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Abstract. We develop a novel framework that adds the regularizers of
the sparse group lasso to a family of adaptive optimizers in deep learning,
such as Momentum, Adagrad, Adam, AMSGrad, AdaHessian, and
create a new class of optimizers, which are named Group Momentum,
Group Adagrad, Group Adam, Group AMSGrad and Group Ada-
Hessian, etc., accordingly. We establish theoretically proven convergence
guarantees in the stochastic convex settings, based on primal-dual meth-
ods. We evaluate the regularized effect of our new optimizers on three
large-scale real-world ad click datasets with state-of-the-art deep learning
models. The experimental results reveal that compared with the original
optimizers with the post-processing procedure which uses the magnitude
pruning method, the performance of the models can be significantly im-
proved on the same sparsity level. Furthermore, in comparison to the
cases without magnitude pruning, our methods can achieve extremely
high sparsity with significantly better or highly competitive performance.

Keywords: adaptive optimizers · sparse group lasso · DNN models ·
online optimization.

1 Introduction

With the development of deep learning, deep neural network (DNN) models
have been widely used in various machine learning scenarios such as search,
recommendation and advertisement, and achieved significant improvements. In
the last decades, different kinds of optimization methods based on the variations
of stochastic gradient descent (SGD) have been invented for training DNN models.
However, most optimizers cannot directly produce sparsity which has been proven
effective and efficient for saving computational resource and improving model
performance especially in the scenarios of very high-dimensional data. Meanwhile,
the simple rounding approach is very unreliable due to the inherent low accuracy
of these optimizers.

In this paper, we develop a new class of optimization methods, that adds
the regularizers especially sparse group lasso to prevalent adaptive optimizers,
and retains the characteristics of the respective optimizers. Compared with the
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original optimizers with the post-processing procedure which use the magnitude
pruning method, the performance of the models can be significantly improved
on the same sparsity level. Furthermore, in comparison to the cases without
magnitude pruning, the new optimizers can achieve extremely high sparsity with
significantly better or highly competitive performance. In this section, we describe
the two types of optimization methods, and explain the motivation of our work.

1.1 Adaptive Optimization Methods

Due to the simplicity and effectiveness, adaptive optimization methods [20,17,4,27,8,19,26]
have become the de-facto standard algorithms used in deep learning. There are
multiple variants, but they can be represented using the general update formula
[19]:

xt+1 = xt − αtmt/
√
Vt, (1)

where αt is the step size, mt is the first moment term which is the weighted
average of gradient gt and Vt is the so called second moment term that adjusts

updated velocity of variable xt in each direction. Here,
√
Vt := V

1/2
t , mt/

√
Vt :=√

Vt
−1 ·mt. By setting different mt, Vt and αt , we can derive different adaptive

optimizers including Momentum [17], Adagrad [4], Adam [8], AMSGrad [19]
and AdaHessian [26], etc. See Table 1.

Table 1. Adaptive optimizers with choosing different mt, Vt and αt.

Optimizer mt Vt αt

Sgd gt I α√
t

Momentum γmt−1 + gt I α

Adagrad gt diag(
∑t
i=1 g

2
i )/t α√

t

Adam β1mt−1 + (1− β1)gt β2Vt−1 + (1− β2)diag(g2t )
α
√

1−βt2
1−βt1

AMSGrad β1mt−1 + (1− β1)gt max(Vt−1, β2Vt−1 + (1− β2)diag(g2t ))
α
√

1−βt2
1−βt1

AdaHessian β1mt−1 + (1− β1)gt β2Vt−1 + (1− β2)D2
t

* α
√

1−βt2
1−βt1

* Dt = diag(Ht), where Ht is the Hessian matrix.

1.2 Regularized Optimization Methods

Follow-the-regularized-leader (FTRL) [12,11] has been widely used in click-
through rates (CTR) prediction problems, which adds `1-regularization (lasso)
to logistic regression and can effectively balance the performance of the model
and the sparsity of features. The update formula [11] is:

xt+1 = arg min
x

g1:t · x+
1

2

t∑
s=1

σs‖x− xs‖22 + λ1‖x‖1, (2)
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where g1:t =
∑

t
s=1gs,

1
2

∑t
s=1 σs‖x−xs‖22 is the strong convex term that stabilizes

the algorithm and λ1‖x‖1 is the regularization term that produces sparsity.
However, it doesn’t work well in DNN models since one input feature can
correspond to multiple weights and lasso only can make single weight zero hence
can’t effectively delete features.

To solve above problem, [16] adds the `21-regularization (group lasso) to
FTRL, which is named G-FTRL. [25] conducts the research on a group lasso
method for online learning that adds `21-regularization to the algorithm of Dual
Averaging (DA) [15], which is named DA-GL. Even so, these two methods cannot
be applied to other optimizers. Different scenarios are suitable for different
optimizers in the deep learning fields. For example, Momentum [17] is typically
used in computer vision; Adam [8] is used for training transformer models for
natural language processing; and Adagrad [4] is used for recommendation
systems. If we want to produce sparsity of the model in some scenario, we have
to change optimizer which probably influence the performance of the model.

1.3 Motivation

Eq. (1) can be rewritten into this form:

xt+1 = arg min
x

mt · x+
1

2αt
‖
√
Vt

1
2
(x− xt)‖22. (3)

Furthermore, we can rewrite Eq. (3) into

xt+1 = arg min
x

m1:t · x+

t∑
s=1

1

2αs
‖Q

1
2
s (x− xs)‖22, (4)

where m1:t =
∑t
s=1ms,

∑t
s=1Qs/αs =

√
Vt/αt. It is easy to prove that Eq. (3)

and Eq. (4) are equivalent using the method of induction. The matrices Qs can be
interpreted as generalized learning rates. To our best knowledge, Vt of Eq. (1) of
all the adaptive optimization methods are diagonal for the computation simplicity.
Therefore, we consider Qs as diagonal matrices throughout this paper.

We find that Eq. (4) is similar to Eq. (2) except for the regularization term.
Therefore, we add the regularization term Ψ(x) to Eq. (4), which is the sparse
group lasso penalty also including `2-regularization that can diffuse weights of
neural networks. The concrete formula is:

Ψt(x) =

G∑
g=1

(
λ1‖xg‖1 + λ21

√
dxg‖A

1
2
t x

g‖2
)

+ λ2‖x‖22, (5)

where λ1, λ21, λ2 are regularization parameters of `1, `21, `2 respectively, G is the
total number of groups of weights, xg is the weights of group g and dxg is the size
of group g. In DNN models, each group is defined as the set of outgoing weights
from a unit which can be an input feature, or a hidden neuron, or a bias unit (see,
e.g., [22]). At can be arbitrary positive matrix satisfying At+1 � At, e.g., At = I.
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In Section 2.1, we let At = (
∑t
s=1

Qgs
2αs

+ λ2I) just for solving the closed-form
solution directly, where Qgs is a diagonal matrix whose diagonal elements are part
of Qs corresponding to xg. The ultimate update formula is:

xt+1 = arg min
x

m1:t · x+

t∑
s=1

1

2αs
‖Q

1
2
s (x− xs)‖22 + Ψt(x). (6)

1.4 Outline of Contents

The rest of the paper is organized as follows. In Section 1.5, we introduce the
necessary notations and technical background.

In Section 2, we present the closed-form solution of Eq. (4) and the algorithm
of general framework of adaptive optimization methods with sparse group lasso.
We prove the algorithm is equivalent to adaptive optimization methods when
regularization terms vanish. In the end, we give two concrete examples of the
algorithm.1

In Section 3, we derive the regret bounds of the method and convergence
rates.

In Section 4, we validate the performance of new optimizers in the public
datasets.

In Section 5, we summarize the conclusion.
Appendices A-D contain technical proofs of our main results and Appendix E

includes the additional details of the experiments of Section 4.

1.5 Notations and Technical Background

We use lowercase letters to denote scalars and vectors, and uppercase letters
to denote matrices. We denote a sequence of vectors by subscripts, that is,
x1, . . . , xt, and entries of each vector by an additional subscript, e.g., xt,i. We use

the notation g1:t as a shorthand for
∑t
s=1 gs. Similarly we write m1:t for a sum

of the first moment mt, and f1:t to denote the function f1:t(x) =
∑t
s=1 fs(x).

Let Mt = [m1 · · ·mt] denote the matrix obtained by concatenating the vector
sequence {mt}t≥1 and Mt,i denote the i-th row of this matrix which amounts to
the concatenation of the i-th component of each vector. The notation A � 0 (resp.
A � 0) for a matrix A means that A is symmetric and positive semidefinite (resp.
definite). Similarly, the notations A � B and A � B mean that A−B � 0 and
A−B � 0 respectively, and both tacitly assume that A and B are symmetric.
Given A � 0, we write A

1
2 for the square root of A, the unique X � 0 such that

XX = A ([12], Section 1.4).
Let E be a finite-dimension real vector space, endowed with the Mahalanobis

norm ‖ · ‖A which is denoted by ‖ · ‖A =
√
〈·, A·〉 as induced by A � 0. Let E∗

be the vector space of all linear functions on E . The dual space E∗ is endowed
with the dual norm ‖ · ‖∗A =

√
〈·, A−1·〉.

1 The codes will be released if the paper is accepted.



Adaptive Optimizers with Sparse Group Lasso 5

Let Q be a closed convex set in E . A continuous function h(x) is called strongly
convex on Q with norm ‖ · ‖H if Q ⊆ dom h and there exists a constant σ > 0
such that for all x, y ∈ Q and α ∈ [0, 1] we have

h(αx+ (1− α)y) ≤ αh(x) + (1− α)h(y)− 1

2
σα(1− α)‖x− y‖2H .

The constant σ is called the convexity parameter of h(x), or the modulus of
strong convexity. We also denote by ‖ · ‖h = ‖ · ‖H . Further, if h is differentiable,
we have

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
σ

2
‖x− y‖2h.

We use online convex optimization as our analysis framework. On each round
t = 1, . . . , T , a convex loss function ft : Q 7→ R is chosen, and we pick a point
xt ∈ Q hence get loss ft(xt). Our goal is minimizing the regret which is defined
as the quantity

RT =

T∑
t=1

ft(xt)−min
x∈Q

T∑
t=1

ft(x). (7)

Online convex optimization can be seen as a generalization of stochastic convex
optimization. Any regret minimizing algorithm can be converted to a stochastic
optimization algorithm with convergence rate O(RT /T ) using an online-to-batch
conversion technique [9].

In this paper, we assume Q ≡ E = Rn, hence we have E∗ = Rn. We write
sTx or s · x for the standard inner product between s, x ∈ Rn. For the standard
Euclidean norm, ‖x‖ = ‖x‖2 =

√
〈x, x〉 and ‖s‖∗ = ‖s‖2. We also use ‖x‖1 =∑n

i=1 |x(i)| and ‖x‖∞ = max i|x(i)| to denote `1-norm and `∞-norm respectively,
where x(i) is the i-th element of x.

2 Algorithm

2.1 Closed-form Solution

We will derive the closed-form solution of Eq. (6) with specific At and Algorithm 1
with slight modification in this section. We have the following theorem.

Theorem 1. Given At = (
∑t
s=1

Qgs
2αs

+λ2I) of Eq. (5), zt = zt−1 +mt− Qt
αt
xt at

each iteration t = 1, . . . , T and z0 = 0, the optimal solution of Eq. (6) is updated
accordingly as follows:

xt+1 = (

t∑
s=1

Qs
αs

+ 2λ2I)−1 max(1−
√
dxgt λ21

‖s̃t‖2
, 0)st (8)

where the i-th element of st is defined as

st,i =

{
0 if |zt,i| ≤ λ1,
sign(zt,i)λ1 − zt,i otherwise,

(9)
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s̃t is defined as

s̃t = (

t∑
s=1

Qs
2αs

+ λ2I)−1st (10)

and
∑t
s=1

Qs
αs

is the diagonal and positive definite matrix.

The proof of Theorem 1 is given in Appendix A. Here s̃t can be considered as
the weighted average of st. We slightly modify (8) where we replace s̃t with st in
practical algorithms. Our purpose is that the `21-regularization does not depend
on the second moment terms and other hyperparameters such as αs and λ2. The
empirical experiment will also show that the algorithm using st can improve
accuracy over using s̃t in the same level of sparsity in Section 4.4. Therefore, we
get Algorithm 1. Furthermore, we have the following theorem which shows the
relationship between Algorithm 1 and adaptive optimization methods. The proof
is given in Appendix B.

Algorithm 1 Generic framework of adaptive optimization methods with sparse
group lasso

1: Input: parameters λ1, λ21, λ2

x1 ∈ Rn, step size {αt > 0}Tt=0, sequence of functions {φt, ψt}Tt=1, initialize z0 =
0, V0 = 0

2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = φt(g1, . . . , gt) and Vt = ψt(g1, . . . , gt)

5: Qt
αt

=
√
Vt
αt
−
√
Vt−1

αt−1

6: zt ← zt−1 +mt − Qt
αt
xt

7: for i ∈ {1, . . . , n} do

8: st,i =

{
0 if |zt,i| ≤ λ1

sign(zt,i)λ1 − zt,i otherwise.
9: end for

10: xt+1 = (
√
Vt
αt

+ 2λ2I)−1 max(1−
√
d
x
g
t
λ21

‖st‖2
, 0)st

11: end for

Theorem 2. If regularization terms of Algorithm 1 vanish, Algorithm 1 is equiv-
alent to Eq. (1).

2.2 Concrete Examples

Using Algorithm 1, we can easily derive the new optimizers based on Adam [8],
Adagrad [4] which we call Group Adam, Group Adagrad respectively.

Group Adam The detail of the algorithm is given in Algorithm 2. From
Theorem 2, we know that when λ1, λ2, λ21 are all zeros, Algorithm 2 is equivalent
to Adam [8].
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Algorithm 2 Group Adam

1: Input: parameters λ1, λ21, λ2, β1, β2,
ε
x1 ∈ Rn, step size α, initialize z0 =
0, m̂0 = 0, V̂0 = 0, V0 = 0

2: for t = 1 to T do
3: gt = ∇ft(xt)
4: m̂t ← β1m̂t−1 + (1− β1)gt
5: mt = m̂t/(1− βt1)
6: V̂t ← β2V̂t−1 + (1− β2)diag(g2t )
7: Vt = V̂t/(1− βt2)

8: Qt =

{√
Vt −

√
Vt−1 + εI t = 1√

Vt −
√
Vt−1 t > 1

9: zt ← zt−1 +mt − 1
α
Qtxt

10: for i ∈ {1, . . . , n} do
11: st,i = − sign(zt,i) max(|zt,i| −

λ1, 0)
12: end for
13: xt+1 = (

√
Vt+εI
α

+ 2λ2I)−1 max(1 −√
d
x
g
t
λ21

‖st‖2
, 0)st

14: end for

Algorithm 3 Group Adagrad

1: Input: parameters λ1, λ21, λ2, ε
x1 ∈ Rn, step size α, initialize z0 =
0, V0 = 0

2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = gt

5: Vt =

{
Vt−1 + diag(g2t ) + εI t = 1
Vt−1 + diag(g2t ) t > 1

6: Qt =
√
Vt −

√
Vt−1

7: zt ← zt−1 +mt − 1
α
Qtxt

8: for i ∈ {1, . . . , n} do
9: st,i = − sign(zt,i) max(|zt,i| −

λ1, 0)
10: end for
11: xt+1 = (

√
Vt
α

+ 2λ2I)−1 max(1 −√
d
x
g
t
λ21

‖st‖2
, 0)st

12: end for

Group Adagrad The detail of the algorithm is given in Algorithm 3. Similarly,
from Theorem 2, when λ1, λ2, λ21 are all zeros, Algorithm 3 is equivalent
to Adagrad [4]. Furthermore, we can find that when λ21 = 0, Algorithm 3 is
equivalent to FTRL [11]. Therefore, Group Adagrad can also be called Group
FTRL from the research of [16].

Similarly, Group Momentum, Group AMSGrad, Group AdaHessian,
etc., can be derived from Momentum [17], AMSGrad [19], AdaHessian [26],
etc., with the same framework and we will not list the details.

3 Convergence and Regret Analysis

Using the framework developed in [15,24,4], we have the following theorem
providing the bound of the regret.

Theorem 3. Let the sequence {xt} be defined by the update (6) and

x1 = arg min
x∈Q

1

2
‖x− c‖22, (11)

where c is an arbitrary constant vector. Suppose ft(x) is convex for any t ≥ 1 and

there exists an optimal solution x∗ of
∑T
t=1 ft(x), i.e., x∗ = arg minx∈Q

∑T
t=1 ft(x),
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which satisfies the condition

〈mt−1, xt − x∗〉 ≥ 0, t ∈ [T ], (12)

where mt is the weighted average of the gradient ft(xt) and [T ] = {1, . . . , T} for
simplicity. Without loss of generality, we assume

mt = γmt−1 + gt, (13)

where γ < 1 and m0 = 0. Then

RT ≤ ΨT (x∗) +

T∑
t=1

1

2αt
‖Q

1
2
t (x∗ − xt)‖22 +

1

2

T∑
t=1

‖mt‖2h∗
t−1
, (14)

where ‖ · ‖h∗
t

is the dual norm of ‖ · ‖ht . ht is 1-strongly convex with respect to
‖ · ‖√Vt/αt for t ∈ [T ] and h0 is 1-strongly convex with respect to ‖ · ‖2.

The proof of Theorem 3 is given in Appendix C. Since in most of adaptive
optimizers, Vt is the weighted average of diag(g2t ), without loss of generality, we
assume αt = α and

Vt = ηVt−1 + diag(g2t ), t ≥ 1, (15)

where V0 = 0 and η ≤ 1. Hence, we have the following lemma whose proof is
given in Appendix D.1.

Lemma 1. Suppose Vt is the weighted average of the square of the gradient
which is defined by (15), αt = α, mt is defined by (13) and one of the following
conditions:

1. η = 1,
2. η < 1, η ≥ γ and κVt � Vt−1 for all t ≥ 1 where κ < 1.

is satisfied. Then we have

T∑
t=1

‖mt‖2
(

√
Vt
αt

)−1
<

2α

1− ν

d∑
i=1

‖MT,i‖2, (16)

where ν = max(γ, κ) and d is the dimension of xt.

We can always add δ2I to Vt at each step to ensure Vt � 0. Therefore, ht(x)
is 1-strongly convex with respect to ‖ · ‖√δ2I+Vt/αt . Let δ ≥ maxt∈[T ] ‖gt‖∞, for
t > 1, we have

‖mt‖2h∗
t−1

=
〈
mt, αt(δ

2I + Vt−1)−
1
2mt

〉
≤
〈
mt, αt

(
diag(g2t ) + ηVt−1

)− 1
2 mt

〉
=
〈
mt, αtV

− 1
2

t mt

〉
= ‖mt‖2

(

√
Vt
αt

)−1
.

(17)
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For t = 1, we have

‖m1‖2h∗
0

=
〈
m1, α1(δ2I + I)−

1
2m1

〉
≤
〈
m1, α1

(
diag−

1
2 (g21)

)
m1

〉
=
〈
m1, α1V

− 1
2

1 m1

〉
= ‖m1‖2

(

√
V1
α1

)−1
.

(18)

From (17), (18) and Lemma 1, we have

Lemma 2. Suppose Vt, mt, αt, ν, d are defined the same as Lemma 1, maxt∈[T ] ‖gt‖∞ ≤
δ, ‖ · ‖2h∗

t
=
〈
·, αt(δ2I + Vt)

− 1
2 ·
〉

for t ≥ 1 and ‖ · ‖2h∗
0

=
〈
·, α1

(
(δ2 + 1)I

)− 1
2 ·
〉

.

Then
T∑
t=1

‖mt‖2h∗
t−1

<
2α

1− ν

d∑
i=1

‖MT,i‖2. (19)

Therefore, from Theorem 3 and Lemma 2, we have

Corollary 1. Suppose Vt, mt, αt, h
∗
t , ν, d are defined the same as Lemma 2,

there exist constants G, D1, D2 such that maxt∈[T ] ‖gt‖∞ ≤ G ≤ δ, ‖x∗‖∞ ≤ D1

and maxt∈[T ] ‖xt − x∗‖∞ ≤ D2. Then

RT < dD1

(
λ1 + λ21(

√
TG

2α
+ λ2)

1
2 + λ2D1

)
+ dG

(
D2

2

2α
+

α

(1− ν)2

)√
T .

(20)

The proof of Corollary 1 is given in D.2. Furthermore, from Corollary 1, we
have

Corollary 2. Suppose mt is defined as (13), αt = α and satisfies the condition
(19). There exist constants G, D1, D2 such that tG2I � Vt, maxt∈[T ] ‖gt‖∞ ≤ G,
‖x∗‖∞ ≤ D1 and maxt∈[T ] ‖xt − x∗‖∞ ≤ D2. Then

RT < dD1

(
λ1 + λ21(

√
TG

2α
+ λ2)

1
2 + λ2D1

)
+ dG

(
D2

2

2α
+

α

(1− ν)2

)√
T .

(21)

Therefore, we know that the regret of the update (6) is O(
√
T ) and can achieve

the optimal convergence rate O(1/
√
T ) under the conditions of Corollary 1 or

Corollary 2.
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4 Experiments

4.1 Experiment Setup

We test the algorithms on three different large-scale real-world datasets with
different neural network structures. These datasets are various display ads logs
for the purpose of predicting ads CTR. The details are as follows.

a) The Avazu CTR dataset [2] contains approximately 40M samples and 22
categorical features over 10 days. In order to handle categorical data, we
use the one-hot-encoding based embedding technique (see, e.g., [23], Section
2.1 or [13], Section 2.1.1) and get 9.4M features in total. For this dataset,
the samples from the first 9 days (containing 8.7M one-hot features) are
used for training, while the rest is for testing. Our DNN model follows the
basic structure of most deep CTR models. Specifically, the model comprises
one embedding layer, which maps each one-hot feature into 16-dimensional
embeddings, and four fully connected layers (with output dimension of 64, 32,
16 and 1, respectively) in sequence.

b) The iPinYou dataset2 [7] is another real-world dataset for ad click logs over 21
days. The dataset contains 16 categorical features3. After one-hot encoding, we
get a dataset containing 19.5M instances with 1033.1K input dimensions. We
keep the original train/test splitting scheme, where the training set contains
15.4M samples with 937.7K one-hot features. We use Outer Product-based
Neural Network (OPNN) [18], and follow the standard settings of [18], i.e.,
one embedding layer with the embedding dimension of 10, one product layer
and three hidden layers of size 512, 256, 128 respectively where we set dropout
rate at 0.5.

c) The third dataset is the Criteo Display Ads dataset [3] which contains ap-
proximately 46M samples over 7 days. There are 13 integer features and 26
categorical features. After one-hot encoding of categorical features, we have a
total of 33.8M features. We split the dataset into 7 partitions in chronological
order and select the earliest 6 parts for training which contains 29.6M features
and the rest for testing though the dataset has no timestamp. We use Deep &
Cross Network (DCN) [23] and choose the following settings4: one embedding
layer with embedding dimension 8, two deep layers of size 64 each, and two
cross layers.

For the convenience of discussion, we use MLP, OPNN and DCN to represent
the aforementioned three datasets coupled with their corresponding models.
It is obvious that the embedding layer has most of parameters of the neural
networks when the features have very high dimension, therefore we just add
the regularization terms to the embedding layer. Furthermore, each embedding

2 We only use the data from season 2 and 3 because of the same data schema.
3 See https://github.com/Atomu2014/Ads-RecSys-Datasets/ for details.
4 Limited by training resources available, we don’t use the optimal hyperparameter

settings of [23].

https://github.com/Atomu2014/Ads-RecSys-Datasets/
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vector is considered as a group, and a visual comparison between `1, `21 and
mixed regularization effect is given in Fig. 2 of [22].

We treat the training set as the streaming data, hence we train 1 epoch with
a batch size of 512 and do the validation. The experiments are conducted with
4-9 workers and 2-3 parameter servers in the TensorFlow framework [1], which
depends on the different sizes of the datasets. According to [5], area under the
receiver-operator curve (AUC) is a good measurement in CTR estimation and
AUC is widely adopted as the evaluation criterion in classification problems. Thus
we choose AUC as our evaluation criterion. We explore 5 learning rates from
1e-5 to 1e-1 with increments of 10× and choose the one with the best AUC for
each new optimizer in the case of no regularization terms (It is equivalent to the
original optimizer according to Theorem 2). The details are listed in Table 5 of
Appendix E. All the experiments are run 5 times repeatedly and tested statistical
significance using t-test. Without loss of generality, we choose two new optimizers
to validate the performance, which are Group Adam and Group AdaGrad.

4.2 Adam vs. Group Adam

First, we compare the performance of the two optimizers on the same sparsity
level. We set λ1 = λ2 = 0 and choose different values of λ21 of Algorithm 2,
i.e., Group Adam, and achieve the same sparsity with Adam that uses the
magnitude pruning method. Since we should delete the entire embedding vector
which the feature corresponds to, not a single weight, and the amount of the
features will dynamically increase as the training goes on, our method is different
from the commonly used method [28]. Concretely, our method works in three
steps. The first step sorts the norm of embedding vector from largest to smallest,
and keeps top N embedding vectors which depend on the sparsity when finishing
the first phase of training. In the second step we fine-tune the model. Since some
new or deleted features will appear in the model after training with new data,
in the last step we need to prune the model again to ensure that the desired
sparsity is reached. We use the schedule of keeping 0%, 10%, 20%, 30% training
samples to fine tune, and choose the best one. The details are listed in Table 8 of
Appendix E.

Table 2 reports the average results of the two optimizers in the three datasets.
Note that Group Adam significantly outperforms Adam on the AUC metric in
the same sparsity level for most experiments especially under extreme sparsity.
(60% experiments show statistically significant with 90% confidence level, and
87.5% experiments show statistically significant with 90% confidence level when
sparsity level is less than 5%). Furthermore, as shown in Figure 1, the same
`21-regularization strength λ21 has different effects of sparsity and accuracy on
different datasets. The best choice of λ21 depends on the dataset as well as the
application (For example, if the memory of serving resource is limited, sparsity
might be relatively more important). One can trade off accuracy to get more
sparsity by increasing the value of λ21.

Next, we compare the performance of Adam without post-processing pro-
cedure, i.e., no magnitude pruning, and Group Adam under extremely high
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Table 2. AUC for the two optimizers and sparsity (feature rate) in parentheses. The
best AUC for each dataset on each sparsity level is bolded. The p-value of the t-test of
AUC is also listed.

λ21 MLP OPNN DCN
Group Adam Adam Group Adam P-Value Adam Group Adam P-Value Adam Group Adam P-Value

1e-4
0.7457
(0.974)

0.7461
(0.974)

0.470
0.7551
(0.078)

0.7595
(0.078)

0.086
0.8018
(0.518)

0.8022
(0.518)

0.105

5e-4
0.7464
(0.864)

0.7468
(0.864)

0.466
0.7491
(0.039)

0.7573
(0.039)

0.091
0.8017
(0.062)

0.8019
(0.062)

0.487

1e-3
0.7452
(0.701)

0.7468
(0.701)

0.058
0.7465
(0.032)

0.7595
(0.032)

0.014
0.8017
(0.018)

0.8017
(0.018)

0.943

5e-3
0.7457
(0.132)

0.7464
(0.132)

0.335
0.7509
(0.018)

0.7561
(0.018)

0.041
0.7995

(4.2e-3)
0.8007
(4.2e-3)

9.11e-3

1e-2
0.7444
(0.038)

0.7466
(0.038)

0.014
0.7396

(9.2e-3)
0.7493
(9.2e-3)

0.031
0.7972

(2.5e-3)
0.7999
(2.5e-3)

5.97e-7

100 10−1

0.743

0.744

0.745
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0.748
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Group Adam

1

10−1 10−2
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U
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100 10−1 10−2 10−3
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U
C
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1

Fig. 1. AUC across different sparsity on two optimizers for the three datasets. MLP,
OPNN and DCN are in left, middle, right column respectively. The x-axis is sparsity
(number of non-zero features whose embedding vectors are not equal to 0 divided by
the total number of features present in the training data). The y-axis is AUC. Error
bars represent one standard deviation.

sparsity. We search regularization terms according to AUC and the values are
listed in Table 6 of Appendix E. In general, good default settings of λ2 is 1e-5.
The results are shown in Table 3. Note that compared with Adam, Group Adam
with appropriate regularization terms can achieve significantly better or highly
competitive performance with producing extremely high sparsity.

4.3 Adagrad vs. Group Adagrad

We compare the performance of Adagrad without magnitude pruning and
Group Adagrad under extremely high sparsity. The regularization terms we
choose are listed in Table 7 of Appendix E. The results are also shown in Table 3.
Again note that in comparison to Adagrad, Group Adagrad can not only
achieve significantly better or highly competitive performance of AUC, but also
effectively and efficiently reduce the dimensions of the features.
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Table 3. AUC for three datasets and sparsity (feature rate) in parentheses. The best
value for each dataset is bolded. The p-value of t-test is also listed.

Dataset Adam Group Adam P-Value Adagrad Group Adagrad P-Value

MLP
0.7458
(1.000)

0.7486
(0.018)

1.10e-3
(2.69e-11)

0.7453
(1.000)

0.7469
(0.063)

0.106
(1.51e-9)

OPNN
0.7588
(0.827)

0.7617
(0.130)

0.289
(6.20e-11)

0.7556
(0.827)

0.7595
(0.016)

0.026
(< 2.2e-16)

DCN
0.8021
(1.000)

0.8019
(0.030)

0.422
(1.44e-11)

0.7975
(1.000)

0.7978
(0.040)

0.198
(3.94e-11)

4.4 Discussion

In this section we will compare the performance of st with s̃t discussed in
Section 2.1, i.e., using s̃t means that replacing ‖s̃t‖ with ‖st‖ in line 10 of Algo-
rithm 1. Furthermore, we will discuss the hyperparameters of `1-regularization,
`21-regularization and emdedding dimension to show how these hyperparameters
affect the effects of regularization. Without loss of generality, all experiments are
conducted on DCN using Group Adam. The default settings of regularization
terms are all zeros, unless otherwise specified.

st vs. s̃t We choose `21-regularization of st and s̃t from 10 points in different
sparsity levels. The details are listed in Table 9 of Appendix E. As shown in
Figure 2, the algorithm using st outperforms the one using s̃t in the same level
of sparsity.

`1 vs. `21 From lines 8 and 10 of Algorithm 1, we know that if zt has the same
elements, the values of `1 and `21, i.e., λ1 and λ21, have the same regularization
effects. However, this situation almost cannot happen in reality. We compare the
regularization performance with the same values of λ1 and λ21. The results are
shown in Figure 3. It is obvious that `21-regularization is much more effective
than `1-regularization in producing sparsity. Therefore, if we just need to produce
a sparse model, tuning λ21 while keeping λ1 = 0 is usually a simple but effective
choice.

Embedding Dimension Table 4 reports the average results of different embedding
dimensions, whose regularization terms are same to DCN of Table 6 of Appendix E.
Note that the sparsity increases with the growth of the embedding dimension.
The reason is that the square root of the embedding dimension is the multiplier
of `21-regularization.

5 Conclusion

In this paper, we propose a novel framework that adds the regularization terms
to a family of adaptive optimizers for producing sparsity of DNN models. We
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100 10−1 10−2 10−3
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Fig. 2. AUC across different sparsity (fea-
ture rate) on two methods. The legend is
the algorithms using st and s̃t. The x-axis
is sparsity. The y-axis is AUC.
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Fig. 3. The sparsity (feature rate) across
different values of regularized terms. The
legend is the regularized terms. The x-axis
is the values of regularized terms. The y-
axis is sparsity.

Table 4. The sparsity (feature rate) for different embedding dimensions and AUC in
parentheses. The best results are bolded.

Embedding Dimension Group Adam

4 0.074 (0.8008)
8 0.030 (0.8019)
16 0.012 (0.8020)
32 0.008 (0.8011)

apply this framework to create a new class of optimizers. We provide closed-form
solutions and algorithms with slight modification. We built the relation between
new and original optimizers, i.e., our new optimizers become equivalent with the
corresponding original ones, once the regularization terms vanish. We theoretically
prove the convergence rate of the regret and also conduct empirical evaluation
on the proposed optimizers in comparison to the original optimizers with and
without magnitude pruning. The results clearly demonstrate the advantages of
our proposed optimizers in both getting significantly better performance and
producing sparsity. Finally, it would be interesting in the future to investigate
the convergence in non-convex settings and evaluate our optimizers on more
applications from fields such as compute vision, natural language processing and
etc.
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