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Abstract. A World Model is a generative model used to simulate an
environment. World Models have proven capable of learning spatial and
temporal representations of Reinforcement Learning environments. In
some cases, a World Model offers an agent the opportunity to learn
entirely inside of its own dream environment. In this work we explore
improving the generalization capabilities from dream environments to
real environments (Dream2Real). We present a general approach to im-
prove a controller’s ability to transfer from a neural network dream en-
vironment to reality at little additional cost. These improvements are
gained by drawing on inspiration from Domain Randomization, where
the basic idea is to randomize as much of a simulator as possible without
fundamentally changing the task at hand. Generally, Domain Random-
ization assumes access to a pre-built simulator with configurable param-
eters but oftentimes this is not available. By training the World Model
using dropout, the dream environment is capable of creating a nearly
infinite number of different dream environments. Previous use cases of
dropout either do not use dropout at inference time or averages the pre-
dictions generated by multiple sampled masks (Monte-Carlo Dropout).
Dropout’s Dream Land leverages each unique mask to create a diverse set
of dream environments. Our experimental results show that Dropout’s
Dream Land is an effective technique to bridge the reality gap between
dream environments and reality. Furthermore, we additionally perform
an extensive set of ablation studies.1

1 Introduction

Reinforcement learning [30] (RL) has experienced a flurry of success in recent
years, from learning to play Atari [20] to achieving grandmaster-level perfor-
mance in StarCraft II [32]. However, in all these examples, the target environ-
ment is a simulator that can be directly trained in. Reinforcement learning is
often not a practical solution without a simulator of the environment.

Sometimes the target environment is expensive, dangerous, or even impos-
sible to interact with. In these cases, the agent is trained in a simulated source
environment. Approaches that train an agent in a simulated environment with

1 The code is available at https://github.com/zacwellmer/DropoutsDreamLand
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the hopes of generalization to the target environment experience a common
problem referred to as the reality gap [13]. One approach to bridge the real-
ity gap is Domain Randomization [31]. The basic idea is that an agent which
can perform well in an ensemble of simulations will also generalize to the real
environment [2, 21, 24, 31]. The ensemble of simulations is generally created by
randomizing as much of the simulator as possible without fundamentally chang-
ing the task at hand. Unfortunately, this approach is only applicable when a
simulator is provided and the simulator is configurable.

A recently growing field, World Models [9], focuses on the side of this problem
when the simulation does not exist. World Models offer a general framework for
optimizing controllers directly in learned simulated environments. The learned
dynamics model can be viewed as the agent’s dream environment. This is an
interesting area because access to a learned dynamics model removes the need
for an agent to train in the target environment. Some related approaches [10,
11, 15, 19, 25, 29] focus on an adjacent problem which allows the controller to
continually interact with the target environment.

Despite the recent improvements [10,11,15,16,25] of World Models, little has
been done to address the issue that World Models are susceptible to the reality
gap. The learned dream environment can be viewed as the source domain and
the true environment as the target domain. Whenever there are discrepancies
between the source and target domains the reality gap can cause problems. Even
though World Models suffer from the reality gap, none of the Domain Random-
ization approaches are directly applicable because the dream environment does
not have easily configurable parameters.

In this work we present Dropout’s Dream Land (DDL), a simple approach to
bridge the reality gap from learned dream environments to reality (Dream2Real).
Dropout’s Dream Land was inspired by the first principles of domain random-
ization, namely, train a controller on a large set of different simulators which
all adhere to the fundamental task of the target environment. We are able to
generate a nearly infinite number of different simulators via the insight that
dropout [27] can be understood as learning an ensemble of neural networks [3].

Our empirical results demonstrate that Dropout’s Dream Land is an effective
technique to cross the Dream2Real gap and offers improvements over baseline
approaches [9,16]. Furthermore, we perform an extensive set of ablation studies
which indicate the source of generalization improvements, requirements for the
method to work, and when the method is most useful.

2 Related Works

2.1 Dropout

Dropout [27] was introduced as a regularization technique for feedforward and
convolutional neural networks. In its most general form, each unit is dropped
with a probability p during the training process. During training weights are
scaled by 1

1−p . Weight scaling ensures that for any hidden unit the expected
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output is the same as the actual output at test time [27]. Recurrent neural
networks (RNNs) initially had issues benefiting from dropout. Zaremba et al. [35]
suggests not to apply dropout to the hidden state units of the RNN cell. Gal et
al. [7] shortly after show that the mask can also be applied to the hidden state
units, but the mask must be fixed across the sequence during training.

In this work, we follow the dropout approach from [7] when training the
RNN. More formally, for each sequence, the Boolean masks mxi, mxf , mxw,
mxo, mhi, mhf , mhw, and mho are sampled, then used in the following LSTM
update:

it = Wxi(xt �mxi) + Whi(ht−1 �mhi) + bi, (1)

ft = Wxf (xt �mxf ) + Whf (ht−1 �mhf ) + bf , (2)

wt = Wxw(xt �mxw) + Whw(ht−1 �mhw) + bw, (3)

ot = Wxo(xt �mxo) + Who(ht−1 �mho) + bo, (4)

ct = σ(it)� tanh(wt) + σ(ft)� ct−1, (5)

ht = σ(ot)� tanh(ct), (6)

where xt, ht, and ct are the input, hidden state, and cell state, respectively, Wxi,
Wxf , Wxw, Wxo ∈ Rd×r Whi, Whf , Whw, Who ∈ Rd×d are the LSTM weight
matrices, and bi, bf , bw, bo ∈ Rd are the LSTM biases. The masks are fixed
for the entire sequence, but may differ between sequences in the mini-batch.

Monte-Carlo (MC) Dropout [6] runs multiple forward passes with indepen-
dently sampled masks. In related works [14], Monte-Carlo (MC) Dropout [6] has
been used to approximate the mean and variance of output predictions from an
ensemble. We emphasize that Dropout’s Dream Land does not use MC Dropout.
Details are in Section 3.2.

2.2 Domain Randomization

The goal of Domain Randomization [24, 31] is to create many different versions
of the dynamics model with the hope that a policy generalizing to all versions
of the dynamics model will do well on the true environment. Figure 1 illustrates
many simulated environments (êj) overlapping with the actual environment (e∗).
Simulated environments are often far cheaper to operate in than the actual envi-
ronment. Hence, it is desirable to be able to perform the majority of interactions
in the simulated environments.

Randomization has been applied on observations (e.g., lighting, textures)
to perform robotic grasping [31] and collision avoidance of drones [24]. Ran-
domization has also proven useful when applied to the underlying dynamics of
simulators [23]. Often, both the observations and simulation dynamics are ran-
domized [1].

Domain randomization generally uses some pre-existing simulator which then
injects randomness into specific aspects of the simulator (e.g., color textures,
friction coefficients). Each of the simulated environments in Figure 1 can be
thought of as a noisy sample of the pre-existing simulator. To the best of our
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Algorithm 1 World Models: Training in
dreams.
1: Initialize parameters of V , M , and C
2: Collect N trajectories o, d, and a from e∗

3: Optimize V on observations o
4: Generate embeddings z for o with V
5: Optimize M on z and d
6: Generate dream environment ê from M
7: for iteration=1, 2, . . . do
8: Optimize C via interactions with ê

e⇤

ê6

ê7

ê8

ê1

ê2

ê3

ê4

ê5

Fig. 1. e∗ is the actual environment,
and êj ’s are randomized variants of the
simulated environment.

knowledge, Domain Randomization has yet to be applied to entirely learned
simulators.

2.3 World Models

The world model [9] has three modules trained separately: (i) vision mod-
ule (V ); (ii) dynamics module (M); and (iii) controller (C). A high-level view
is shown in Algorithm 1. The vision module (V ) is a variational autoencoder
(VAE) [17], which maps an image observation (o) to a lower-dimensional repre-
sentation z ∈ Rn.

The dynamics model (M) is a mixture density network recurrent neural net-
work (MDN-RNN) [8, 9]. The MDN-RNN models the dynamics of the environ-
ment, so modifying the parameters changes the dynamics of the learned simu-
lated environment. It is implemented as an LSTM followed by a fully-connected
layer outputting parameters for a Gaussian mixture model with k components.
Each feature has k different π parameters for the logits of multinomial distribu-
tion, and (µ, σ) parameters for the k components in the Gaussian mixture. At
each timestep, the MDN-RNN takes in the state z and action a as inputs and
predicts π,µ, σ. To draw a sample from the MDN-RNN, we first sample the
multinomial distribution parameterized by π, which indexes which of the k nor-
mal distributions in the Gaussian mixture to sample from. This is then repeated
for each of the n features. Depending on the experiments, Ha and Schmidhu-
ber [9] also include an auxiliary head to the LSTM which predicts whether the
episode terminates (d).

The controller (C) is responsible for deciding what actions to take. It takes
features produced by the encoder V and dynamics model M as input (not the
raw observations). The simple controller is a single-layer model which uses an
evolutionary algorithm (CMA-ES [12]) to find its parameters. Depending on the
problem setting, the controller (C) can either be optimized directly on the target
environment (e∗) or on the dream environment (ê). This paper is focused on the
case of optimizing exclusively in the dream environment.
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3 Dropout’s Dream Land

In this work we introduce Dropout’s Dream Land (DDL). Dropout’s Dream
Land is the first work to offer a strategy to bridge the reality gap between
learned neural network dynamics models and reality. Traditional Domain Ran-
domization generates many different dynamics models by randomizing config-
urable parameters of a given simulation. This approach does not apply to neural
network dynamics models because they generally do not have configurable pa-
rameters (such as textures and friction coefficients). In Dropout’s Dream Land,
the controller can interact with billions2 of dream environments, whereas previ-
ous works [9,16] only use one dream environment. A naive way to go about this
would be to train a population of neural network world models. However, this
would be computationally expensive.

To keep the computational cost low, we go about this by applying dropout
to the dynamics model in order to form different dynamics models. Crucially,
dropout is applied at both training and inference of the dynamics model M .
Each unique dropout mask applied to M can be viewed as a different envi-
ronment. Similar to the spirit of Domain Randomization, an agent is expected
to perform well in the real environment if it can perform well in a variety of
simulated environments.

3.1 Learning the Dream Environment

The Dropout’s Dream Land environments are built around the dynamics model
M . The controller interactions during training are described by Figure 2, in
which r̂, d̂, and ẑ are generated entirely by M . In this work, M is an LSTM
where x = [z>,a>]> from equations (1)-(4). The LSTM is followed by multiple

heads for predictions of the latent state (ẑ), reward (r̂) and termination (d̂). The
reward and termination heads are simple fully-connected layers. Latent state
prediction is done with a MDN-RNN [8, 9], but this could be replaced by any
other neural network that supports dropout (e.g., GameGAN [16]).

Loss Function The dynamics model M jointly optimizes all three heads. The
loss of a single transition is defined as:

LM = Lz + αrLr + αdLd. (7)

Here, Lz = −
∑n

i=1 log(
∑k

j=1 π̂i,jN (zi|µ̂i,j , σ̂
2
i,j)) is a mixture density loss for

the latent state predictions, where n is the size of the latent feature vector
z, π̂i,j is the jth component’s probability for the ith feature, µ̂i,j , σ̂i,j are the
corresponding mean and standard deviation. Lr = (r − r̂)2 is the square loss
on rewards, where r and r̂ are the true and estimated rewards, respectively.
Ld = −d log(d̂) − (1 − d) log(1 − d̂) is the cross-entropy loss for termination

2 In practice we are bounded by the total number of steps instead of every possible
environment.
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Fig. 2. Interactions with the dream envi-
ronment. A dropout mask is sampled at
every step yielding a new M j .

Fig. 3. Interactions with the real environ-
ment. The controller being optimized only
interacts with the real environment during
the final testing phase.

prediction, where d and d̂ are the true and estimated probabilities of the episode
ending, respectively. Constants αd and αr in (7) are for trading off importance
of the termination and reward objectives. The loss (LM ) is aggregated over each
sequence and averaged across the mini-batch.

Training Dynamics Model M with Dropout At training time of M (Algo-
rithm 1, Line 5), we apply dropout [7] to the LSTM to simulate different random
environments. For each input and hidden unit, we first sample a Boolean indica-
tor with probability ptrain. If the indicator is 1, the corresponding input/hidden
unit is masked. Masks mxi, mxf , mxw, mxo, mhi, mhf , mhw, and mho are
sampled independently (Equations (1)-(4)). When training the RNN, each mini-
batch contains multiple sequences. Each sequence uses an independently sam-
pled dropout mask. We fix the dropout mask for the entire sequence as this was
previously found to be critically important [7].

Training the RNN with many different dropout masks is critical in order to
generate multiple different dynamics models. At the core of Domain Random-
ization is the requirement that the randomizations do not fundamentally change
the task. This constraint is violated if we do not train the RNN with dropout but
apply dropout at inference (explored further empirically in Section 4.3). After
optimizing the dynamics model M , we can use it to construct dream environ-
ments (Section 3.2) for controller training (Section 3.3).

In this work, we never sample masks to apply to the action (a). We do not
zero out the action because in some environments this could imply the agent
taking an action (e.g., moving to the left). This design choice could be changed
depending on the environment, for example, when a zerod action corresponds to
a no-op or a sticky action.

3.2 Interacting with Dropout’s Dream Land

Interactions with the dream environment (Algorithm 1, Line 8) can be charac-
terized as training time for the controller (C) and inference time of the dynamics
model (M). An episode begins by generating the initial latent state vector ẑ by
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either sampling from a standard normal distribution or sampling from the start-
ing points of the observed trajectories used to train M [9]. The hidden cell (c)
and state (h) vectors are initialized with zeros.

The controller (C) decides the action to take based on ẑ and h. In Figure 2,

the controller also observes r̂ and d̂, but these are exclusively used for the opti-
mization process of the controller. The controller then performs an action a on
a dream environment.

A new dropout mask is sampled (with probability pinfer) and applied to M .
We refer to the masked dynamics model as M j and the corresponding Dropout’s
Dream Land environment as êj . The current latent state ẑ and action a are con-
catenated, and passed to M j to perform a forward pass. The episode terminates
based on a sample from a Bernoulli distribution parameterized by d̂. The dream
environment then outputs the latent state, LSTM’s hidden state, reward, and
whether the episode terminates.

It is crucial to apply dropout at inference time (of the dynamics model M)
in order to create different versions of the dream environment for the controller
C. Our experiments (Sections 4.2 and 4.3) consider an extensive set of ablation
studies as to how and when dropout should be applied.

Dropout’s Dream Land is not Monte-Carlo Dropout The only work we
are aware of that applies dropout at inference time is Monte-Carlo Dropout [7].
In Section 4.1 we include a Monte-Carlo Dropout World Model baseline because
DDL can easily be misinterpreted as an application of Monte-Carlo Dropout.
This baseline passes the expected hidden (h̃t) and cell (c̃t) state to the next
time-step, in which the expectation is over dropout masks from Equations (1)-
(4). In practice we follow a similar approach to previous work [7] and approximate
the expectation by performing multiple forward passes (each forward pass sam-
ples a new dropout mask), and averages the results. At each step, the expected
Mixture Model parameters (π̃, µ̃, σ̃), reward (r̃), and termination (d̃) are used.
Maximizing expected returns from the Monte-Carlo Dropout World Model is
equivalent to maximizing expected returns on a single dream environment, the
average dynamics model. On the other hand, the purpose of DDL’s approach
to dropout is to generate many different versions of the dynamics model. More
explicitly, the controller is trained to maximize expected returns across many
different dynamics models in the ensemble, as opposed to maximizing expected
returns on the ensemble average.

Dropout has also traditionally been used as a model regularizer. Dropout as
a model regularizer is only applied at training time but not at inference time.
In this work, this approach would regularize the dynamics model M . The usual
trade-off is lower test loss at the cost of higher training loss [7, 27]. However,
DDL’s ultimate goal is not to lower test loss of the World Model (M). The
ultimate goal is providing dream environments to a controller so that the optimal
policy in Dropout’s Dream Land also maximizes expected returns in the target
environment (e∗).
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3.3 Training the Controller

Training with CMA-ES We follow the same controller optimization proce-
dure as was done in World Models [9] and GameGAN [16] on their DoomTake-
Cover experiments. We train the controller with CMA-ES [12]. At every gen-
eration CMA-ES [12] spawns a population (of size Npop) of agents. Each agent
in the population reports their mean returns on a set of Ntrials episodes gener-
ated in the dream environments. As controllers in the population do not share
a dream environment, the probability of controllers interacting with the same
sequence of dropout masks is vanishingly small. Let Nmax ep len be the maximum
number of steps in an episode. In a single CMA-ES iteration, the population as
a whole can interact with Npop×Ntrials×Nmax ep len different environments. In
our experiments, Npop = 64, Ntrials = 16, and Nmax ep len is 1000 for CarRacing
and 2100 for DoomTakeCover. This potentially results in > 1, 000, 000 different
environments at each generation.

Dream Leader Board After every fixed number of generations (25 in our
experiments), the best controller in the population (which received the high-
est average returns across its respective Ntrials episodes) is selected for evalua-
tion [9,16]. This controller is evaluated for another Npop×Ntrials episodes in the
Dropout’s Dream Land environments. The controller’s mean across Npop×Ntrials

trials is logged to the Dream Leader Board. After 2000 generations, the controller
at the top of the Dream Leader Board is evaluated in the real environment.

Interacting with the Real Environment In Figure 3 we illustrate the con-
troller’s interaction with the real target environment (e∗). Interactions with e∗

do not apply dropout to the input or hidden units of M . The controller only in-
teracts with the target environment during testing. These interactions are never
used to modify parameters of the controller. At test time r, d, and o are gen-
erated by e∗, and z is the embedding of o from the VAE (V ). The only use of
M when interacting with the target environment is producing h as a feature for
the controller.

4 Experiments

Broadly speaking, our experiments are focused on either evaluating the dynamics
model (M) or the controller (C). Architecture details of V , M , and C are in
Appendix A.1. Experiments are performed on the DoomTakeCover-v0 [22] and
CarRacing-v0 [18] environments from OpenAI Gym [4]. These have also been
used in related works [9,16]. Even though both baseline target environments are
simulators we still consider this “reality” because we do not leverage knowledge
about the simulator mechanics to learn the source environment (M).

Quality of the dynamics model is evaluated against a training and testing
set of trajectories (described below). Quality of the controller is measured by
returns in the target environments. For all experiments the controller is trained
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exclusively in the dream environment (Section 3.2) for 2,000 generations. The
controller only interacts with the target environments for testing (Section 3.3).
The target environment is never used to update parameters of the controller.
Means and standard deviations of returns achieved by the best controller (Sec-
tion 3.3) in the target environment are reported based on 100 trials for CarRacing
and 1000 trials for DoomTakeCover.3

DoomTakeCover Environment DoomTakeCover is a control task in which
the goal is to dodge fireballs for as long as possible. The controller receives a
reward of +1 for every step it is alive. The maximum number of frames is limited
to 2100.

For all tasks on this environment, we collect a training set of 10, 000 trajec-
tories and a test set of 100 trajectories. A trajectory is a sequence of state (z),
action (a), reward (r), and termination (d) tuples. Both datasets are generated
according to a random policy. Following the same convention as World Mod-
els [9], on the DoomTakeCover environment we concatenate z, h, and c as input
to the controller. In (7), we set αd = 1 and αr = 0 because the Doom reward
function is determined entirely based on whether the controller lives or dies.

CarRacing Environment CarRacing is a continuous control task to learn
from pixels. The race track is split up into “tiles”. The goal is to make it all the
way around the track (i.e., crossing every tile). We terminate an episode when
all tiles are crossed or when the number of steps exceeds 1,000. Let Ntiles be the
total number of tiles. The simulator [18] defines the reward rt at each timestep
as 100

Ntiles
− 0.1 if a new tile is crossed, and −0.1 otherwise. The number of tiles

is not explicitly set by the simulator. We generated 10,000 tracks and observed
that the number of tiles in the track appears to follow a normal distribution with
mean 289. To simplify the reward function, we fix Ntiles to 289 in the randomly
generated tracks, and call the modified environment CarRacingFixedN.

For all tasks on this environment, the training set contains 5, 000 trajectories
and the test set contains 100 trajectories. Both datasets are collected by following
an expert policy with probability 0.9, and a random policy with probability
0.1. The expert policy was trained directly on the CarRacing environment and
received an average return of 885 ± 63 across 100 trials. In comparison, the
performance of the random policy is −53 ± 41. This is similar to the setup in
GameGAN [16] on the Pacmanenvironment which also used an expert policy.
For this environment, we set αd = αr = 1 in (7).

4.1 Comparison with Baselines

Dropout’s Dream Land (DDL) is compared against World Models (WM), Monte-
Carlo Dropout World Models (MCD-WM), and a uniform random policy on the
CarRacing and DoomTakeCover environments. The Monte-Carlo Dropout World
Models baseline uses ptrain = 0.05, pinfer = 0.1, and 10 samples. On the Doom
environment, we also compare with GameGAN [16] and Action-LSTM [5]4. All
controllers are trained entirely in dream environments.

3 100 trials are used for the baselines GameGAN and Action-LSTM.
4 Results on GameGAN and Action-LSTM returns are from [16].
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Table 1. Returns from baseline meth-
ods and DDL (ptrain = 0.05 and
pinfer = 0.1) on the DoomTakeCover
environment.

DoomTakeCover

random policy 210± 108
GameGAN 765± 482
Action-LSTM 280± 104
WM 849± 499
MCD-WM 798± 464
DDL 933± 552

Table 2. Returns from baseline methods and
DDL (ptrain = 0.05 and pinfer = 0.1) on the
CarRacingFixedN and the original CarRacing
environments.

CarRacingFixedN CarRacing

random policy −50± 38 −53± 41
WM 399± 135 388± 157

MCD-WM −56± 31 −53± 32
DDL 625± 289 610± 267

Results on the target environments are in Tables 1 and 2. The CarRacing
results appear different from those found in World Models [9] because we are not
performing the same experiment. In this paper, we train the controller entirely
in the dream environment and only interact with the target environment during
testing. In World Models [9], the controller was trained directly in the CarRacing
environment.

In Tables 1 and 2, we observe that DDL offers performance improvements
over all the baseline approaches in the target environments. We suspect this is
because the WM dream environments were easier for the controller to exploit
errors between the simulator and reality. Forcing the controller to succeed in
many different dropout environments makes it difficult to exploit discrepancies
between the dream environment and reality. This leads us to the conclusion that
forcing the controller to succeed in many different dropout environments is an
effective technique to cross the Dream2Real gap.

The DoomTakeCover returns in the target environment as reported by the
temperature-regulated variant5 in [9] are higher than the returns we obtain from
DDL, which does not use temperature. However, we emphasize that adjusting
temperature is only useful for a limited set of dynamics models. For exam-
ple, it would not be straightforward to apply temperature to any dynamics
model which does not produce a probability density function (e.g., GameGAN);
whereas the DDL approach of generating many different dynamics models is use-
ful to any learned neural network dynamics model. Moreover, even though the
temperature-regulated variant increases uncertainty of the dream environment,
it is still only capable of creating one dream environment.

4.2 Inference Dropout and Dream2Real Generalization

In this experiment, we study the effects of dropout on the World Model. First, we
evaluate the relationship between dropout and World Model accuracies. Second,

5 We were unable to reproduce the temperature results in [9].
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Table 3. RNN’s loss with and without dropout (ptrain = 0.05 and pinfer = 0) during
training.

DoomTakeCover CarRacingFixedN

training loss test loss training loss test loss

without dropout 0.89 0.91 2.36 3.10

with dropout 0.93 0.91 3.19 3.57

we evaluate the relationship between dropout and generalization from the World
Model to the target environment. Model loss is measured by the loss in (7) on
the test sets. Returns in the target environment are reported based on the best
controller (Section 3.3) trained with varying levels of inference dropout. The
same training and test sets described at the beginning of Section 4 are used.

Standard use cases of dropout generally observe a larger training loss but
lower test loss relative to the same model trained without dropout [6, 27]. In
Table 3, we do not observe any immediate performance improvements of the
World Model trained with dropout (ptrain = 0.05 and pinfer = 0). In fact, we
observe worse results on the test set. The poor performance of both DDL RNNs
(Table 3) indicates a clear conclusion about the results from Tables 1 and 2. The
improved performance of DDL relative to World Models comes from forcing the
controller to operate in many different environments and not from a single more
accurate dynamics model M .

Next we take a World Model trained with dropout and evaluate the model
loss on a test set across varying levels of inference dropout (pinfer). As expected,
in Figure 4 we observe that as the inference dropout rate is increased the model
loss increases. In Figure 5 we observe that increasing the inference dropout rate
improves generalization to the target environment. We believe that the boost in
returns on the target environments comes from an increase in capacity to distort
the dynamics model. Figures 4 and 5 suggest that we can sacrifice accuracy of
the dream environments to better cross the Dream2Real gap between dream
and target environments. However, this should only be useful up to the point
where the task at hand is fundamentally changed. Figure 5 suggests this point is
somewhere between 0.1 and 0.2 for pinfer, though we suspect in practice this will
be highly dependent on network architecture and the environment.

In Figure 5 we observe relatively weak returns on the real CarRacingFixedN
environment when the inference dropout rate is zero. Recall from Table 3 that
the dropout variant has a much higher test loss than the non-dropout variant
on CarRacingFixedN. This means that when pinfer = 0, the single environment
DDL is able to create is relatively inaccurate. It is easier for the controller to
exploit any discrepancies between the dream environment and target environ-
ment because only a single dream environment exists. However, as we increase
the inference dropout rate it becomes harder for the controller to exploit the
dynamics model, suggesting that DDL is especially useful when it is difficult to
learn an accurate World Model.
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(a) DoomTakeCover. (b) CarRacingFixedN.

Fig. 4. Loss of DDL dynamics model (ptrain = 0.05) at different inference dropout
rates.

(a) DoomTakeCover. (b) CarRacingFixedN.

Fig. 5. DDL (ptrain = 0.05) returns at different inference dropout rates in the target
environments.

4.3 When Should Dropout Masks be Randomized During
Controller Training?

In this ablation study we evaluate when the dropout mask should be randomized
during training of C. We consider two possible approaches of when to randomize
the masks. The first case only randomizes the mask at the beginning of an
episode (episode randomization). The second case samples a new dropout mask
at every step (step randomization). We also consider if it is effective to only apply
dropout at inference time but not during M training (i.e., pinfer > 0, ptrain = 0).

As can be seen in Table 4, randomizing the mask at each step offers better
returns on both target environments. Better returns in the target environment
when applying step randomization comes from the fact that the controller is
exposed to a much larger number (> 1000×) of dream environments. We also
observe that applying step randomization without training the dynamics model
with dropout yields a weak policy on the target environment. This is due to the
randomization fundamentally changing the task. Training the dynamics model
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with dropout ensures that at inference time the masked model (M j) is mean-
ingful.

Table 4. Returns of the controller with different frequencies to randomize the dropout
mask.

DoomTakeCover CarRacingFixedN

episode randomization
(ptrain = 0.05, pinfer = 0.1)

786± 469 601± 197

step randomization
(ptrain = 0.05, pinfer = 0.1)

933± 552 625± 289

step randomization
(ptrain = 0, pinfer = 0.1)

339± 90 −43± 52

4.4 Comparison to Standard Regularization Methods

In this experiment we compare Dropout’s Dream Land with standard regular-
ization methods. First, we consider applying the standard use case of dropout
(0 < ptrain < 1 and pinfer = 0). Second, we consider a noisy variant of M when
training C. The Noisy World Model uses exactly the same parameters for M
as the baseline World Model. When training the controller, a small amount of
Gaussian noise is added to z at every step.

In Table 5, we observe that DDL is better at generalizing from the dream en-
vironment to the target environment than the standard regularization methods.
Dropout World Models can be viewed as a regularizer on M . Noisy World Mod-
els can be viewed as a regularizer on the controller C. The strong returns on the
target environment by DDL suggest that it is better at crossing the Dream2Real
gap than standard regularization techniques.

Table 5. Returns from World Models, Dropout World Models (ptrain = 0.05 and
pinfer = 0.0), Noisy World Models, and DDL (ptrain = 0.05 and pinfer = 0.1) on the
CarRacingFixedN and the original CarRacing environments.

CarRacingFixedN CarRacing

World Models 399± 135 388± 157
Dropout World Models −36± 19 −36± 20

Noisy (N (0, 1)) World Models 147± 121 180± 132
Noisy (N (0, 10−2)) World Models 455± 171 442± 171

Dropout’s Dream Land 625± 289 610± 267

4.5 Comparison to Explicit Ensemble Methods

In this experiment we compare Dropout’s Dream Land with two other ap-
proaches for randomizing the dynamics of the dream environment. We consider
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using an explicit ensemble of a population of dynamics models. Each environment
in the population was trained on the same set of trajectories described at the
beginning of Section 4 with a different initialization and different mini-batches.
With the population of World Models we train a controller with Step Random-
ization and a controller with Episode Randomization. Note that the training
cost of dynamics models and RAM requirements at inference time scale linearly
with the population size. Due to the large computational cost we consider a
population size of 2.

In Table 6, we observe that neither Population World Models (PWM) Step
Randomization or Episode Randomization substantially close the Dream2Real
gap. Episode Randomization does not dramatically improve results because the
controller is forced to understand the hidden state (h) representation of every M
in the population. Step Randomization performs even worse than Episode Ran-
domization because on top of the previously stated limitations, each dynamics
model in the population is also forced to be compatible with the hidden state
(h) representation of all other dynamics models in the population. DDL does
not suffer from any of the previously stated issues and is also computationally
cheaper because only one M must be trained as opposed to an entire population.

Table 6. Returns from World Models, PWM Episode Randomization, PWM Step
Randomization, and DDL (ptrain = 0.05 and pinfer = 0.1) on the CarRacingFixedN
and the original CarRacing environments.

CarRacingFixedN CarRacing

World Models 399± 135 388± 157
PWM Episode Randomization 398± 126 402± 142

PWM Step Randomization −78± 14 −77± 13
Dropout’s Dream Land 625± 289 610± 267

5 Conclusion

Dropout’s Dream Land introduces a novel technique to improve controller gen-
eralization from dream environments to reality. This is accomplished by taking
inspiration from Domain Randomization and training the controller on a large
set of different simulators. A large set of different simulators are generated at
little cost by the insight that dropout can be used to generate an ensemble of
neural networks. To the best of our knowledge this is the first work to bridge the
reality gap between learned simulators and reality. Previous work from Domain
Randomization [31] is not applicable to learned simulators because they often
do not have easily configurable parameters. Future direction for this work could
be modifying the dynamics model parameters in a targeted manner [28, 33, 34].
This simple approach to generating different versions of a model could also be
useful in committee-based methods [25,26].
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A Appendix

A.1 Architecture Details

We follow the same architecture setup as World Models. We adopt the following
notation [16] to describe the VAE architecture.

Conv2D(a, b, c): 2D-Convolution layer with output channel size a, kernel
size b, and stride c. All use valid padding and ReLU activations.

T.Conv2D(a, b, c): Transposed 2D-Convolution layer with output channel
size a, kernel size b, stride c. The final layer uses a sigmoid activation but every
other layer uses ReLU activations.

LSTM(a): LSTM layer with a units.
Dense(a): Fully Connected layer with output size a followed by a ReLU

activation.
Linear(a): Linear layer with output size a.
Reshape(a): Reshape input to output size a.

Table 7. Architectures DoomTakeCover and CarRacing.

DoomTakeCover CarRacing

VAE (V )

Conv2D(32, 4, 2) Conv2D(32, 4, 2)
Conv2D(64, 4, 2) Conv2D(64, 4, 2)
Conv2D(128, 4, 2) Conv2D(128, 4, 2)
Conv2D(256, 4, 2) Conv2D(256, 4, 2)

Reshape(1024) Reshape(1024)
Linear(32), Linear(32) Linear(64), Linear(64)

Dense(1024) Dense(1024)
Reshape(1, 1, 1024) Reshape(1, 1, 1024)
T.Conv2D(128, 5, 2) T.Conv2D(128, 5, 2)
T.Conv2D(64, 5, 2) T.Conv2D(64, 5, 2)
T.Conv2D(32, 6, 2) T.Conv2D(32, 6, 2)
T.Conv2D(3, 6, 2) T.Conv2D(3, 6, 2)

World Model (M)

LSTM(512) LSTM(256)
Dense(961) Dense(482)

Controller (C)

Linear(1) Linear(3)


