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Abstract. Data summarization has become a valuable tool in under-
standing even terabytes of data. Due to their compelling theoretical
properties, submodular functions have been the focus of summarization
algorithms. Submodular function maximization is a well-studied prob-
lem with a variety of algorithms available. These algorithms usually offer
worst-case guarantees to the expense of higher computation and mem-
ory requirements. However, many practical applications do not fall under
this mathematical worst-case but are usually much more well-behaved.
We propose a new submodular function maximization algorithm called
ThreeSieves that ignores the worst-case and thus uses fewer resources.
Our algorithm selects the most informative items from a data-stream on
the fly and maintains a provable performance in most cases on a fixed
memory budget. In an extensive evaluation, we compare our method
against 6 state-of-the-art algorithms on 8 different datasets including
data with and without concept drift. We show that our algorithm out-
performs the current state-of-the-art in the majority of cases and, at the
same time, uses fewer resources.

Keywords: Submodular Function Maximization · Streaming Data ·Data
Summarization.

1 Introduction

In recent years, submodular optimization has found its way into the toolbox of
machine learning and data mining. Submodular functions reward adding a new
element to a smaller set more than adding the same element to a larger set.
This makes them ideal for solving data summarization tasks [22], active learning
[28], user recommendation [1], and many other related tasks. In these tasks, the
amount of data is often huge and generated in real-time. Consequently, a line of
research studies streaming algorithms for maximizing a submodular function.

In this paper, we consider the problem of maximizing a submodular function
over a data stream and focus on the task of data summarization. More formally,
we consider the problem of selecting K representative elements from a ground set
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V into a summary set S ⊆ V . To do so, we maximize a non-negative, monotone
submodular set function f : 2V → R+ which assigns a utility score to each subset:

S∗ = arg max
S⊆V,|S|=K

f(S) (1)

For the empty set, we assume zero utility f(∅) = 0. We denote the maximum
of f with OPT = f(S∗). A set function can be associated with a marginal gain
which represents the increase of f(S) when adding an element e ∈ V to S:

∆f (e|S) = f(S ∪ {e})− f(S)

We call f submodular iff for all A ⊆ B ⊆ V and e ∈ V \B it holds that

∆f (e|A) ≥ ∆f (e|B)

The function f is called monotone, iff for all e ∈ V and for all S ⊆ V it holds
that ∆f (e|S) ≥ 0.

The maximization of a submodular set function is NP-hard [11] and therefore,
a natural approach is to find an approximate solution. Table 1 gives an overview
of streaming algorithms which have been proposed for solving Eq. 1. To this
date, the best performing online algorithms offer an O( 1

2−ε) approximation ratio
where ε also influences the resource consumption. Even moderate choices for ε
quickly result in unmanageable resource consumption. Feldman et al. showed [12]
that this approximation ratio is the best possible for streaming algorithms and
that any algorithm with a better worst-case approximation guarantee essentially
stores all the elements of the stream (up to a polynomial factor in K).

We ask whether we can design an algorithm that – despite the negative
result from Feldman et al. – offers a better approximation ratio using fewer
resources. Existing algorithms are designed for the mathematical worst-case and
thereby have a worst-case approximation guarantee. We note, that this worse-
cast is often a pathological case in their mathematical analysis whereas practical
applications are usually much more well-behaved. Thus, we propose to ignore
these pathological cases and derive an algorithm with a better approximation
guarantee in most cases. Our proposed ThreeSieves algorithm estimates the
probability of finding a more informative data item on the fly and only adds
those items to the summary which are likely to not be ‘out-valued’ in the future.
The resulting algorithm offers a non-deterministic approximation ratio of (1 −
ε)(1 − 1/ exp(1)) > 1

2 − ε in high probability (1 − α)K , where α is the desired
user certainty. It performs O(1) function queries per item and requires O(K)
memory. Note, that this does not contradict the upper bound of 1

2 − ε since
our algorithm offers a better approximation quality in high probability, but not
deterministically for all cases. Our contributions are the following:

– The novel ThreeSieves algorithm has an approximation guarantee of (1 −
ε)(1−1/ exp(1)) in high probability. The fixed memory budget is independent
of ε storing at most K elements and the number of function queries is just
one per element.
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– For the first time we apply submodular function maximization algorithms
to data containing concept drift. We show that our ThreeSieves algorithm
offers competitive performance in this setting despite its weaker theoretical
guarantee.

– We compare our algorithm against 6 state of the art algorithms on 8 datasets
with and without concept drift. To the best of our knowledge, this is the first
extensive evaluation of state-of-the-art submodular function maximization
algorithms in a streaming setting. We show that ThreeSieves outperforms
the current state-of-the-art in many cases while being up to 1000 times faster
using a fraction of its memory.

The paper is organized as follows. Section 2 surveys related work, whereas in
section 3 we present our main contribution, the ThreeSieves algorithm. Section
4 experimentally evaluates ThreeSieves. Section 5 concludes the paper.

Table 1: Algorithms for non-negative, monotone submodular maximization with
cardinality constraint K. ThreeSieves offers the smallest memory consumption
and the smallest number of queries per element in a streaming-setting.

Algorithm
Approximation

Ratio
Memory

Queries
per Element

Stream Ref.

Greedy 1− 1/ exp(1) O(K) O(1) 7 [23]
StreamGreedy 1/2− ε O (K) O(K) 7 [13]
PreemptionStreaming 1/4 O (K) O(K) X [4]
IndependentSetImprovement 1/4 O (K) O(1) X [8]
Sieve-Streaming 1/2− ε O(K logK/ε) O(logK/ε) X [2]
Sieve-Streaming++ 1/2− ε O(K/ε) O(logK/ε) X [16]
Salsa 1/2− ε O(K logK/ε) O(logK/ε) (X) [24]
QuickStream 1/(4c)− ε O(cK logK log (1/ε)) O(d1/ce+ c) X [18]

ThreeSieves
(1− ε)(1− 1/ exp(1))
with prob. (1− α)K

O(K) O(1) X this paper

2 Related Work

For a general introduction to submodular function maximization, we refer in-
terested readers to [17] and for a more thorough introduction into the topic
of streaming submodular function maximization to [9]. Most relevant to this
publication are non-negative, monotone submodular streaming algorithms with
cardinality constraints. There exist several algorithms for this problem setting
which we survey here. The theoretical properties of each algorithm are summa-
rized in Table 1. A detailed formal description including the pseudo-code of each
algorithm is given in the appendix.
While not a streaming algorithm, the Greedy algorithm [23] forms the basis of
many algorithms. It iterates K times over the entire dataset and greedily selects
that element with the largest marginal gain ∆f (e|S) in each iteration. It offers
a (1− (1/ exp(1))) ≈ 63% approximation and stores K elements. StreamGreedy
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[13] is its adaption to streaming data. It replaces an element in the current
summary if it improves the current solution by at-least ν. It offers an 1

2 − ε
approximation with O(K) memory, where ε depends on the submodular func-
tion and some user-specified parameters. The optimal approximation factor is
only achieved if multiple passes over the data are allowed. Otherwise, the per-
formance of StreamGreedy degrades arbitrarily with K (see Appendix of [2] for
an example). We therefore consider StreamGreedy not to be a proper streaming
algorithm.
Similar to StreamGreedy, PremptionStreaming [4] compares each marginal gain
against a threshold ν(S). This time, the threshold dynamically changes depend-
ing on the current summary S which improves the overall performance. It uses
constant memory and offers an approximation guarantee of 1/4. It was later
shown that this algorithm is outperformed by SieveStreaming++ (see below)
and was thus not further considered our experiments. Chakrabarti and Kale
propose in [8] a streaming algorithm also with approximation guarantee of 1/4.
Their algorithm stores the marginal gain of each element upon its arrival and
uses this ‘weight’ to measure the importance of each item. We call this algorithm
IndependentSetImprovement.
Norouzi-Fard et al. propose in [24] a meta-algorithm for submodular function
maximization called Salsa which uses different algorithms for maximization as
sub-procedures. The authors argue, that there are different types of data-streams
and for each stream type, a different thresholding-rule is appropriate. The au-
thors use this intuition to design a r-pass algorithm that iterates r times over the
entire dataset and adapts the thresholds between each run. They show that their
approach is a (r/(r+ 1))r− ε approximation algorithm. For a streaming setting,
i.e. r = 1, this algorithm recovers the 1/2 − ε approximation bound. However
note, that some of the thresholding-rules require additional information about
the data-stream such as its length or density. Since this might be unknown in a
real-world use-case this algorithm might not be applicable in all scenarios.
The first proper streaming algorithm with 1/2− ε approximation guarantee was
proposed by Badanidiyuru et al. in [2] and is called SieveStreaming. SieveStream-
ing tries to estimate the potential gain of a data item before observing it. As-
suming one knows the maximum function value OPT beforehand and |S| < K,
an element e is added to the summary S if the following holds:

∆f (e|S) ≥ OPT/2− f(S)

K − |S|
(2)

Since OPT is unknown beforehand one has to estimate it before running the
algorithm. Assuming one knows the maximum function value of a singleton set
m = maxe∈V f({e}) beforehand, then the optimal function value for a set with
K items can be estimated by submodularity as m ≤ OPT ≤ K ·m. The authors
propose to manage different summaries in parallel, each using one threshold from
the set O = {(1+ε)i | i ∈ Z,m ≤ (1+ε)i ≤ K ·m}, so that for at least one v ∈ O
it holds: (1− ε)OPT ≤ v ≤ OPT . In a sense, this approach sieves out elements
with marginal gains below the given threshold - hence the authors name their
approach SieveStreaming. Note, that this algorithm requires the knowledge of
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m = maxe∈V f({e}) before running the algorithm. The authors also present an
algorithm to estimate m on the fly which does not alter the theoretical perfor-
mance of SieveStreaming. Recently, Kazemi et al. proposed in [16] an extension
of the SieveStreaming called SieveStreaming++. The authors point out, that
the currently best performing sieve Sv = arg maxv{f(Sv)} offers a better lower
bound for the function value and they propose to use [maxv{f(Sv)},K ·m] as
the interval for sampling thresholds. This results in a more dynamic algorithm,
in which sieves are removed once they are outperformed by other sieves and new
sieves are introduced to make use of the better estimation of OPT . SieveStream-
ing++ does not improve the approximation guarantee of SieveStreaming, but
only requires O(K/ε) memory instead of O(K logK/ε). Last, Kuhnle proposed
the QuickStream algorithm in [18] which works under the assumption that a sin-
gle function evaluation is very expensive. QuickStream buffers up to c elements
and only evaluates f every c elements. If the function value is increased by the
c elements, thy all are added to the solution. Additionally, older examples are
removed if there are more than K items in the solution. QuickStream performs
well if the evaluation of f is very costly and if it is ideally independent from the
size of the current solution S. This is unfortunately not the case in our experi-
ments (see below). Moreover, QuickStream has a guarantee of 1/(4c)− ε that is
outperformed by SieveStreaming(++) with similar resource consumption. Thus,
we did not consider QuickStream in our experiments.

3 The Three Sieves Algorithm

We recognize, that SieveStreaming and its extensions offer a worst-case guar-
antee on their performance and indeed they can be consider optimal providing
an approximation guarantee of 1

2 − ε under polynomial memory constraints [12].
However, we also note that this worst case often includes pathological cases,
whereas practical applications are usually much more well-behaved. One com-
mon practical assumption is, that the data is generated by the same source and
thus follows the same distribution (e.g. in a given time frame). In this paper, we
want to study these better behaving cases more carefully and present an algo-
rithm which improves the approximation guarantee, while reducing memory and
runtime costs in these cases. More formally, we will now assume that the items
in the given sample (batch processing) or in the data stream (stream processing)
are independent and identically distributed (iid). Note, that we do not assume
any specific distribution. For batch processing this means, that all items in the
data should come from the same (but unknown) distribution and that items
should not influence each other. From a data-streams perspective this assump-
tions means, that the data source will produce items from the same distribution
which does not change over time. Hence, we specifically ignore concept drift
and assume that an appropriate concept drift detection mechanism is in place,
so that summaries are e.g. re-selected periodically. We will study streams with
drift in more detail in our experimental evaluation. We now use this assumption
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to derive an algorithm with (1 − ε)(1 − 1/ exp(1)) approximation guarantee in
high probability:

SieveStreaming and its extension, both, manage O(logK/ε) sieves in parallel,
which quickly becomes unmanageable even for moderate choices of K and ε. We
note the following behavior of both algorithms: Many sieves in SieveStreaming
have too small a novelty-threshold and quickly fill-up with uninteresting events.
SieveStreaming++ exploits this insight by removing small thresholds early and
thus by focusing on the most promising sieves in the stream. On the other
hand, both algorithms manage sieves with too large a novelty-threshold, so that
they never include any item. Thus, there are only a few thresholds that produce
valuable summaries. We exploit this insight with the following approach: Instead
of using many sieves with different thresholds we use only a single summary and
carefully calibrate the threshold. To do so, we start with a large threshold that
rejects most items, and then we gradually reduce this threshold until it accepts
some - hopefully the most informative - items. The set O = {(1+ε)i | i ∈ Z,m ≤
(1 + ε)i ≤ K ·m} offers a somewhat crude but sufficient approximation of OPT
(c.f. [2]). We start with the largest threshold in O and decide for each item if we
want to add it to the summary or not. If we do not add any of T items (which
will be discussed later) to S we may lower the threshold to the next smallest
value in O and repeat the process until S is full.

The key question now becomes: How to choose T appropriately? If T is too
small, we will quickly lower the threshold and fill up the summary before any
interesting item arrive that would have exceeded the original threshold. If T is
too large, we may reject interesting items from the stream. Certainly, we cannot
determine with absolute certainty when to lower a threshold without knowing
the rest of the data stream or knowing the ground set entirely, but we can do
so with high probability. More formally, we aim at estimating the probability
p(e|f, S, v) of finding an item e which exceeds the novelty threshold v for a given
summary S and function f . Once p drops below a user-defined certainty margin
τ

p(e|f, S, v) ≤ τ

we can safely lower the threshold. This probability must be estimated on the
fly. Most of the time, we reject e so that S and f(S) are unchanged and we
keep estimating p(e|f, S, v) based on the negative outcome. If, however, e ex-
ceeds the current novelty threshold we add it to S and f(S) changes. In this
case, we do not have any estimates for the new summary and must start the
estimation of p(e|f, S, v) from scratch. Thus, with a growing number of rejected
items p(e|f, S, v) tends to become close to 0 and the key question is how many
observations do we need to determine – with sufficient evidence – that p(e|f, S, v)
will be 0.

The computation of confidence intervals for estimated probabilities is a well-
known problem in statistics. For example, the confidence interval of binominal
distributions can be approximated with normal distributions, Wilson score inter-
vals, or Jeffreys interval. Unfortunately, these methods usually fail for probabili-
ties near 0 [3]. However, there exists a more direct way of computing a confidence
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interval for heavily one-sided binominal distribution with probabilities near zero
and iid data [15]. The probability of not adding one item in T trials is:

α = (1− p(e|f, S, v))
T ⇔ ln (α) = T ln (1− p(e|f, S, v))

A first order Taylor Approximation of ln(1− p(e|f, S, v)) reveals that
ln (1− p(e|f, S, v)) ≈ −p(e|f, S, v) and thus ln (α) ≈ T (−p(e|f, S, v)) leading to:

− ln (α)

T
≈ p(e|f, S, v) ≤ τ (3)

Therefore, the confidence interval of p(e|f, S, v) after observing T events is[
0, − ln(α)

T

]
. The 95% confidence interval of p(e|f, S, v) is

[
0,− ln(0.05)

T

]
which is

approximately [0, 3/T ] leading to the term “Rule of Three” for this estimate
[15]. For example, if we did not add any of T = 1000 items to the summary,
then the probability of adding an item to the summary in the future is below
0.003 given a 1− α = 0.95 confidence interval. We can use the Rule of Three to
quantify the certainty that there is a very low probability for finding a novel item
in the data stream after observing T items. Note that we can either set α, τ and
use Eq. 3 to compute the appropriate T value. Alternatively, we may directly
specify T as a user parameter instead of α and τ , thereby effectively removing
one hyperparameter. We call our algorithm ThreeSieves and it is depicted in
Algorithm 1. Its theoretical properties are presented in Theorem 1.

Input: Stream e1, e2, . . . , submodular function f and parameters K,T ∈ N>0

Output: A set S with at-most K elements maximizing f(S)
O ← {(1 + ε)i | i ∈ Z,m ≤ (1 + ε)i ≤ K ·m}
v ← max(O); O ← O \ {max(O)}; S ← ∅; t← 0
for next item e do

if ∆f (e|S) ≥ v/2−f(S)
K−|S| and |S| < K then

S ← S ∪ {e}; t← 0
else

t← t+ 1
if t ≥ T then

v ← max(O); O ← O \ {max(O)}; t← 0
end

end

end
return S

Algorithm 1: ThreeSieves algorithm.

Theorem 1. ThreeSieves has the following properties:

– Let K ∈ N>0 be the maximum desired cardinality and let 1.0−α be the desired
confidence interval. Given a fixed groundset V or an infinite data-stream in
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which each item is independent and identically distributed (iid) it outputs a
set S such that |S| ≤ K and with probability (1 − α)K it holds for a non-
negative, monotone submodular function f : f(S) ≥ (1−ε)(1−1/ exp(1))OPT

– It does 1 pass over the data (streaming-capable) and stores at most O (K)
elements

Proof. The detailed proof can be found in the appendix. The proof idea is as fol-
lows: The Greedy Algorithm selects that element with the largest marginal gain
in each round. Suppose we know the marginal gains vi = ∆(S|ei) for each ele-
ment ei ∈ S selected by Greedy in each round. Then we can simulate the Greedy
algorithm by stacking K copies of the dataset consecutively and by comparing
the gain ∆f (e|S) of each element e ∈ V against the respective marginal gain vi.
Let O be a set of estimated thresholds with v∗1 , . . . , v

∗
K ∈ O. Let v∗1 denote the

first threshold used by ThreeSieves before any item has been added to S. By
the statistical test of ThreeSieves the 1−α confidence interval for P (v1 6= v∗1) is

given by − ln(α)
T . Differently coined, it holds with probability 1− α that

P (v1 6= v∗1) ≤ − ln(α)

T
⇔ P (v1 = v∗1) > 1− − ln(α)

T

Now we apply the confidence interval K times for each P (vj 6= v∗j ) individually.

Then it holds with probability (1− α)K

P (v1 = v∗1 , . . . , vK = v∗K) >

(
1− − ln(α)

T

)K
By the construction of O it holds that (1 − ε)v∗i ≤ vi ≤ v∗i (c.f. [2]). Let eK be
the element that is selected by ThreeSieves after K − 1 items have already been
selected. Let S0 = ∅ and recall that by definition f(∅) = 0, then it holds with
probability (1− α)K :

f(SK) = f(∅) +

K∑
i=1

∆(ei|SK−1) ≥
K∑
i=1

(1− ε) v∗i

= (1− ε) fG(SK) ≥ (1− ε) (1− 1/ exp(1))OPT

where fG denotes the solution of the Greedy algorithm. ut

Similar to SieveStreaming, ThreeSieves tries different thresholds until it finds
one that fits best for the current summary S, the data V , and the function f . In
contrast, however, ThreeSieves is optimized towards minimal memory consump-
tion by maintaining one threshold and one summary at a time. If more memory
is available, one may improve the performance of ThreeSieves by running mul-
tiple instances of ThreeSieves in parallel on different sets of thresholds. So far,
we assumed that we know the maximum singleton value m = maxe∈V f({e})
beforehand. If this value is unknown before running the algorithm we can esti-
mate it on-the-fly without changing the theoretical guarantees of ThreeSieves.
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As soon as a new item arrives with a new mnew > mold we remove the current
summary and use the new upper bound K ·mnew as the starting threshold. It is
easy to see that this does not affect the theoretical performance of ThreeSieves:
Assume that a new item arrives with a new maximum single value mnew. Then,
all items in the current summary have a smaller singleton value mold < mnew.
The current summary has been selected based on the assumption that mold was
the largest possible value, which was invalidated as soon as mnew arrived. Thus,
the probability estimate that the first item in the summary would be ‘out-valued’
later in the stream was wrong since we just observed that it is being out-valued.
To re-validate the original assumption we delete the current summary entirely
and re-start the summary selection.

4 Experimental Evaluation

In this section, we experimentally evaluate ThreeSieves and compare it against
SieveStreaming(++), IndepdendentSetImprovement, Slasa, and Greedy. As an
additional baseline we also consider a random selection of items via Reser-
voir Sampling [27]. We denote this algorithm as Random. We focus on two
different application scenarios: In the first experiment, we have given a batch
of data and are tasked to compute a comprehensive summary. In this set-
ting, algorithms are allowed to perform multiple passes over the data to the
expense of a longer runtime, e.g. as Greedy does. In the second experiment
we shift our focus towards the summary selection on streams with concept
drift. Here, each item is only seen once and the algorithms do not have any
other information about the data-stream. All experiments have been run on
an Intel Core i7-6700 CPU machine with 8 cores and 32 GB main memory
running Ubuntu 16.04. The code for our experiments is available at https:

//github.com/sbuschjaeger/SubmodularStreamingMaximization

4.1 Batch experiments

In the batch experiments each algorithm is tasked to select a summary with
exactly K elements. Since most algorithms can reject items they may select
a summary with less than K elements. To ensure a summary of size K, we
re-iterate over the entire data-set as often as required until K elements have
been selected, but at most K times. We compare the relative maximization per-
formance of all algorithms to the solution of Greedy. For example, a relative
performance of 100% means that the algorithm achieved the same performance
as Greedy did, whereas a relative performance of 50% means that the algo-
rithm only achieved half the function value of Greedy. We also measure the
total runtime and memory consumption of each algorithm. The runtime mea-
surements include all re-runs, so that many re-runs over the data-set result in
larger runtimes. To make our comparison implementation independent, we re-
port the algorithmic memory consumption in terms of the total number of items



10 S. Buschjäger, P. Honysz, L. Pfahler and K. Morik

stored by each algorithm. For example, the Forestcover dataset contains obser-
vations with d = 10 features which can be each be represented using a 4 byte
float variable. Thus, an algorithm that stores 4096 of these observations uses
4096 · 4 · d/1024 = 160 KB of memory in this specific instance. We evaluate four
key questions: First, is ThreeSieves competitive against the other algorithms or
will the probabilistic guarantee hurt its practical performance? Second, if Three-
Sieves is competitive, how does it related to a Random selection of summaries?
Third, how large is the resource consumption of ThreeSieves in comparison?
Fourth, how does ThreeSieves behave for different T and different ε?

In total, we evaluate 3895 hyperparameter configurations on the datasets
shown in the top group in Table 2. We extract summaries of varying sizes
K ∈ {5, 10, . . . , 100} maximizing the log-determinant f(S) = 1

2 log det(I+aΣS).
Here, ΣS = [k(ei, ej)]ij is a kernel matrix containing all similarity pairs of
all points in S, a ∈ R+ is a scaling parameter and I is the identity matrix.
In [26], this function is shown to be submodular. Its function value does not
depend on V , but only on the summary S, which makes it an ideal candi-
date for summarizing data in a streaming setting. In [5], it is proven that
m = maxe∈V f({e}) = 1 + aK and that OPT ≤ K log(1 + a) for kernels
with k(·, ·) ≤ 1. This property can be enforced for every positive definite ker-
nel with normalization [14]. In our experiments we set a = 1 and use the
RBF kernel k(ei, ej) = exp

(
− 1

2l2 · ||ei − ej ||
2
2

)
with l = 1

2
√
d

where d is the

dimensionality of the data. We vary ε ∈ {0.001, 0.005, 0.01, 0.05, 0.1} and T ∈
{50, 250, 500, 1000, 2500, 5000}.

Table 2: Data sets used for the experiments.

Name Size Dim Reference

ForestCover 286,048 10 [10]
Creditfraud 284,807 29 [21]
FACT Highlevel 200,000 16 [6]
FACT Lowlevel 200,000 256 [6]
KDDCup99 60,632 41 [7]

stream51 150,736 2048 [25]
abc 1,186,018 300 [20]
examiner 3,089,781 300 [19]

We present two different sets of plots, one for varying K and one for varying
ε. Additional plots with more parameter variations are given in the appendix.
Figure 1 depicts the relative performance, the runtime and the memory con-
sumption over different K for a fixed ε = 0.001. For presentational purposes, we
selected T = 500, 1000, 2500, 5000 for ThreeSieves. In all experiments, we find
that ThreeSieves with T = 5000 and Salsa generally perform best with a very
close performance to Greedy for K ≥ 20. For smaller summaries with K < 20
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all algorithms seem to underperform, with Salsa and SieveStreaming performing
best. Using T ≤ 1000 for ThreeSieves seems to decrease the performance on some
datasets, which can be explained by the probabilistic nature of the algorithm. We
also observe a relative performance above 100 where ThreeSieves performed bet-
ter than Greedy on Creditfraud and Fact Highlevel. Note, that only ThreeSieves
showed this behavior, whereas the other algorithms never exceeded Greedy. Ex-
pectantly, Random selection shows the weakest performance. SieveStreaming
and SieveStreaming++ show identical behavior. Looking at the runtime, please,
note the logarithmic scale. Here, we see that ThreeSieves and Random are by
far the fastest methods. Using T = 1000 offers some performance benefit, but is
hardly justified by the decrease in maximization performance, whereas T = 5000
is only marginally slower but offers a much better maximization performance.
SieveStreaming and SieveStreaming++ have very similar runtime, but are mag-
nitudes slower than Random and ThreeSieves. Last, Salsa is the slowest method.
Regarding the memory consumption, please, note again the logarithmic scale.
Here, all versions of ThreeSieves use the fewest resources as our algorithm only
stores a single summary in all configurations. These curves are identical with
Random and IndependentSetImprovement so that only four instead of 7 curves
are to be seen. SieveStreaming and its siblings use roughly two magnitudes more
memory since they keep track of multiple sieves in parallel.
Now we look at the behavior of the algorithms for different approximation

ratios. Again we refer readers to the additional plots with more parameter vari-
ations in the appendix. Figure 2 depicts the relative performance, the runtime,
and the memory consumption over different ε for a fixed K = 50. We again se-
lected T = 500, 1000, 2500, 5000 for ThreeSieves. Note, that for Random, Greedy
and IndependentSetImprovement there is now a constant curve since their per-
formance does not vary with ε. Looking at the relative performance we see a
slightly different picture than before: For small ε ≤ 0.05 and larger T we see
that ThreeSieves and Salsa again perform best in all cases. For larger ε > 0.05
the performance of the non-probabilistic algorithms remain relatively stable, but
ThreeSieves performance starts to deteriorate. Again we note, that SieveStream-
ing and SieveStreaming++ show identical behavior. Looking at the runtime and
memory consumption we see a similar picture as before: ThreeSieves is by far
the fastest method using the fewest resources followed by SieveStreaming(++)
and Salsa.
We conclude: In summary, ThreeSieves works best for small ε and large T .
The probabilistic nature of the algorithm does not decrease its maximization
performance but actually helps it in some cases. In contrast to the other algo-
rithms, the resource consumption and overall runtime of ThreeSieves does not
suffer from decreasing ε or increasing T . Additional experiments and compar-
isons can be found in the appendix. They all depict the same general trend
discussed here. In particular, when comparing SieveStreaming(++) and Salsa
with ThreeSieves under similar maximization performance (e.g using ε = 0.1 for
SieveStreaming(++) and Salsa, and using ε = 0.001 for ThreeSieves) we still
find that ThreeSieves uses magnitudes less resources. Its overall performance is
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Fig. 1: Comparison between SieveStreaming,SieveStreaming++,Salsa, and
ThreeSieves for different K values and fixed ε = 0.001. The first row shows
the relative performance to Greedy (larger is better), the second row shows the
total runtime in seconds (logarithmic scale, smaller is better) and the third row
shows the maximum memory consumption (logarithmic scale, smaller is better).
Each column represents one dataset.
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Fig. 2: Comparison between IndependentSetImprovement, SieveStream-
ing,SieveStreaming++,Salsa, Random, and ThreeSieves for different ε values
and fixed K = 50. The first row shows the relative performance to Greedy
(larger is better), the second row shows the total runtime in seconds (logarith-
mic scale, smaller is better) and the third row shows the maximum memory
consumption (logarithmic scale, smaller is better). Each column represents one
dataset.
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better or comparable to the other algorithms while being much more memory
efficient and overall faster.

4.2 Streaming experiments

Now we want to compare the algorithms in a true streaming setting includ-
ing concept drift. Here, we present each item only once and must decide im-
mediately if it should be added to the summary or not. Since Salsa requires
additional information about the stream we excluded it for these experiments.
We use two real-world data-sets and one artificial data-set depicted in the bot-
tom group in Table 2: The stream51 dataset [25] contains image frames from
a sequence of videos, where each video shows an object of one of 51 classes.
Subsequent frames in the video stream are highly dependent. Over the dura-
tion of the stream, new classes are introduced. The dataset is constructed such
that online streaming classification methods suffer from ‘Catastrophic forgetting’
[25]. We utilize a pretrained InceptionV3 convolutional neural network that com-
putes 2048-dimensional embeddings of the images. The abc dataset contain news
headlines from the Australian news source ‘ABC’ gathered over 17 years (2003
- 2019) and the examiner dataset contains news headlines from the Australian
news source ‘The Examiner’ gathered over 6 years (2010 - 2015). Due to this
long time-span we assume that both datasets contain a natural concept drift
occurring due to different topics in the news. We use pretrained Glove embed-
dings to extract 300-dimensional, real-valued feature vectors for all headlines
and present them in order of appearance starting with the oldest headline. We
ask the following questions: First, will the iid assumption of ThreeSieves hurt
its practical performance on data-streams with concept drift? Second, how will
the other algorithms with a worst-case guarantee perform in this situation?

In total, we evaluate 3780 hyperparameters on these three datasets. Again,
we extract summaries of varying sizes K ∈ {5, 10, . . . , 100} maximizing the log-
determinant with a = 1. We use the RBF kernel with l = 1√

d
where d is the di-

mensionality of the data. We vary ε ∈ {0.01, 0.1} and T ∈ {500, 1000, 2500, 5000}.
Again, we report the relative performance of the algorithms compared to Greedy
(executed in a batch-fashion). Figure 3 shows the relative performance of the
streaming algorithms for different K with fixed ε = 0.1 (first row) and fixed
ε = 0.01 (second row) on the three datasets. On the stream51 dataset we see
very chaotic behavior for ε = 0.1. Here, SieveStreaming++ generally seems to
be best with a performance around 90 − 95%. ThreeSieves’s performance suf-
fers for smaller T ≤ 1000 not exceeding 85%. For other configurations with
larger T ThreeSieves has a comparable performance to SieveStreaming and In-
dependentSetImprovement all achieving 85− 92%. For ε = 0.01 the behavior of
the algorithms stabilizes. Here we find that ThreeSieves with T = 5000 shows
a similar and sometimes even better performance compared to SieveStream-
ing(++) beyond 95%. An interesting case occurs for T = 5000 and K = 100 in
which the function value suddenly drops. Here, ThreeSieves rejected more items
than were available in the stream and thus returned a summary with less than
K = 100 items. Somewhere in the middle, we find IndependentSetImprovement
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reaching 90% performance in the best case. Expectantly, Random selection is
the worst in all cases. In general, we find a similar behavior on the other two
datasets. For ε = 0.1, SieveStreaming(++) seem to be the best option followed
by ThreeSieves with larger T or IndependentSetImprovement. For larger K, In-
dependentSetImprovement is not as good as ThreeSieves and its performance
approaches Random quite rapidly. For ε = 0.01 the same general behavior can
be observed. SieveStreaming(++) again holds well under concept drift followed
by ThreeSieves with larger T followed by IndependentSetImprovement and Ran-
dom. We conjecture that ThreeSieves’s performance could be further improved
for larger T and that there seems to be a dependence between T and the type
of concept drift occurring in the data.
We conclude: ThreeSieves holds surprisingly well under concept drift, espe-
cially for larger T . In many cases its maximization performance is comparable
with SieveStreaming(++) while being more resource efficient. For smaller T the
performance of ThreeSieves clearly suffers, but remains well over the perfor-
mance of Random or IndependentSetImprovement. For larger T and smaller ε,
ThreeSieves becomes more competitive to SieveStreaming(++) while using fewer
resources. We conclude that ThreeSieves is also applicable for streaming data
with concept drift even though its theoretical guarantee does not explicitly hold
in this context.
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Fig. 3: Comparison between IndependentSetImprovement, SieveStreaming,
SieveStreaming++, Random and ThreeSieves for different K values and fixed
ε = 0.1 (first row) and ε = 0.01 (second row). Each column represents one
dataset.

5 Conclusion

Data summarization is an emerging topic for understanding and analyzing large
amounts of data. In this paper, we studied the problem of on-the-fly data sum-
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marization where one must decide immediately whether to add an item to the
summary, or not. While some algorithms for this problem already exist, we
recognize that these are optimized towards the worst-case and thereby require
more resources. We argue that practical applications are usually much more well-
behaved than the commonly analyzed worst-cases. We proposed the ThreeSieves
algorithm for non-negative monotone submodular streaming function maximiza-
tion and showed, that – under moderate assumptions – it has an approximation
ratio of (1−ε)(1−1/ exp(1)) in high probability. It runs on a fixed memory budget
and performs a constant number of function evaluations per item. We compared
ThreeSieves against 6 state of the art algorithms on 8 different datasets with
and without concept drift. For data without concept drift, ThreeSieves outper-
forms the other algorithms in terms of maximization performance while using
two magnitudes less memory and being up to 1000 times faster. On datasets
with concept drift, ThreeSieves outperforms the other algorithms in some cases
and offers similar performance in the other cases while being much more re-
source efficient. This allows for applications, where based on the summary, some
action has to be performed. Hence, the novel ThreeSieves algorithm opens up
opportunities beyond the human inspection of data summaries, which we want
to explore in the future.
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