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Abstract. Money laundering refers to the criminal attempt of conceal-
ing the origins of illegally obtained money, usually by passing it through a
complex sequence of seemingly legitimate financial transactions through
several financial institutions. Given a large time-evolving graph of finan-
cial transactions, how can we spot money laundering activities? In this
work, we focus on detecting smurfing, a money-laundering technique that
involves breaking up large amounts of money into multiple small trans-
actions. Our key contribution is a method that efficiently finds suspicious
smurf-like subgraphs. Specifically, we find that the velocity characteris-
tics of smurfing allow us to find smurfs by using a standard database
join, thus bypassing the computational complexity of the subgraph iso-
morphism problem. We apply our method on a real-world transaction
graph spanning a period of six months, with more than 180M transac-
tions involving more than 31M bank accounts, and we verify its efficiency.
Finally, by a careful analysis of the suspicious motifs found, we provide a
classification of smurf-like motifs into categories that shed light on how
money launderers exploit geography, among other things, in their illicit
transactions.

Keywords: Anti-money laundering · Graph Mining · Subgraph Isomor-
phism · Data Mining

1 Introduction

Money laundering is an umbrella term, that captures the processing of criminal
proceeds to disguise their illegal origin in order to legitimize the ill-gotten gains
of crime [12]. While this definition may not include money related to terror
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financing, which does not necessarily have a criminal origin, it is broad enough
to cover all possible activities aimed at hiding the origin of illicitly gained assets.
Money laundering has three well-defined stages: (i) placement, (ii) layering, and
(iii) integration. Ebikake [10] describes in great detail how money launderers
adapt to reality. In the placement stage, illicitly gained assets are introduced
into the legitimate financial system while being cleansed of the most obvious
traces of illegality. For example, forged documentation can be used to justify
the money introduced as a legitimate receipt from the sales of real estate or
interest in a business. In this phase, many different bank accounts across different
banks can be used, or front companies that can belong even to high net-worth
people. Once the money is deposited and its origin successfully explained, the
placement stage is complete. In the layering phase, money-launders move around
the money through a series of transactions that have no real purpose other than
hiding the criminal nature of the money. For layering, money-launders may use
banks in countries with poor law enforcement, or which do not cooperate with
international financial authorities. Possible layering activities include investment
in financial products which have good liquidity or which can be bought and
sold easily with limited tracking (e.g. unlisted stocks and shares), real estate,
fake loans that allow transfer of money to a business when in reality there is no
loan, sending money overseas for education purposes, donations, and transferring
money to shell companies [10]. Finally, in the integration stage, these assets are
integrated into the legal economy and other assets can be legally purchased.

Despite the worldwide efforts against it, it is estimated that money launder-
ing involves from 2% to 5% of the world’s domestic product [29,13]. Fighting
organized crime is of paramount importance for financial institutions: Failures
in anti-money laundering (AML) controls may result in huge fines for financial
institutions by national and foreign authorities. For example, Danske bank, the
major Danish bank, faces a possible fine of around 2 billions euros for a money-
laundering case of about 200 billions euros occurring through Danske’s branch
in Estonia, from 2007 to 2015 [15]. Recently, US authorities fined HSBC by 1.9
billion US dollars in a settlement over missing money laundering controls [19].
In order to comply with the current legislation, financial institutions generally
follow several guidelines and recommendation, either official [12,3] or informal
and internal best practices [21,20] that impose specific controls to be carried out
on customers and on their activities/operations. These money-laundering con-
trols have been historically implemented as a set of rules, such as fixed threshold
flagging suspicious transactions, or transactions through countries considered at
high risk, which are later manually inspected. Note that due to the heteroge-
neous financial services landscape and transaction means, there is no regulator
guidance so technically detailed to play a standard-setting role. Each financial
institution has thus the freedom and the responsibility to implement the con-
trols with the techniques it deems most useful and efficient for the purpose. Such
implementations are often made with deterministic approaches based on fixed
rules and conditions to be calibrated over time and adapted to the various cases.
Rule-based approaches are simple to implement, but suffer from several draw-
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backs: rules need to be constantly updated, and performance of single rules is
very difficult to disentangle. Furthermore, rule-based systems perform badly on
unstructured data and expert knowledge is needed to design rules. Finally, as
a result of poor rule-based system design and data quality issues, classifiers for
spotting alerts tend to aim for high recall by introducing a large number of false
positives, that have to be manually inspected later on.

Therefore, there is a need for new data-driven tools for anti-money laun-
dering able to overcome rule-based approaches. In this paper, we will focus on
the central stage of money-laundering, i.e. layering, to detect suspicious transac-
tions aimed at hiding the real origin and target of money transfers. A common
method used by money-launders is to break down the amount of money to laun-
der into smaller amounts and through various entities. This structuring technique
is known as “smurfing”, where smurfs are the financial actors (either companies
or physical persons) responsible for organizing money transfers. These multiple
intermediaries make small cash deposits or buy assets in amounts under a certain
threshold, which is thought to be relevant and more likely to be reported by the
banks to financial authorities. In this way, they try to avoid raising suspicions.
The detection of smurfs in financial transactions is a pivotal task in the finan-
cial industry [37]. Smurfs naturally translate into specific subgraph structures
within transaction graphs, where nodes are financial actors (i.e. bank accounts)
and links represent money transfers between accounts. It is worth mentioning
that, in a completely different field, smurf-like structures play an important role
in security applications, e.g., [8].

Here, we focus on the two smurf-like motifs shown in Figure 1.

Type 1 Type 2

Fig. 1. Type 1 (left) and type 2 (right) smurf-like motifs. Source (red dotted circles),
middle (squares), and target (green circles) are shown from left to right.

The first motif consists of a set of source nodes that send money to a middle
node, who then sends that money to a set of target nodes. The second motif
consists of a single source, sending money to multiple middle nodes, who then
send money to a single target node. We refer to these two subgraphs, as motif
type 1, and motif type 2. We outline that the number of source and target
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nodes in motif type 1, and similarly the number of middle nodes in motif type
2 may vary. While prior domain knowledge gives certain bounds on these node
counts, searching for each possible motif instantiation using a state-of-the-art
subgraph isomorphism algorithm is computationally expensive, and infeasible
on large-scale transaction graphs. Our contributions include the following:
•We propose a pipeline that efficiently finds suspicious smurf-like subgraphs

as shown in Figure 1. Our pipeline exploits the velocity of real-world money
laundering transactions, and allows us to bypass the computational complexity
lower bound of subgraph isomorphism. Perhaps surprisingly, our pipeline is based
on a standard database join, and careful pre-, and post-processing filtering.
• We evaluate our pipeline on a large real-world transaction network with

more than 184 million transactions using the financial services of a major Italian
bank (from now on just referred as MIB). We observe that our pipeline allows
us to find suspicious smurfs efficiently.
• We analyze the output motifs, and provide a systematic classification of

suspicious motifs. For instance, we observe that certain suspicious motifs have
a u-turn form. The source(s) and the target(s) are MIB bank accounts, whereas
the middle node(s) is (are) non-MIB account(s), that may exist in high risk coun-
tries. Our classification sheds light into money launderers behavior, especially
regarding how they exploit geography.

2 Related work

For a general overview of machine learning, and data-driven techniques used for
anti-money laundering, see the recent survey by Chen et al. [7]. Here, we briefly
review work that lies close to ours.

Flowscope is a novel tool for discovering dense flows from sources to untrace-
able destinations via many middle accounts that on purpose create chains to
avoid getting flagged. The key intuition behind Flowscope is that large amounts
of money need to be transferred through “dummy” accounts that serve as inter-
mediaries before the dirty money reaches the final destination(s). The authors
focus on detecting dense multi-partite subgraphs. While the Flowscope formu-
lation and the proposed algorithm are important contributions towards AML,
there exist important money laundering schemes that use few intermediary ac-
counts, and thus do not induce dense subgraphs. Furthermore, Flowscope relies
on the assumption that intermediate accounts have low balance, namely, they
receive a certain amount and transfer it almost entirely. Real bank transac-
tion data available to MIB indicate that intermediary nodes may transfer an
amount only approximately similar to the one received from the source. For the
aforementioned reasons, Weber et al. use graph convolutional networks [23] for
fighting money laundering in bitcoin transactions [36]. Their method takes as
input the transaction network, possibly node features, and some labels that are
used to train the neural network. Lee et al. [24] propose a minimum description
length approach to reorder the node ids in order to reveal all smurf-like sub-
graphs in a transaction network. However, many of these smurf-like subgraphs
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do not correspond to money laundering activities. Such false positives have an
immense cost. The false positives are between 75% and 99% of the total alerts
issued. This consumes bank resources, and places in inconvenient spot entities
and people that abide by the law.

Isomorphism. Graph isomorphism is the problem of determining whether two
graphs G1 and G2 are isomorphic. Formally, this is equivalent to determining if
there exists a bijective mapping f from the set of the nodes of G1 to the node
set of G2 such that any two nodes u, v of G1 are adjacent in G1 if and only if
f(u) and f(v) are adjacent in G2. The state-of-the-art algorithm is due to Babai
and Luks [2], and despite the recent progress made by Babai it is not yet clear
whether the problem is solvable in polynomial time or not [1].

The subgraph isomorphism problem asks whether a pattern graph H appears
as a subgraph of a target graph G. This problem is known to be NP -complete as
it generalizes well-knownNP -complete problems including the Maximum Clique,
and the Hamiltonian Cycle [14]. Formally, a subgraph isomorphism is an injective
map f from the vertices of H to the vertices of G such that if two vertices u and
v are adjacent in H, then f(u) and f(v) are adjacent in G. In our work, we focus
on the variant of the subgraph isomorphism that aims to list the occurrences of
the pattern H in the target graph G, rather than just decide if any occurrence
of H exists in G. In general, searching for a motif with k nodes requires O(nk)
time. Despite this asymptotic tight lower bound, there exist many algorithms
that perform significantly better in practice compared to brute force. The classic
algorithm is Ullman’s backtracking algorithm with a look ahead function [35].
Given the importance of subgraph isomorphism in mining networks and graph
databases, a lot of research has focused on efficient algorithm design. Notable
algorithms include VF2 [9], GraphQL [16], QuickSI [32], GADDI [38], SPath [39].
ISMAGS is a recent algorithm that provides one solution per symmetry group
[18]. This algorithm is particularly valuable when there is an exponential number
of isomorphisms that are symmetrically equivalent. Another line of research has
focused on designing efficient algorithms for special classes of graphs. A recent
notable algorithm is due to Bressan et al. [6] that finds all occurrences of an
induced k-vertex subgraph in a d-degenerate graph. Their algorithm runs in
O(f(k, d) ·n`) where ` is the size of the largest induced matching in the motif to
be searched. It is worth mentioning that subgraph isomorphism lies at the heart
of frequent pattern discovery [22].

3 Dataset description

In this section we describe in detail the dataset of financial transactions we
used in our experiments. The dataset encompass all wire transfers performed
by the Head Office services of MIB in a period of six months, from August 1st,
2020 to January 31st, 2021 thus including SEPA [11] SCT and SWIFT-enabled
[34] national and international wire transfers. Data were made available to the
research team in a fully anonymized form respecting the strictest privacy and
security requirements.
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a) b)

d)c)

Fig. 2. Some empirical properties of the dataset: (a) Number of transactions in time,
on a daily basis. (b) Probability distribution of the amount transferred in euros (log-
log scale). (c) Probability distribution of the in- and out-degree (log-log scale). (d)
Probability distribution of the time interval τ between two consecutive transactions
involving the same sender and/or receiver (log-log scale).

The average monthly volume is close to 30 million transactions. Fig. 2(a)
shows the number of transactions in time, aggregated on a daily basis. One
can see that the number of transactions monitored is more than one million
per day, excluded weekends. There is a considerable decrease in activity around
the middle of August and during Christmas break. Each data entry includes
a set of features, regarding both the sender/receiver parties and the transac-
tion characteristics. For sender/receiver parties, data includes their anonymized
bank account number, anonymized bank’s BIC, party’s and bank’s country of
residence (both at ISO alpha 2 level), and if the party is legal or physical person.
For each transaction, features include timestamp, amount transferred, currency
used, and transaction means (SEPA or SWIFT).

Figure 2(b) plots the empirical probability distribution of the amount trans-
ferred within the whole data set, in euros. One can see that most transactions
regard an amount between few hundreds and few thousands euros. However,
much larger amounts are present in the data set, up to a few billions euros.
After a few thousands euros, the amount distribution decays as power-law func-
tion, indicating that very large transactions occur with very small probability,
yet different than zero.

The dataset is naturally modeled as a time-evolving, directed multi-graph,
a special instance of temporal networks [17]. In such graphs, nodes are a static
collection of elements, edges are dynamic. In our dataset, nodes represent bank
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Time period N E # WCCs

Aug. 1st, 2020 -Jan. 31st, 2021 31M 184M 847K

Aug. ’20 16M 26M 859K
Sep. ’20 17M 31M 853K
Oct. ’20 17M 33M 829K
Nov. ’20 18M 32M 831K
Dec. ’20 18M 33M 1073K
Jan. ’21 17M 30M 869K

Table 1. Approximate number of nodes, edges, and weakly connected components of
the entire dataset, and broken down by month.

accounts while edges transactions. Table 1 shows the number of nodes N , edges
E, and number of weakly connected components (WCCs), for graphs recon-
structed from the whole dataset and from single months. Out of the 847 092
connected components of the whole dataset graph, the giant component spans
29 693 858 nodes whereas the second largest contains only 304 nodes. We rep-
resent the information that a node i sent w(i, j) financial amount to node j at
time t as the quadruplet (i, j, w, t). We denote by nij and Wij the number of
transactions and the total amount of money transferred from node i to node
j, respectively. The in-degree (out-degree) of node i, kini (kouti ), corresponds to
the total number of counter-parties sending (receiving) money from (to) node
i, over the whole time interval under consideration. The total amount of money
sent (received) by node i, W out

i (W in
i ) is obtained by summing all outgoing

(incoming) transactions involving node i, W out
i =

∑
jWij (W in

i =
∑
jWji).

Figure 2(c) shows the in-degrees and out-degrees of the whole transaction
graph in the 6-month period in log-log scale. Both distributions are heavy-
tailed, compatible with a power-law function P (k) ∼ k−γ , with similar expo-
nents γin ' 2.6 and γout ' 2.2. This indicates that most actors are involved in
transactions with few counter-parties, only very few parties engage with many
others. However, a typical scale for the number of counter-parties is missing:
in the data set there are present actors receiving money from up to one thou-
sands different peers, and sending money to up ten thousands different parties.
Nodes with large in- or out-degree typically correspond to companies that are
not suspicious of money laundering activities; this could involve transferring
money to a large number of employees, and receiving money from numerous
business partners. As we will see in the following, we are interested in spotting
actors interacting with relatively few counterparties. Fig 2(c) shows that, despite
highly-connected nodes being a tiny fraction of the network, their presence is
non-negligible. The scale-free form of the degree distribution suggests that prun-
ing hubs might be effective in reducing the amount of data to monitor, as we will
see. Indeed, removing a hub implies to remove all connected edges and this might
affect the network’s connectivity, possibly breaking the graph into disconnected
components and thus making the motifs extraction easier [30]. This theoretical
observation has been also specifically validated in empirical transaction networks
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[31]. A different result would hold if the network had an homogeneous degree
distribution (e.g. Erdos–Renyi graphs).

The time-varying graph representation allows us to take into account the
activation dynamics of nodes and edges, corresponding to the dynamical fea-
tures of sender/receiving parties [17]. Figure 2(d) shows the inter-transaction
time distribution P (τ) between two consecutive activation of the same node,
i.e. the time interval τ between two consecutive transactions involving the same
sender and/or receiver, aggregated over the whole data set, expressed in hours.
The inter-transaction time distribution P (τ) is heavy-tailed, indicating that the
transaction dynamics follows a bursty behavior, as common in several human
and natural contexts [33]: most transactions involving the same parties occur at
small timescales, while large time intervals are increasingly less likely. Here, we
are interested in spotting transactions occurring within a relatively small time
interval, like a few days. Fig. 2(d) shows that, accordingly to the bursty nature
of the transaction dynamics, these kind of transactions represent a large fraction
of the total. For instance, 85% of consecutive transactions involving the same
parties occur within 7 days. Therefore, an a priori filter aimed at pruning transac-
tions occurring within large time-intervals would not be effective in significantly
reducing the amount of data to monitor, as we will see in the following.

Note that one can generate synthetic time-evolving graphs with properties
similar to the original data, by means of the probability density functions showed
in Figures 2(b),(c),(d). The degree distribution P (k) (Fig. 2(c)) can be exploited
to generate a directed network by means of the so-called configuration model
[5], allowing the possibility of multiple edges between nodes. The distribution of
amounts (Fig. 2(b)) can be used to generate weights for each edge. The dynam-
ics of the network can be taken into account by recent modelling frameworks
developed to generate temporal networks, such as activity-driven networks [28].
Finally, the broad-tailed form of the inter-transaction time distribution (Fig.
2(d)) can be reproduced by using models for bursty temporal networks [27], in
which the the link activation dynamics follows a non-Poissonian process.

4 Extraction of smurf-like motifs from transaction graph

In this Section we exactly define the problem of interest and propose a frame-
work to efficiently solve it. Then, we show the motifs extracted by our method,
classified from the perspective of anti-money laundering stakeholders.

4.1 Proposed pipeline

Problem definition. Figure 1 shows type 1 and type 2 subgraphs that we wish
to extract efficiently from a large transaction graph. Observe that when there
is one source and one target in motif 1, and one middle node in motif 2, the
two motif types coincide. We are interested in finding a set of motifs as shown in
Figure 1, that may have varying number of nodes, but involve few bank accounts
(less than 20 in total), and are suspicious. The key characteristic we encode as
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suspiciousness is the velocity that the transactions within the motif take place.
We state this as the following problem:

Problem 1. Given a time-evolving transaction network, find all motifs of
type 1 and type 2, that involve at least 3 nodes, and at most k nodes,
and all transactions take place within a time window of ∆T days.

Typically all the transactions from the source(s) to the middle node(s), take
place before the transactions from the latter to the target(s). However, there can
exist some asynchrony. From now on, let S,M, T be the sets of sources, middle
nodes, and targets in motifs type 1, and type 2 respectively. Let s = |S|, t = |T |.
We outline that existing anti-money laundering tools based on graph mining,
including Flowscope [25] and AutoAudit [24], are not satisfactory formulations
in our application. Perhaps, the most appropriate formulation is to cast the
aforementioned problem as a subgraph isomorphism problem. Specifically, we
can create a dictionary of motifs that we are interested in, and roll a time
window spanning over the dataset to search for each motif using an efficient
subgraph isomorphism algorithm, e.g., [35]. Unfortunately, this formulation is
computationally expensive and does not scale well to large networks.

Proposed Framework. Before we delve into the details of our proposed frame-
work, it is worth summarizing our key contributions. Our framework consists of
a pipeline that involves few, computationally inexpensive steps, that pre-process
the graph, perform simple database joins, and post-process the output, and is
able to find suspicious subgraphs. Furthermore, by mining the output, we clas-
sify the motifs into categories that are of independent interest to anti-financial
crime investigators and practitioners.

The pre-processing part removes nodes and edges that the bank knows or
believes with high confidence that are not involved in money laundering. This
part imposes the following constraints on the graph: edges whose weight is less
than a certain threshold are removed, nodes with in-degree and out-degree above
a certain threshold are removed. Transactions involving a small amount are
indeed not suspicious for money laundering, as well as bank accounts with very
large activity. Furthermore, we ensure that each path of length 2 involves at least
one cross-border transaction. Since most bank accounts are Italian, this implies
that in each three-nodes path at least one node is non-Italian. Table 2 shows an
example (by using data from the month of November) of how the pre-processing
steps greatly reduce the graph’s size. For instance, even if nodes with in- or
out-degree above 50 are just 0.2% of the transaction network, these account
for almost 50% of edges. Altogether, the pre-processing constraints reduce the
graph’s size of about 1000 times.

Our search step is a standard graph database join that finds common neigh-
bors between different pairs of nodes within the time window ∆T we are inter-
ested in. For instance for motif type 2, for a given ordered pair of nodes (u, v) we
find the set of nodes that is out-going neighbors of u, and in-coming neighbors
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Graph N E

Original 18M 26M
Min Edge Weight 1.22M 1.28M
Max kin,kout 152K 125K
Min cross-border transactions 21K 46K

Table 2. Effects of the 3 pre-processing steps (highlighted in Table 3) on the graph’s
number of nodes N and edges E. At each pre-processing step the graph’s size signifi-
cantly decreases. As an example, we show data from November.

Pipeline Constraint Values

Pre-processing Min Edge weight Non-disclosed threshold
Pre-processing Max kin, kout 50
Pre-processing Min cross-border transactions 1

Motifs extraction Motif 1 s, t > 1
Motifs extraction Motif 2 s = t = 1
Motifs extraction Max inter-transaction time ∆T Non-disclosed threshold

Post-processing Min total flow Non-disclosed threshold
Post-processing Flow ratio Non-disclosed thresholds

Table 3. Values of constraints applied in the pipeline.

of v. The perhaps surprising finding is that this naive search algorithm that by-
passes the constraint that the middle nodes should not have any edges between
them (or induce few in general) is automatically satisfied by most of the out-
put of the search step, due to our pre-processing step, and due to enforcing the
velocity constraint. Furthermore, we find that one large motif may unpack into
several smaller suspicious motifs, where the source, and target nodes remain the
same, and the set of intermediary nodes may change over time.

Finally, motifs extracted are post-processed, in order to respect some addi-
tional constraints related to nodes and edges features. For each motif, the total
incoming and outgoing flow can be computed, as the sum of the amount trans-
ferred through incoming and outgoing edges of the middle nodes, respectively.
Similarly, the total flow transferred from source to target nodes is equal to the
minimum between incoming and outgoing flows. Motifs must have a total flow
transferred above a certain threshold, and the ratio between outgoing and incom-
ing flows between a certain interval. The topological, dynamical, and additional
constraints applied to extract the suspicious subgraph are summarized in Table
3. Note that for security reasons, we do not disclose the exact values used in the
pipeline.

4.2 Results

Here we show the results of our pipeline. First, we compare the efficiency of
our method with a state of the art algorithm for subgraph isomorphism search,
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ISMAGS
(s = t = 1)

ISMAGS
(s = t = 3)

Proposed Method

88.0 secs > 1h 84.0 secs
30.4 secs > 1h 43.3 secs
94.0 secs > 1h 87 secs
38.4 secs > 1h 44.3 secs
15.6 secs > 1h 26.9 secs
73 secs > 1h 69 secs

Table 4. Running times in seconds of ISMAGS [18] for searching an induced path
i→ j → k (column 1), a motif of type 1 with s = t = 3 (column 2), and our proposed
method on searching all motifs of type 1 where 1 ≤ s, t ≤ 6 over five different three-day
windows (one per row). Running ISMAGS for searching a motif with s = t = 3 requires
hours.

ISMAGS [18]. Then, we highlight a few interesting motifs extracted from the
transaction network. Finally, we provide a systematic classification of motifs
found according to the geography of countries involved.

Comparison to subgraph isomorphism. Table 4 compares the running time of
ISMAGS [18] and our proposed method on five different time-windows of lenght
∆T for finding efficiently motif type 1. ISMAGS runs efficiently only when s =
t = 1. Even when s = 2, ISMAGs may require more than an hour for certain time
windows. When s = t = 3, for all considered time-windows, ISMAGS consistently
requires time at the order of hours to find the motifs. This comes in sheer contrast
to our proposed method, that forgets the constraint of finding induced subgraphs.
Once we find a set of candidate subgraphs, our method checks which ones are
isomorphic to the desired motif. We find all 36 possible instatiations of induced
motifs of type 1 with 1 ≤ s, t ≤ 6. The running time is always less than a minute
and half. This happens since the time constraint we impose by looking into
time-windows biases the dataset towards having this property, i.e., our proposed
method finds induced subgraphs even if it is not explicitly searching for such.
Furthermore, the number and size of subgraphs extracted is relatively small, so
it is possible to check a posteriori if these subgraphs are induced.

Anomalous subgraphs. Figure 3 shows a subset of the output of our pipeline,
colored accordingly to the geographical risk of each country involved: green for
Italian bank accounts (considered non risky), orange for medium risk countries,
yellow for low risk countries, and red for the high risk countries. Figure 3(a)
shows a type 1 motif, with s = 1, t = 8. The middle node receives on day 1 a
large amount of money from a German (DE) account, and then within the next
couple of days distributes it in smaller amounts to 8 different bank accounts, all
within Italy (IT). Figures 3(b), (c) show two more motifs of type 1 that involves
multiple countries. In Figure 3(b), the middle node resides in Belgium (BE),
while source and target nodes are in Italy and Croatia (HR), while in Figure 3(c)
the amount is transferred entirely outside Italy. Figure 3(d) shows an induced
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Fig. 3. Different groups of transactions extracted from the platform that are classi-
fied as suspicious due to their smurf-like behaviour. For each motif, nodes are colored
accordingly to the geographical risk of each country involved: green for Italian bank
accounts (considered non risky), orange for medium risk countries, yellow for low risk
countries, and red for the high risk countries. Edge thickness indicates the amount
transferred, also labeled on top of the edges.
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Fig. 4. Number of motifs extracted from the whole data set for each class, defined in
the main text.

path of length 2 where the source and target nodes reside in Albania and Bosnia,
respectively, while the middle node in Italy. Note that the two transactions take
place within a single day. It is worth outlining that Albania is ranked as one of
two of the countries most at risk from money laundering according to the Money
Laundering and Terrorist Financing Index, published by the Basel Institute [4].
Similarly, Figures 3(e),(f) show two more suspicious motifs, involving Germany
(DE), Switzerland (CH), Italy (IT), and Lithuania (LT) Figures 3(g), (h) show
two examples of type 2 motifs: in Figure 3(e) the source node resides in Great
Britain (GB), in Figure 3(e) both middle nodes are outside Italy while source
and target nodes are in Italy.

Motif classification The motifs extracted can be classified according to the needs
of further manual inspection, to be performed by anti-financial crime specialists.
Figure 4 shows the distribution of the motifs detected according to our clas-
sification, which relies on the geography of the bank accounts involved. This
classification is performed from the point of view of the financial institutions
monitoring transactions (MIB in this case), but it can be generalized to any
financial institution. The largest share of the motifs extracted can be classified
as “direct involvement”. In these motifs, MIB customers are engaged as pivotal
figures (i.e. middle nodes), while being both beneficiary as well as ordering party
of conspicuous transactions in the velocity schema. Another substantial share of
motifs are classified as “full pass-through”. In these motifs, MIB is supporting
the payment delivery of others banks, so all the nodes involved are not MIB cus-
tomer. Another case can be classified as “hybrid involvement”, in which, while
the pivotal middle node is external to MIB, some of the wire transfers start
from or are directed to MIB customers. In this case, we have MIB nodes only in
one side of the motif. An example of this class are motifs sketched in Fig. 3(c).
Another important category is the one in which all source and target nodes be-
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long to MIB customer base, while the middle node is external to the bank. This
case is defined as “U-turn” in the literature [26]. The middle node is frequently
located abroad in specific countries with inexplicable business reasons. Those
cases are remarkably interesting since they present an enhanced “lack of eco-
nomic purpose” feature, combined with the typical triggering red flag of “money
laundering high risk geographies”. Finally, the last class is composed by motifs
in which the “U-turn” is embedded in clusters of “pass-through” payments. In
this case, the middle node is external to MIB, as well as a subset of sources
and/or targets, thus we label it as a specific class “U-turn in pass-through”.

5 Conclusion

In this work we have proposed a practical pipeline for finding sets of transactions
suspicious of money laundering. We show that our method scales gracefully
with the size of the dataset, and bypasses the computational complexity lower
bound of subgraph isomorphism by exploiting the high velocity characteristics
of smurf-like transactions. Specifically, we show that simple database joins when
combined with prior knowledge result in efficiency, which is crucial for real-
time detection of such illicit activities. Furthermore, by studying the output of
our pipeline, we provide a novel characterization of smurf-like motifs that is of
independent interest to anti-money laundering practitioners and financial crime
units. The latter provides insights on how money launderers use geography and
the efficiency limitations of real-world transaction monitoring systems to perform
their activities. An interesting open direction is learning more complex motifs
that money launderers form by leveraging labeled transactions.

According to the perspective of anti-financial crime stakeholders, mainly in-
terested into the practical monitoring power of the tools regardless the under-
lying mathematical approach, it is to be stressed that the “direct involvement”
schema may be, at least in a partial manner, spotted with traditional rule-based
algorithms based on counters and thresholds applied to wire transfers involving
the customer base. These methods rely on relational databases only and are
largely popular inside the banking industry. However, they present relevant lim-
itations intrinsic to the fact that they do not consider the features of the whole
transaction graph. Such limitations become almost a state of blindness for the
cases “full pass-through”, “hybrid involvement”, “U-turn”, and “U-turn in pass-
through”. These cases are to be taken into account when not only the customer
base of bank but also counter-parties partially or totally external to it are to be
considered. In this line of work, the presented results are a seminal contribution
far from being maturely exploited in improving transaction monitoring systems.
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