, we will encode constraints in the marginal pmf of the unknown
labels p(y) using a Markov Random Field (MRF), which implies that for all
n = 1, . . . , N , the local Markov property holds, that is p(yn|y−n) = p(yn|yCn),
where y−n denotes a vector containing all labels except yn, while yCn a vector
containing labels for yn′ , where n′ ∈ Cn, and Cn is a set containing indices such
that n′ : (n, n′) ∈ C. By the Hammersley-Clifford theorem [10], the marginal pmf
of the unknown labels is given by

p(y) =
1

Z
exp

(
N∑
n=1

lnπyn + η
∑
n′∈Cn

V (yn, yn′)

)
(13)

where Z is the (typically intractable) normalization constant, and η > 0 is a
tunable parameter that specifies how much weight we assign to the constraints.
Here, we define the V function as V (yn, yn′) = wn,n′1(yn = yn′), where

wn,n′ = 1 ((n, n′) ∈ CML)− 1 ((n, n′) ∈ CCL) (14)

The weights wn,n′ can also take other real values, indicating the confidence
one has per constraint (n, n′), but here we will focus on −1, 0, 1 values. This
V (yn, yn′) term promotes the same label for data with must-link constraints,
whereas it penalizes similar labels for data with cannot-link constraints. Note that
more sophisticated choices for V can also be used. Nevertheless, this particular
choice leads to a simple algorithm with quantifiable performance, as will be seen
in the ensuing sections. Since the number of constraints is typically small, for
the majority of data the term

∑
V (yn, yn′) will be 0. Thus, the lnπ term in

the exponent of (13) acts similarly to the prior probabilities of Sec. 3.2. Again,

adopting a Dirichlet prior Dir(π;α0), and γ
(m)
k ∼ Dir(γ

(m)
k ;β

(m)
0,k ) for all m, k,

and using mean-field VB as before, the variational update for the n-th label
becomes

ln qt+1(yn = k) = Eπ [lnπk] + c (15)

+ EΓ

[
M∑
m=1

K∑
k′=1

δ
(m)
n,k′ ln γ

(m)
k,k′

]
+ η

∑
n′∈Cn

wn,n′qt(yn′ = k).

where we have used Eyn′ [1(yn′ = k)] = qt(yn′ = k). The variational update for la-
bel yn is similar to the one in (5), with the addition of the η

∑
n′∈Cn wn,n′qt(yn′ =

k) term that captures the labels of the data that are related (through the instance
constraints) to the n-th datum. Updating label distributions via (15), updates
for π and Γ remain identical to those in VBEM [cf. Sec. 3.2]. The instance-level
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Algorithm 1 Crowdsourcing with instance-level constraints

Input: Annotator responses Y̌, initial π, Γ, {q0(yn = k}N,Kn,k=1, constraints C, param-
eters α0, B0, η
Output: Estimates E[π], E[Γ], ŷ.
while not converged do

Update qt+1(yn) via (15)
Update qt+1(π) using qt+1(yn), (6)

Update qt+1(γ
(m)
k ) ∀m, k, using qt+1(yn), (8).

t← t+ 1
end while
Estimate fused data labels using (10).

semi-supervised crowdsourcing algorithm is outlined in Alg. 1. As with its plain
vanilla counterpart of Sec. 3.2, Alg. 1 maintains the asymptotic complexity of
O(NMKT ).

4.1 Performance analysis

Let C̃ with cardinality |C̃| = ÑC be a set comprising indices of data that take
part in at least one constraint, and let C̃c with |C̃c| = N̄C denote its complement.
The next theorem quantifies the performance of Alg. 1.

Theorem 2. Consider the same setup as in Thm. 1, instance level constraints
collected in C, and the initalization of Alg. 1 satisfying maxk |q0(yn = k)−1(yn =
k)| ≤ εq,0 for all k, n. Then the following hold w.p. at least 1− ν: For iterations

t = 1, . . . , T , update (15) yields for n ∈ C̃

max
k
|qt(yn = k)− 1(yn = k)| ≤ ε̃q,t (16)

ε̃q,t := max
n

K exp (−U − ηWn) = max
n

εq,t exp(−ηWn)

Wn := NML,n(1− 2εq,t−1)− 2NCL,nεq,t−1 +NCL,n,min

with NML,n, NCL,n denoting the number of must- and cannot-link constraints
for datum n respectively, and NCL,n,min := minkNCL,n,k, where NCL,n,k is the
number of cannot-link constraints of datum n, that belong to class k. For data
without constraints, that is n ∈ C̃c

max
k
|qt(yn = k)− 1(yn = k)| ≤ εq,t = K exp(−U),

with U as defined in Thm. 1. For k, k′ = 1, . . . ,K, m = 1, . . . ,M updates (6)
and (8) yield respectively

|E[πk]− π∗
k| ≤ επ,k,t :=

ÑC ε̃q,t + N̄Cεq,t +Ngπ(ν) + α0,k + ρπᾱ0

N + ᾱ0
(17)

|E[γ
(m)

k,k′ ]− γ
∗(m)

k,k′ | ≤ ε
(m)

γ,k,k′,t :=
2Ngγ(ν) + 2ÑC ε̃q,t + 2N̄Cεq,t + β

(m)

0,k,k′ + β̄
(m)
0,k

Nµmπ∗
k −N

gγ(ν)

γ
∗(m)

k,k′
− ÑC ε̃q,t − N̄Cεq,t + β̄

(m)
k

(18)
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and επ,t := maxk επ,k,t, εγ,t := maxk,k′,m ε
(m)
γ,k,k′,t.

Comparing Thm. 2 to Thm. 1, the error bounds for the labels involved in
constraints introduced by Alg. 1 will be smaller than the corresponding bounds
by VBEM, as long as maxnWn > 0. This in turn reduces the error bounds for
the parameters of interest, thus justifying the improved performance of Alg. 1
when provided with good initialization. Such an initialization can be achieved
by using spectral methods, or, by utilizing the output of the aforementioned
unconstrained VBEM algorithm.

4.2 Choosing η.

Proper choice of η is critical for the performance of the proposed algorithm, as it
represents the weight assigned to the available constraints. Here, using the number
of violated constraints NV :=

∑
(n,n′)∈CML

1(yn 6= yn′) +
∑

(n,n′)∈CCL
1(yn = yn′)

as a proxy for performance, grid search can be used to select η from a (ideally
small) set of possible values H.

4.3 Selecting instance-level constraints

In some cases, acquiring pairwise constraints, can be costly and time consuming.
This motivates judicious selection of data we would prefer to query constraints for.
Here, we outline an approach for selecting constraints using only the annotator
responses Y̌. In addition to providing error bounds for VBEM under instance
level constraints, Thm. 2 reveals how to select the NC constraints in C. Equations
(17) and (18) show that in order to minimize the error bounds of the priors and
confusion matrices, the data with the largest label errors |q(yn = k)− 1(yn = k)|
should be included in C. The smaller error bounds of (17) and (18) then result
in smaller error bounds for the labels, thus improving the overall classification
performance. Let C̃u denote the set of data for which we wish to reduce the
label error. In order to minimize the error ε̃q per element of C̃u, the term Wn

in the exponent of (16) should be maximized. To this end, data in C̃u should
be connected with instance-level constraints to data that exhibit small errors εq.

Data connected to each n ∈ C̃u, are collected in the set C̃c(n).
Since the true label errors are not available, one has to resort to surrogates

for them. One class of such surrogates, typically used in active learning [9], are
the so-called uncertainty measures. These quantities estimate how uncertain
the classifier (in this case the crowd) is about each datum. Intuitively, data for
which the crowd is highly uncertain are more likely to be misclassified. In our
setup, such uncertainty measures can be obtained using the results provided
by VBEM, and specifically the label posteriors {qT (yn)}Nn=1. As an alternative,
approximate posteriors can be found without using the VBEM algorithm, by
taking a histogram of annotator responses per datum. Using these posteriors,
one can measure the uncertainty of the crowd for each datum. Here, we opted
for the so-called best-versus-second-best uncertainty measure, which per datum
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Table 1. Dataset properties

Dataset N M K δ̃

RTE 800 164 2 48.78

Sentence Polarity 5, 000 203 2 136.68

Dog 807 109 5 74.03

Web 2, 665 177 5 87.94

n is given by
H(ŷn) = max

k
qT (yn = k)−max

k′ 6=k
qT (yn = k′). (19)

This quantity shows how close the two largest posteriors for each datum are;
larger values imply that the crowd is highly certain for a datum, whereas smaller
ones indicate uncertainty.

Using the results of VBEM and the uncertainty measure in (19), bNC/Kc are
randomly selected without replacement, to be included in C̃u, with probabilities
λn ∝ 1−H(ŷn). For each n ∈ C̃u, K data are randomly selected, with probabilities
λ†n ∝ H(ŷn), and are included in C̃c(n). Using this procedure, data in C̃c(n), n ∈ C̃u
are likely the ones that the crowd is certain of. Finally, the links {(n, n′), n ∈
C̃u, n′ ∈ C̃c(n)} are queried and included in the constraint set C. Note here
that each uncertain data point is connected to K certain ones, to increase the
likelihood that its label error will decrease.

Remark 3. The principles outlined in this subsection can be leveraged to develop
active semi-supervised crowdsourcing algorithms. We defer such approaches to
future work.

5 Numerical tests

Performance of the proposed semi-supervised approach is evaluated here on
several popular crowdsourcing datasets. Variational Bayes with instance-level
constraints (abbreviated as VB - ILC ) [cf. Sec. 4, Alg. 1] is compared to majority
voting (abbreviated as MV ), the variational Bayes method of Sec. 3.2 that does
not include side-information (abbreviated as VB), and the EM algorithm of [7]
(abbreviated as DS ) that also does not utilize any side information. Here, simple
baselines are chosen to showcase the importance of including constraints in the
crowdsourcing task. To further show the effect of pairwise constraints VB - ILC
is compared to Variational Bayes using label constraints (abbreviated as VB -
LC ), as outlined at the beginning of Sec. 4.

As figure of merit, the macro-averaged F-score [21] is adopted to indicate the
per-class performance of an algorithm. The datasets considered here are the RTE
[29], Sentence Polarity [25], Dog [8], and Web [37]; see Table 1 for their properties,
where δ̃ denotes the average number of responses per annotator. For the datasets
presented here, results indicating the micro-averaged F-score, alongside dataset
descriptions and results with 6 additional datasets are included in Appendix
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Fig. 1. Macro F-score for the RTE
dataset, with the same number of con-
straints for VB-LC and VB - ILC
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Fig. 2. Macro F-score for the Sentence
Polarity dataset, with the same number
of constraints for VB-LC and VB - ILC
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Fig. 3. Macro F-score for the Dog
dataset, with the same number of con-
straints for VB-LC and VB - ILC
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Fig. 4. Macro F-score for the Web
dataset, with the same number of con-
straints for VB-LC and VB - ILC

B of the supplementary material. MATLAB [18] was used throughout, and all
results represent the average over 20 Monte Carlo runs. In all experiments VB
and DS are initialized using majority voting, while VB - LC and VB - ILC are
initialized using the results of VB, since, as shown in Thm. 2 VB-ILC requires
good initialization. For the RTE, Dog, and Sentence Polarity datasets, the prior

parameters are set as α0 = 1, where 1 denotes the all-ones vector, and β
(m)
0,k is a

vector with K at its k-th entry and ones everywhere else, for all k,m. For the
Web dataset, all priors are set to uniform as this provides the best performance
for the VB based algorithms. The values of η for Alg. 1 are chosen as described in
Sec. 4.2 from the set H = {0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 100, 500}. When
instance-level constraints in C are provided to VB-ILC, constraints that can be
logically derived from the ones in C are also included. For example, if (i, j) ∈ CML

and (j, k) ∈ CML, a new must-link constraint (i, k) will be added. Similarly, if
(i, j) ∈ CML and (j, k) ∈ CCL, then a cannot-link constraint (i, k) will be added.

Figs. 1-4 show classification performance when VB-LC and VB-ILC are
provided with NC randomly selected constraints, that is NC label constraints
for VB-LC and NC instance-level constraints for VB-ILC. VB - LC and VB -
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dataset, with random and uncertainty
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Fig. 6. Macro F-score for the Sentence
polarity dataset, with random and un-
certainty based constraint selection for
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Fig. 7. Macro F-score for the Dog
dataset, with random and uncertainty
based constraint selection for VB-ILC
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Fig. 8. Macro F-score for the Web
dataset, with random and uncertainty
based constraint selection for VB-ILC

ILC exhibit improved performance as the number of constraints increases. As
expected, VB - LC outperforms VB - ILC, when K > 2, since label information
is stronger than instance-level information. Interestingly, for K = 2, VB-ILC
exhibits comparable performance to VB-LC in the Sentence polarity dataset,
and outperforms VB-LC in the RTE dataset. Nevertheless, VB-ILC outperforms
its unsupervised counterparts as NC increases, corroborating that even relatively
weak constraints are useful. The performance of the constraint selection scheme of
Sec. 4.3 is evaluated in Figs. 5-8. The uncertainty sampling based variant of VB
- ILC is denoted as VB - ILC, BVSB. Uncertainty sampling for selecting label
constraints is clearly beneficial, as it provides performance gains compared to ran-
domly selecting constraints in all considered datasets. Figs. 9-12 show the effect
of providing VB-ILC with constraints derived from NC label constraints. When
provided with NC label constraints from K classes, and with zk denoting the pro-
portion of constraints from class k, the resulting number of must-link constraints
is NML =

∑K
k=1

(
NCzk

2

)
, since for each class every two points must be connected.

The number of cannot-link constraints is NCL =
∑K
k=1

∑K−1
k′=1 N

2
Czkzk′+1, as
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Fig. 9. Macro F-score for the RTE
dataset, with label derived constraints
for VB-ILC
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Fig. 10. Macro F-score for the Sentence
Polarity dataset, with label derived con-
straints for VB-ILC
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Fig. 11. Macro F-score for the Dog
dataset, with label derived constraints
for VB-ILC
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Fig. 12. Macro F-score for the Web
dataset, with label derived constraints
for VB-ILC

for each class every point must be connected to all points belonging to other
classes. In this case, VB - ILC almost matches the performance of VB - LC.
This indicates that when provided with an adequate number of instance-level
constraints, VB - ILC performs as well as if label constraints had been provided.

6 Conclusions

This paper investigated constrained crowdsourcing with pairwise constraints,
that encode relationships between data. The performance of the proposed algo-
rithm was analytically and empirically evaluated on popular real crowdsourcing
datasets. Future research will involve distributed and online implementations of
the proposed algorithm, and other types of constraints alongside semi-supervised
crowdsourcing with dependent annotators, and dependent data.
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