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Abstract. From the ad network standpoint, a user’s activity is a multi-
type sequence of temporal events consisting of event types and time
intervals. Understanding user patterns in ad networks has received in-
creasing attention from the machine learning community. Particularly,
the problems of fraud detection, Conversion Rate (CVR), and Click-
Through Rate (CTR) prediction are of interest. However, the class im-
balance between major and minor classes in these tasks can bias a ma-
chine learning model leading to poor performance. This study proposes
using two multi-type (continuous and discrete) training approaches for
GANs to deal with the limitations of traditional GANs in passing the
gradient updates for discrete tokens. First, we used the Reinforcement
Learning (RL)-based training approach and then, an approximation of
the multinomial distribution parameterized in terms of the softmax func-
tion (Gumble-Softmax). Our extensive experiments based on synthetic
data have shown the trained generator can generate sequences with de-
sired properties measured by multiple criteria.

Keywords: Multi-type sequences · Temporal events · Generative adver-
sarial network · Reinforcement learning

1 Introduction

Game developers can monetize their games by selling in-game ad placements
to advertisers. Ads can be integrated in multiple ways such as a banner in the
background or commercials during breaks (when a specific part of the game is
completed). There are four main elements in the game advertising ecosystem:
publishers or developers, advertisers, advertising networks, and users [21]. Game
advertising networks connect advertisers with game developers and serve billions
of ads to user devices, triggering enormous ad events. For example, Unity Ads
reports 22.9B+ monthly global ad impressions, reaching 2B+ monthly active
end-users worldwide 1.

An ad event is a user interaction e.g. request, start, view, click, and install.
Each type stands for one specific kind of ad-related user action happening at
a specific time. A complete ad life cycle consists of a temporal sequence of ad

? Authors contributed equally.
1 https://www.businesswire.com/news/home/20201013005191/en/
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events, each of which is a tuple of event types with corresponding time intervals.
Click and install are two kinds of ad events commonly associated with ad revenue.
Pay-Per-Click [17] and Pay-Per-Install [27] are the most widely used advertising
models for pricing.

Unlike traditional advertising, online advertising offers services that link user
interactions to conversions or clicks. Due to this, predicting a user’s probability
of clicking or conversion rate has become one of the most important problems
in online advertising [4]. Predicting Conversion Rate (CVR) and Click-Through
Rate (CTR) are usually treated as supervised learning problems [7]. For exam-
ple, in CTR prediction, the labels are click/not-click an ad for every user. The
sequence of events before a click/not-click response are used as features of the
supervised learning model.

Unfortunately, as advertisers allocate more of their budget into this ecosys-
tem, there is more incentive to abuse the advertising networks and defraud adver-
tisers of their money [22]. Fraudulent ad activity aimed at generating illegitimate
ad revenue or unearned benefits are one of the major threats to online advertis-
ing models. Common types of fraudulent activities include fake impressions [14],
click bots [13, 19], or click farms [24].

Given the massive ad activity data in-game advertising networks, machine
learning-based approaches have become popular in the industry. However, it
is not a straightforward task to train machine learning models directly on the
sequences collected from ad activities [5].

The primary issue in these problems is class imbalance. By definition, the
ratio of typical user behavior to anomalous will heavily favor typical. For exam-
ple, the CVR can be as low as 0.01% for game ads. Similarly, most ad traffic
is non-fraudulent, and data labeling by human experts is time-consuming. In
these scenarios, label sparsity leads to low availability of labeled sequences for
the minor class. Simply oversampling the minority class can cause significant
overfitting, while undersampling the majority may lead to information loss and
yield a tiny training dataset [1]. In this study, we present a novel method to
generate synthetic data to mitigate class imbalance.

The main contributions of our work can be summarized as follows:

1. A novel reinforcement learning formulation that trains a generator to gen-
erate multi-type temporal sequences with non-uniform time intervals.

2. A novel training method for sequence GAN that uses a critic network.
3. A new application for event-based sequence GAN in game advertising.

2 Related Work

Generative Adversarial Networks (GANs) [11] have drawn significant attention
as a framework for training generative models capable of producing synthetic
data with desired structures and properties [18]. It was proposed to use GANs to
generate data that mimics training data as an augmented oversampling method
with an application in credit card fraud. The generated data is used to assist
the classification of credit card fraud [1].
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2.1 GAN for Sequence Data

Despite the remarkable success of GANs in generating synthetic data, very few
studies focus on generating sequential data. This is due to additional challenges
in generating temporally dependent samples. Recurrent Neural Network (RNN)
solutions are state-of-the-art in modeling sequential data. Recurrent Conditional
GAN (RCGAN) generates real-valued multi-dimensional time series and then
uses the generated series for supervised training [10]. The time series data in their
study were physiological signals sampled at specific fixed frequencies. However,
ad event data has higher complexity due to non-uniform time intervals and
discrete event types and thus can not be modeled as wave signals. In ad event
sequences, two events with a short time interval tend to be more correlated than
events with larger time intervals.

A GAN-based generative model for DNA along with an activation maximiza-
tion technique for DNA sequence data is proposed by [18]. Their experiments
have shown that these generative techniques can learn the important structure
from DNA sequences and can be used to design new DNA sequences with de-
sired properties. Similarly to the previous study, their focus is on fixed interval
sequences.

The Long Short-Term Memory (LSTM)-Autoencoder is used to encode the
benign users into a latent space [30]. They proposed using One-Class Adversarial
Network (OCAN) for the training process of the GAN model. In their training
framework, the discriminator is trained to be a classifier for distinguishing be-
nign users, and the generator produces samples that are complementary to the
representations of benign users.

2.2 RL for GANs with Sequences of Discrete Tokens

When generating continuous outputs, gradient updates can be passed from the
discriminator to the generator. However, for discrete outputs, this is not straight-
forward due to a lack of differentiability. The issue of training GAN models to
generate sequences of discrete tokens is addressed in [28]. They proposed a se-
quence generation framework called SeqGAN that models the data generator as
a stochastic policy learned via Reinforcement Learning (RL) [26]. SeqGAN learns
a policy using the vanilla policy gradient and Monte Carlo (MC) rollouts to ap-
proximate the advantage. MC rollouts are a computationally expensive process
in the training loop. Moreover, SeqGAN is limited to discrete token generation.
In our work, we propose a modified version of SeqGAN that can generate both
discrete tokens and continuous time-intervals. Additionally, to efficiently train
the policy network, we employ a Critic network to approximate the return given
a partially generated sequence to speed up the training process. This approach
also brings the potential to use a trained Critic network for early fraud detection
from partial sequences.

An application of SeqGAN in recommendation systems is presented in [29].
The paper solves the slow convergence and unstable RL training by using the
Actor-Critic algorithm instead of MC roll-outs. Their generator model produces
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the entire recommended sequences given the interaction history while the dis-
criminator learns to maximize the score of ground-truth and minimize the score
of generated sequences. In each step, the generator G generates a token by top-k
beam search based on the model distribution. In our work, we directly sample
from the distribution of the output probabilities of the tokens. While our method-
ologies are close, we are aiming for different goals. We optimize the generated
data to solve the sample imbalance problem while they optimize for better rec-
ommendations. Therefore, different evaluation metrics are needed. Our method-
ologies also differ in the training strategy. For example, we used a Critic network
as the baseline, whereas they used Temporal-Difference bootstrap targets. They
pre-trained the discriminator on the generated data to reduce the exposure bias,
while we pre-trained the discriminator on the actual training data for improving
the metrics we use in our experiments. More importantly, they do not include
time intervals as an attribute in their model while we have time intervals in our
models.

The idea of using SeqGan to adversarially learn the output sequences while
optimizing towards chemical metrics with the algorithm REINFORCE [26] is
proposed in [12]. They have shown that it is often advantageous to guide the
generative model towards some desirable characteristics, while ensuring that the
samples resemble the initial distribution.

2.3 Gumbel-Softmax Distribution for GANs with Sequences of
Discrete Tokens

The Gumbel-Softmax distribution is proposed in [20] to address the limitation
of GANs for generating sequences of discrete tokens. The Gumbel-Softmax is
a continuous approximation to a multinomial distribution parameterized over a
softmax function. This approximation is differentiable thus enabling backpropa-
gation through an approximation of a discrete sampling procedure. A tempera-
ture parameter can be used to controll the degree of approximation [16]. When
the temperature is lower, the approximation is closer to the one hot distribution;
when it is higher, the approximation is closer to a uniform distribution.

Another application of Gumbel-Softmax distributions is proposed in [6] for
generating small molecular graphs.

3 Methodology

In this section, we introduce a new methodology to generate multi-type se-
quences using GAN, which can be trained by using RL and Gumbel-Softmax
reparametrization.

3.1 Definitions

The sequence of an ad event with length L is composed of two sub-sequences, the
sub-sequence of event types x and the sub-sequence of time stamps. First, we
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Fig. 1. Architecture of the Generator and the Discriminator.

transform the time stamps t into time intervals ∆t and ∆tm = tm− tm−1,∀m ∈
[1, L], and ∆t1 = t1 − 0. Then, we combine the event types and time intervals
into a joint multi-type sequence A:

A = A1:L = {(x1, ∆t1), (x2, ∆t2), . . . ,∆(xm, ∆tm), . . . , (xL, ∆tL)}

where a bold A1:m denotes a partial sequence from step 1 to step m, and a
non-bold Am = (xm, ∆tm) denotes a single pair in the sequence.

3.2 RL and Policy improvement to train GAN

We implemented a modified version of SeqGAN model to generate multi-type
temporal sequences. The architecture is shown in Fig. 1.

The sequence generation process of our generator G can be modeled as a
sequential decision process in RL. hm and Tm are the hidden states of LSTM
cells, and Z ∼ N (0, 1) is the normal noise used to initialize hm and Tm at the
beginning of each generation process.

From the perspective of RL, at each step m, we define the state Sm as the
partial sequence A1:m, a.k.a,

Sm = A1:m (1)

During the generation process, at each step m, a new pair

Am+1 = (xm+1, ∆tm+1) (2)

is appended to the current partial sequence A1:m to formulate a new partial
sequence A1:m+1, and thus transit to a new state Sm+1, based on the definition
of state in (1). This process repeats step by step, until a complete sequence A
of length L described in (3.1) is fully constructed.
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To make decisions in this sequence generation process, we employ a hybrid
policy to represent action spaces with both continuous and discrete dimensions
(similar to the idea in [23]). This policy is designed to choose discrete event types
and continuous time intervals, assuming their action spaces are independent.
Then we use a categorical distribution and a Gaussian distribution to model the
policy distributions for the event types and the time intervals respectively. So
the hybrid generator policy can be defined as:

Gθ(am|Sm) =πxθ (axm|Sm) · π∆tθ (a∆tm |Sm)

=Cat(x|αθ(Sm)) · N (∆t|µθ(Sm), σ2
θ(Sm)) (3)

where x ∈ K, ∆t ∈ R≥0. K is the set of all event types. Then an action am is
taken at step m to sample the next event type xm+1 and the next time interval
∆tm+1 given the hybrid policy (3). So the action has discrete part and the
continuous part sampled independently:

am = {axm, a∆tm } (4)

axm = xm+1 ∼ Cat(x|αθ(Sm)) (5)

a∆tm = ∆tm+1 ∼ N (∆t|µθ(Sm), σ2
θ(Sm)) (6)

where axm is the action to find the next event type xm+1 and a∆tm is the action
to find the next time interval ∆tm+1.

When generating a new event type and time interval at each step, we follow
the generator policy and sample from categorical and Gaussian distributions
independently and concatenate them to obtain the action vector am, then append
them to the current partial sequence A1:m to obtain a new partial sequence
A1:m+1. Once a complete sequence of length L has been generated, we pass
the sequence A to the Discriminator D which predicts the probability of the
sequence to be real against fake:

Dφ(A) = Pr(Y = 1|A;φ) (7)

The feedback from D can be used to train G to generate sequences similar to
real training data to deceive D. Because the discrete data is not differentiable,
gradients can not passed back to generator like in image-base GANs.

The original SeqGAN training uses Policy Gradient method with MC roll-
out to optimize the policy.[28] In order to reduce variance in the optimization
process, SeqGAN runs the roll-out policy starting from current state till the
end of the sequence for multiple times to get the mean return. Here we use an
Actor-Critic method with a Critic network instead of MC roll-out to estimate
the value of any state, which is computationally more efficient.[2]

The critic network models a state-dependent value V̂ Gθψ (Sm) for a partially
generated sequence A1:m under policy Gθ. The output of the critic is defined as
the expected future return for the current state Sm = A1:m, which will be given
by the discriminator D when a complete sequence A is generated.

V̂ Gθψ (Sm) = EAm+1:L∼Gθ(Sm)[Dφ(A)] (8)
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The parameters in the critic value function V̂ Gθψ (Sm) are updated during training
by minimizing the mean squared error between the true return Dφ(A) and the
critic value:

J(ψ) = E[(Dφ(A)− V̂ Gθψ (Sm))2] (9)

The difference between them, Dφ(A)− V̂ Gθψ (Sm), is named the advantage func-
tion, which can be used in G training and helps to reduce variance.

The goal of G training is to choose actions based on a policy that maximizes
expected return. The object function of G follows Policy Gradient method [26]
which can be derived as:

∇θJ(θ) =

L−1∑
m=0

Eam∼Gθ(am|Sm)[∇θ logGθ(am|Sm) · (Dφ(A)− V̂ Gθψ (Sm))] (10)

Because of the independence assumption we made, the policy gradient term can
be broken down and written into a categorical cross-entropy and a Gaussian
log-likelihood as follows:

∇θ logGθ(am|Sm)

=∇θ[logCat(x = xm+1|αθ(Sm)) + logN (∆t = ∆tm+1|µθ(Sm), σ2
θ(Sm))]

=∇θ[Ex∈K1x(xm+1) Pr(x = xm+1)− (∆tm+1 − µθ(Sm))2

2σ2
θ(Sm)

− 1

2
log(2πσ2

θ(Sm))]

(11)

The goal of D training to use distinguish generated sequences with true
sequences from training data. Dφ is updated through minimizing binary cross-
entropy loss. G and D alternatively in GAN training.

The training data are taken from the positive class Ω+ of our synthetic Ad
event dataset Ω, which are shown in the section 4.1.

Before GAN training, We pre-train G with Maximum Likelihood Estimation
(MLE) self-regression on the sequences and pre-train D with binary classification
for better convergence. Details about pre-training and GAN training The Pseudo
code of the entire process is shown in Algorithm 1.

3.3 An Approximation with Gumbel-Softmax Distribution

Beside RL, we also tried to overcome the gradient updates problem for discrete
token in GAN using Gumbel-Softmax reparametrization. We use the same gen-
erator G and discriminator D setups as described in section 3.2, except that the
generator policy Gθ(am|Sm) is different from that in (3). For the continuous part,
we no longer sample time intervals from a parametrized Normal distribution, but
directly take G outputs as the next time interval.

a∆tm = ∆tm+1 = ∆tθ(Sm) (12)
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Algorithm 1 Sequence Generative Adversarial Nets Training with RL

Require: training dataset Ω+, generator Gθ, discriminator Dφ, critic V̂
Gθ
ψ .

1: Initialize Gθ, Dφ, V̂
Gθ
ψ with random weights θ, φ, ψ

2: Pre-train Gθ with MLE self-regression on Ω+.
3: Generate fake dataset Ω+fake using pre-trained Gθ.
4: Pre-train Dφ via minimizing binary cross-entropy on Ω+ ∪Ω+fake

5: repeat
6: for G-steps do
7: Generate a batch of fake sequences Afake ∼ Gθ
8: Get true rewards Dφ(A) from discriminator
9: for m in 1 : L do

10: Sm ← Afake
1:m

11: am ← (xm+1,∆tm+1) ∈ Afake

12: αθ(Sm), µθ(Sm), σθ(Sm)← Gθ(Sm)
13: Compute policy gradient as shown in Eq. (11)
14: Compute value estimate V̂

Gθ
ψ (Sm)) by Eq. (8)

15: Compute the advantage (Dφ(A)− V̂ Gθψ (Sm))

16: Update critic param. ψ by minimizing Eq. (9)
17: Update generator param. θ via Eq. (10)

18: for D-steps do
19: Generate a batch of sequences Afake ∼ Gθ
20: Sample a batch of sequences Atrue from Ω+

21: Train discriminator Dφ on Afake ∪ Atrue and update param. φ via mini-
mizing binary cross-entropy

22: until terminate condition satisfied
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For the discrete part, in the forward pass of training the generator G, we add a
Gumbel noise to the probability distribution of event types at each step m, and
use argmax operator to sample the next event type xm+1:

axm = xm+1 = arg max
i

(log(αθ(Sm)i) + gi) for i = 1, . . . , |K| (13)

where τ is the temperature and g is a random variable with a standard Gumbel
distribution:

g = − log(− log(U)), where U ∼ Uniform([0, 1]) (14)

In the backward pass of G training, we reparametrize the categorical distribution
using a Gumbel random variable g to create a differentiable approximation of
the discrete representation of axm to calculate gradients:

Pr(axm = xi, xi ∈K|Sm) =
exp ((log(αθ(Sm)i) + gi)/τ)∑k
j=1 exp ((log(αθ(Sm)j) + gj)/τ)

(15)

for i = 1, . . . , |K|

After the Gumbel-Softmax reparametrization, we can train the multi-type
GAN with discrete event types using a similar approach in [20].

4 Data Experiments

Due to data privacy laws (e.g. GDPR 2, CCPA 3), and to protect confidential
details of the Unity Ads Exchange and Fraud Detection service, we opt not
to use real-world ad events data in this study to avoid releasing user behav-
ior patterns to the public. While anonymizing the real-world dataset can hide
users’ identities, it cannot disguise the users’ behavior patterns and distribu-
tions. Fraudsters can easily employ bots to simulate the features of real users to
bypass fraud detection systems, if given access to the real data.

Instead, we conduct our experiments on a synthetic dataset, which contains
simplified data patterns we observed and abstracted from real-world ad events.
The design philosophy is explained in Section 4.1. The synthetic dataset and
code used to generate it are publicly available4.

4.1 Synthetic Dataset

We define the synthetic dataset asΩ. There are 4 types of hypothetical ad events
in Ω, shown as K = {a, b, c, d}. Each sequence in the synthetic dataset Ω has
a uniform length L = 20. A step at m corresponds to a tuple of event type and

2 General Data Protection Regulation
3 California Consumer Privacy Act
4 https://github.com/project-basileus/multitype-sequence-generation-by-

tlstm-gan
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time interval, (xm, ∆tm), where xm is sampled uniformly from K, and ∆tm is
sampled from a Chi-Square distribution with the degree of freedom conditioned
on xm, i.e.:

xm ∼ Uniform{a, b, c, d} ∆tm ∼ X 2(k), k =


10 if xm = a
20 if xm = b
40 if xm = c
80 if xm = d

(16)

One example of a complete synthetic sequence is as below:

Ae.g. = [(a, 5), (a, 22), (b, 27), (c, 44), (c, 43),

(d, 87), (b, 30), (c, 36), (d, 75), (c, 28),

(a, 9), (b, 24), (a, 9), (c, 40), (b, 29),

(c, 37), (a, 10), (b, 19), (c, 26), (b, 7)]

There are two classes in Ω, the positive class Ω+ and the negative class
Ω−. As the two classes can be highly imbalanced in real-world Ad events data
(e.g. fraud/non-fraud, buyer/non-Buyer, conversion/non-conversion, etc.), the
positive class is the minority in Ω, with a positive-to-negative ratio of 1 : 500.
A positive sequence has the following properties:

1. The time delay between any two consecutive events of the same event type
is greater than or equal to 20.

2. Each d event is paired with one and only one previous c event. Each c event
can be paired with at most one d event after it.

3. The time delay between any two paired c and d events is smaller than or
equal to 200.

Sequences failing to have all 3 properties above are considered negative. The
positive class Ω+ is the training dataset. We train a GAN to generate data
points from the minority class with the above properties. We will employ them
as an oracle to evaluate the quality of GAN-generated sequences, as described
in section 4.2.

The design philosophy of the synthetic dataset is to simulate real-world pat-
terns with as much fidelity as possible while hiding real parameters to pre-
vent reverse-engineering by fraudsters. Specifically, the hypothetical ad events
{a, b, c, d} mimic four typical real ad events: starts, views, clicks, and installs.
Real-world time delay between ad events follows a long-tail distribution, while
in the synthetic dataset, it is modeled with a Chi-Square distribution condi-
tioned on the preceding event type. Moreover, the three properties of a positive
sequence are also abstracted from real-world data patterns: property 1 detects
high-frequency attacks; property 2 describes the ad attribution process between
clicks and installs; property 3 checks the validity of an attribution window. Ad
attribution refers to the process of determining the user actions that led to the
desired outcome between the click of the ad and the conversion.
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4.2 Evaluation Metric

In the last few years, several different evaluation metrics for GANs have been
introduced in the literature. Among them, Fréchet Inception Distance (FID) [15]
has been used extensively [8]. However, this only captures the numerical part
of a sequence, but our sequences are multi-type containing both the discrete
categorical part (event type) and the continuous numerical part (time interval).
Thus, we propose using multiple metrics to measure the quality of generated
sequences. We use Mean Absolute Deviation (MAD) to measure the discrete
event types, and use FID to evaluate the continuous time intervals. In addition,
we employ an oracle score based on the known properties in the training data to
measure the similarity between generated sequences and the training data. The
arrows (↑↓) show the improvement directions.

MAD ↓. We propose using MAD to evaluate the statistical dispersion be-
tween the categorical part (i.e., the event types) of the generated multi-type
sequences and that of the training data. We use the training dataset Ω+ as the
comparison base, and then one-hot encode the event types of training sequences
to calculate the medians at each step m. Median is known to be more robust to
noise and fits our need to have categorical values as opposed to mean.

The MAD score of any batches of generated sequences B is computed as
the mean absolute deviation of each sequence from the base medians, shown as
below as MAD can be computed using:

MAD(B) =
1

|B|
∑
A∈B

L∑
m=1

∣∣∣xAm − Ẽm(Ω+)
∣∣∣ (17)

where B is a batch of generated sequences, |B| is the batch size, A is a sequence
of length L in B, xAm is the event type of step m in A, Ẽm(Ω+) is the base
median of the event types at step m across the training dataset Ω+.

FID ↓. Similarly to MAD, we use FID to measure the distance between the
numerical part (i.e., the time intervals) of the multi-type sequences and that of
the training data. This score focuses on capturing certain desirable properties
including the quality and diversity of the generated sequences. FID performs well
in terms of robustness and computational efficiency [3]. The Fréchet distance
between two Gaussians is defined as:

FID(x, g) =
∥∥µx − µg∥∥22 + Tr

(
Σx +Σg − 2

(
ΣxΣg

) 1
2

)
(18)

where (µx, Σx) and
(
µg, Σg

)
are the means and covariances for the training and

generated data distribution, respectively.
Oracle ↑. One of the most direct ways to measure the quality of a generated

sequence is to check whether it has the known data properties of the positive
class (described in section 4.1). For a batch of generated sequences, we calculate
the percentage of sequences having all 3 properties of the positive class over
all sequences, and then use this ratio as the oracle score. For example, for a
data batch from the training dataset Ω+, the oracle score is 1. The oracle score
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Table 1. Oracle metrics calculated using Ω+ as base

Reinforcement Learning (RL) Gumbel-Softmax (GS)

Samp. MAD ↓ FID ↓ Oracle ↑ MAD ↓ FID ↓ Oracle ↑
G0 0.8265 19892.4782 0.0015 0.7368 10045.2759 0.1477
G1 0.6622 101.7972 0.0820 0.6399 10455.6409 0.3600
G2 0.2849 6495.2955 0.5407 0.5427 9111.5298 0.55875

is a metric taking both the continuous and discrete part of a sequence into
consideration.

4.3 Experiment Setup

We take 4000 samples from the Ω+ dataset defined in section 4.1 for model
training. As is described in Algorithm 1, we first pre-train G and D and then
start GAN training from the pre-trained G and D. We define the following terms
to describe the generator at different training phases:

– G0: Generator with initial random model parameters.
– G1: Generator pre-trained using MLE self-regression.
– G2: Generator after GAN training.

The ratio between G training steps and D training steps is set to 1 : 1. Both G
and D have the same batch size 256, and use the Adam optimizer with learning
rate 10−4.

During the pre-training and training processes, we evaluated the performance
of the trained generator G after some steps. The trained generator was then
used to generate a batch of data points and the batch evaluated according to
the metrics defined in section 4.2.

To avoid mode collapse and convergence problems, we used several techniques
including label smoothing and noisy labels [25] in GAN training. In RL training,
we added entropy regularizers [9] to the reward for discrete token and continuous
time interval generation to avoid over-fitting.

4.4 Experiment Results

Table 1 shows the evaluation metric values of the sequences generated by G at
different phases of training. The MAD, FID score are calculated respectively
using data sampled from Ω+ as the base for the comparisons.

The curves of evaluation metrics during pre-training and training are shown
in Figure 2 and Figure 3, respectively.

The results in table 1 demonstrate that the sequences generated by GAN-
trained G2 have a significantly higher oracle score than that generated by the
MLE pre-trained generator G1 and randomly initialized generator G0, for both
RL and Gumbel-Softmax training. This indicates that the generator is able to
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Fig. 2. Metrics of generated sequences over pre-training steps for Reinforcement Learn-
ing (RL) and Gumbel-Softmax (GS).

learn the intrinsic patterns and properties in the training data Ω+, and is able
to mimic these patterns to deceive the discriminator.

From the perspective of metric curves, we noticed that in the pre-training
of RL, the FID score of the generator decayed sharply from around 20, 000 to
around 100, while the the improvements of MAD score and oracle score were
stalling. It suggested that the MLE training was over-fitting in learning the
continuous distribution of the time interval ∆t, while paying much less effort to
learn the patterns in the discrete event type x, and the relationships and hidden
connections between the continuous and the discrete parts.

Comparing the performance of RL and Gumbel-Softmax training approaches,
we found that the RL approach converged faster in pre-training and training
with smoother metrics curves, but it was vulnerable to over-fitting and Gaussian
model collapsing. Meanwhile, the Gumbel-Softmax approach converged slower
with more curve oscillations, but it was less prone to over-fitting, even with the
entropy regularizers in reward.
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Fig. 3. Metrics of generated sequences over training steps for Reinforcement Learning
(RL) and Gumbel-Softmax (GS).

5 Conclusions

In this paper, we have described, trained, and evaluated a novel methodology
for generating artificial sequences with multi-type tokens. As this task poses
new challenges, we have presented and compared the policy gradient (RL) and
Gumbel-Softmax approaches for training a multi-type GAN. The generator pro-
posed in this paper is capable of generating multi-type temporal sequences with
non-uniform time intervals. We have also proposed using multiple criteria to
measure the quality of the generated sequences. Experiments demonstrate that
the generated multi-type sequences contain the desired properties.

Furthermore, we compared the performance of our generator for both RL
and GS approaches with data from our carefully designed synthetic dataset. We
concluded that the SeqGAN-trained generator has a higher performance com-
pared to pre-trained generators using self-regression MLE, measured by multiple
criteria including MAD, FID, oracle scores that are appropriate for evaluating
multi-type sequences.
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