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Abstract. The stability of feature selection refers to the variability of the
selected feature sets induced by small changes of data sampling or anal-
ysis pipeline. Instability may strongly limit a sound interpretation of the
selected features by domain experts. This work addresses the problem of
assessing stability in the presence of correlated features. Correctly mea-
suring selection stability in this context amounts to estimate to which
extent several correlated variables contribute to predictive models, and
how such contributions may change with the data sampling. We pro-
pose here a novel stability index taking into account such multivariate
contributions. The shared contributions of several variables to predictive
models do not only depend on the possible correlations between them.
Computing this stability index therefore requires to solve a weighted bi-
partite matching problem to discover which variables actually share such
contributions. We demonstrate that our novel approach provides more
robust stability estimates than current measures, including existing ones
taking into account feature correlations. The benefits of the proposed
approach are demonstrated on simulated and real data, including mi-
croarray and mass spectrometry datasets. The code and datasets used in
this paper are publicly available: https://github.com/hamerv/ecml21.

1 Introduction

Feature selection, i.e. the selection of a small subset of relevant features to be
included in a predictive model, has already been studied in depth [3,8,10]. It has
become compulsory for a wide variety of applications due to the appearance of
very high dimensional data sets, notably in the biomedical domain [8].

Assessing feature selection has two distinct objectives: 1) a measure of the
predictive performance of the models built on the selected features and 2) a
measure of the stability of the selected features. Possible additional quality cri-
teria are minimal model size or sparsity. Instability arises when the selected
features drastically change after marginal modifications of the data sampling or
processing pipeline. It prevents a correct and sound interpretation of the selected
features and of the models built from them. One could even prefer a more stable
modeling even if slightly less accurate [3,7].
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A typical protocol to assess selection stability amounts to run a feature selec-
tion algorithm over marginally modified training sets (e.g. through sub-sampling
or bootstrapping) and to compare the selected feature sets across runs. Ad-
equately evaluating the observed differences between these feature sets is the
question we address here. A common measure is the Kuncheva index [4] which
computes the proportion of common features across a pair of runs and reports
the average over all pairs of runs, after correcting these proportions for chance.
Such a measure and additional variants (briefly revisited in section 2) only focus
on the identities of selected features in each run but plainly ignore the possible
correlations between such features. This could lead to a pessimistic estimation
of the stability when some features are selected in one run and other features,
distinct from but highly correlated to the initial ones, are selected in another
run. Previous works specifically address this issue by proposing stability indices
taking into account feature correlations (or, more generally, feature similarity
values) [9,12].

In this work, we argue that correctly assessing feature selection stability
should go beyond considering correlations between features. Indeed, the selected
features are the input variables of predictive models. Measuring stability should
also assess to which extent the selected features jointly contribute to a mul-
tivariate model, and how such contributions vary across selection runs. In the
simplest case, the importance of a specific feature in a (generalized) linear model
is directly proportional to its absolute weight value in such a model. Section 3
extends to non-linear models this notion of feature importance. Section 4 de-
scribes typical situations in which current stability measures are questionable.
This analysis motivates our maximum shared importance stability measure, for-
mally defined in section 5. Computing this stability index requires to solve a
weighted bipartite matching problem to discover which variables actually share
such importance values across selection runs. Practical experiments on simu-
lated and real data, including microarray and mass spectrometry datasets, are
reported in section 6 to illustrate the benefits of the proposed approach.

2 Related Work

Let F1≤i≤M denote the subsets of features, among the d original features, pro-
duced by a feature selection algorithm run on M (e.g. bootstrap) samples of
a training set. Let ki denote |Fi|, the number of selected features in run i.
The Kuncheva index [4] quantifies the stability across the M selected subsets
of features, whenever the number of selected features is constant across runs.
Nogueira [6] generalizes the Kuncheva index to handle a varying number ki of
selected features:

φ = 1−
1
d

∑d
f=1 s

2
f

k̄
d ∗ (1− k̄

d )
(1)

with k̄ the mean number of selected features over all runs, and s2
f = M

M−1 p̂f (1−
p̂f ) the estimator of the variance of the selection of feature f over the M selected
subsets, where p̂f is the fraction of times f has been selected among them.
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The Kuncheva index (KI) and the φ measure plainly ignore possible correla-
tions between features. Inspired from Sechidis [9], we consider a scenario where
a selection algorithm toggles, between pairs of correlated variables, across runs.
More specifically, let us represent the selection matrix Z below with one row per
selection run, zi,f indicating the selection of feature f in run i

Z =


1 0 1 0 0 0 ... 0
0 1 1 0 0 0 ... 0
1 0 0 1 0 0 ... 0
0 1 0 1 0 0 ... 0


z1, , selected features in run 1
z2, , selected features in run 2
... (2)

In this limit case scenario, the selection algorithm toggles between features
(1,2) and between features (3,4), while no other feature is ever selected. Let us
assume that each pair of these features is strongly correlated. Since the selection
algorithm always picks one variable in each correlated group, the information
captured is essentially the same in each run and the selection should be consid-
ered perfectly stable. Yet, the Kuncheva Index and φ would tend to 1

3 as d tends
to infinity in such a scenario.

Sechidis [9] generalizes φ in order to accurately measure the selection stability
in the presence of highly correlated variables:

φS = 1− tr(SKZZ)

tr(SΣ0)
(3)

where the elements sf,f ′ ≥ 0 of the symmetric matrix S represent the correlations
or, more generally, a similarity measure between features f and f ′, the matrix
KZZ is the variance-covariance matrix of Z and Σ0 a normalization matrix. In
the limit case scenario presented above and assuming perfect correlation between
features 1 and 2, and, 3 and 4, respectively, φS = 1. This stability index φS
thus considers the feature correlations and only reduces to φ whenever S is the
identity matrix. Yet, we show in section 4 and 6.1 that this measure is not lower
bounded and can tend to −∞ in seemingly stable situations.

Similarly to our proposal (detailed in section 5), Yu et al. [11] define a sta-
bility measure as the objective value of a maximum weighted bipartite matching
problem. The two sets of vertices represent the selected features of two selection
runs while the edge weights are the correlations between these features. The
authors also propose a variant of their measure where each vertex can represent
a correlated feature group as a whole. This measure is however not fully defined,
as it requires the number of vertices (individually selected features or feature
groups) to be constant across selection runs. This restriction is hardly met by all
selection algorithms that could be considered in practice. In contrast, we show
in section 5 that our novel measure is fully defined and actually generalizes the
measure proposed in [11].

The POGR index is another existing stability measure defined to handle
feature correlations [12]:

POGR =
1

M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

|Fi ∩ Fj |+Oi,j

ki
, (4)
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with |Fi ∩ Fj | the number of features selected in both runs i and j, and Oi,j

the number of selected features in run i which are not selected in run j but are
significantly correlated to at least one feature selected in run j. In our limit case
scenario (2), POGR=1 as the algorithm always selects a feature from each of the
two correlated pairs. Yet, we also illustrate its limitations in section 4 and 6.1.

We also consider a popular stability measure which estimates the stability
of a feature weighting. It computes the average pairwise correlation between
feature weights of different selection runs:

φpears =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

∑d
f=1(wi,f − µi)(wj,f − µj)√∑d

f=1(wi,f − µi)2 ∗
√∑d

f=1(wj,f − µj)2
, (5)

with wi,f the weight, or score, associated to feature f in selection run i and µi

the average feature weight in this run. Whenever these weights are either 0 or
1 (indicating the selection status of the feature) and if the number of non-zero
weights is constant across selection runs, φpears becomes equivalent to KI and
φ [5]. In this work, we use as feature weights the feature importance values,
formally defined in the next section.

3 Feature importance

For each selection run i, the selected features Fi are assumed to be the input
variables used to estimate a predictive model. We refer to Ii,f as the importance
value of the selected feature f in the predictive model Pi of run i, with Ii,f = 0
if f is not selected in run i. The binary matrix Z (introduced in (2)) is now
replaced by a real matrix I made of these positive importance values.

We define the importance of a feature f in the predictive model Pi, assumed
here to be a classifier, as the inverse of the smallest noise applied to f necessary
to flip the decision of model Pi, averaged over the n learning examples. Formally,

Ii,f ,
1

n

n∑
l=1

ki × Ii,f,xl∑d
f ′∈Fi

Ii,f ′,xl

, Ii,f,xl
=

σf
δxl,i,f

(6)

where δxl,i,f is the smallest additive change (in absolute value) required to fea-
ture f such that the decision of the predictive model Pi on example xl changes,
and σf the standard deviation of feature f . Intuitively, if one can change feature
f by large amounts without perturbing the decisions of the classifier, then f is
not important in its decisions. To the contrary, if a small change to f causes a
lot of decision switches, then the model is highly sensitive to it. Such a definition
is highly reminiscent of the permutation test introduced by Breiman to quantify
the importance of a feature in a Random Forest. Yet, our formulation has been
preferred due to its high interpretability for linear models.

Indeed, for a linear model with weights wi, built on features normalized to
unit variance, this formulation can be shown to be equivalent to

Ii,f = ||wi||0 ×
|wi,f |
||wi||1

. (7)
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The importance of a feature in a linear model is proportional to the absolute
value of its weight in such a model. We further normalize feature importance
such that each row of the importance matrix I sums up to k̄, the average number
of selected features.

4 Limits of existing stability measures

We describe here 2 scenarios of feature selection in correlated feature spaces. We
show that the existing stability measures exhibit undesirable behaviors in these
scenarios, which will further motivates our novel stability measure introduced in
section 5.

Figures 1 and 2 illustrate the similarity between two selection runs. These
figures represent feature importance in a more intuitive way than the importance
matrix I. Each feature (or each group of highly correlated features) is identified
by a unique color and the width of the rectangles correspond to the relative
importance value of a feature (group) in the predictive model for this run. We
assume for simplicity that the total number d of features tends to infinity and
that the only non-negligible feature correlations are the ones illustrated by ex-
plicit links in the figures. This implies that the denominator of φS in equation (3)
simply becomes tr(SΣ0) = k̄, the average number of selected features.

In both scenarios, we consider a group of q perfectly correlated features and
we study what happens when q, starting from 1, gradually increases. The impor-
tance values of the features inside a correlated group can either be concentrated
on a single feature in the group or, to the contrary, be divided, possibly un-
evenly, among several or all correlated features. No matter the case, we assume
that the cumulative importance of all features within a correlated group roughly
stay constant across selection runs. This assumption is actually confirmed in
our later practical experiments reported in Figure 4. Our limit case scenarios
are designed in such a way that the stability value should be equal to 1

2 and
stay constant no matter the value of q. We show that no existing stability index
satisfies this property.

In the first scenario (Figure 1), a group of q perfectly correlated features

(orange) is selected with a cumulative importance of k̄
4 in both selection runs,

together with another feature (green). The two additional selected features differ
in each run. Arguably, whether a large group of correlated features or a single
feature from this group is selected should not impact stability, as long as the
global contribution of the group to the predictive models is unchanged. In such
a scenario we argue that the stability should be equal to 1

2 , independently of
q, as half of the selected information is in common between both runs. In this
scenario, φS , φ, φpears and POGR correctly start at 1

2 when q = 1 but φS , φ
(both are equivalent in this example) and POGR increase and tend to 1 when
q tends to ∞ while φpears decreases with q. The precise dependencies of these
measures on q are summarized in Table 1.
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I1,q = k̄
4

I2,q = k̄
4

I2,2 = k̄
4

I2,5 = k̄
4

I2,6 = k̄
4

I1,2 = k̄
4

I1,3 = k̄
4

I1,4 = k̄
4

Fig. 1. Scenario 1. A group of q perfectly correlated features (orange) is selected
in both selection runs. Their specific importance in predictive models may vary
but their cumulative importance is assumed constant across runs and equal to
k̄
4 . The stability should be equal to 1

2 in such a scenario, independently of the q
value, because the information captured by predictive models is essentially the
same in both runs.

I2,q = k̄
4

I2,2 = k̄
4

I2,5 = k̄
4

I2,6 = k̄
4

I1,q = k̄
4

I1,2 = k̄
4

I1,3 = k̄
4

I1,4 = k̄
4

Fig. 2. Scenario 2. In the second selection run (below), a group of q perfectly

correlated features is selected with a cumulative importance of k̄
4 . In the first

run (top), a single feature from this group is selected and captures the whole
group importance in the predictive model. The stability should be equal to 1

2 ,
independently of the q value.

Table 1. Dependencies of φS , φ, φpears and POGR on the size q of the correlated
group in the scenarios represented in Figures 1 (top) and 2 (bottom). In order
to get a closed formula for φpears, importance values are assumed to be evenly
distributed within a correlated group.

Measure Value q = 1 limq→∞

φS
q+1
q+3

1
2

1

φ q+1
q+3

1
2

1

φpears
q+1
3q+1

1
2

1
3

POGR q+1
q+3

1
2

1

POGR, φ, φS

φpears

Measure Value q = 1 limq→∞

φS 1− q2−2q+5
q+7

1
2

−∞
φ 1− q+3

q+7
1
2

0

φpears

1
4q

+ 1
4√

1
4q

+ 3
4

1
2

√
3
6

POGR 1
2
( 1
2

+ q+1
q+3

) 1
2

3
4

POGR

φS

φ
φpears
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The second scenario (Figure 2) is nearly identical to the first one, except
that a single feature of the correlated group is selected in the first selection run.
This feature captures the whole group importance. Again, stability should be
equal to 1

2 , independently of q. In this second scenario, φS , φ, φpears and POGR
correctly start at 1

2 when q = 1 but φS , φ and φpears decrease and respectively

tend to −∞, 0 and
√

3
6 when q →∞, while POGR increases and tends to 3

4 .

5 Stability as Maximal Shared Importance

In this section, we introduce a novel stability measure and show that it behaves
adequately in the two scenarios discussed in section 4. We further demonstrate
that it generalizes previous work and prove several of its properties.

Unlike the limit cases presented in section 4, actual correlations between
features need not be restricted to 0 or 1 values. Moreover, observing some cor-
relation between e.g. a pair of features does not guarantee that they will nec-
essarily share their importance values in models taking these features as input
variables. Hence, to correctly assess stability while considering importance val-
ues, one needs to discover which features actually share importance values across
predictive models built from different selection runs. This is why the evaluation
of our stability index requires to solve a linear program.

Let S be a symmetric similarity matrix with sf,g the similarity value between
feature f and feature g. We assume that such a similarity value falls in the [0, 1]
interval. It is supposed to be a priori defined or estimated over the whole training
set for any pair of features. Typical choices include the absolute values of the
Pearson’s or Spearman’s correlations, or mutual information normalized in the
[0, 1] interval over the whole training set.

For each pair (i, j) of feature selection runs, one looks for the matching be-
tween features that maximizes a (similarity weighted) shared importance. For-
mally, S(i, j) is the optimal objective value of the following constrained opti-
mization problem:

S(i, j) = max
x

∑
f,g sf,g × xf,g

k̄
(8)

subject to
∑
g∈Fj

xf,g ≤ Ii,f , ∀f ∈ Fi (9)

∑
f∈Fi

xf,g ≤ Ij,g, ∀g ∈ Fj (10)

xf,g ≥ 0, ∀(f, g) ∈ (Fi,Fj) (11)

The variables xf,g represent the latent amount of shared importance by feature
f , selected in run i, and feature g, selected in run j. This shared importance
is multiplied by the similarity sf,g between the two features. The feature f
can share its importance with several features of run j, but its total shared
importance cannot exceed its own importance Ii,f according to the constraint (9)
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(and its reciprocal (10)). Feature importance values are normalized such that∑
f∈Fi

Ii,f = k̄, the average number of selected features.1 Since the objective (8)
and all constraints are linear with respect to the variables xf,g, this optimization
problem can be efficiently solved by linear programming. The stability over M
feature selection runs is defined as the average pairwise optimal S(i, j) values:

φmsi =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

S(i, j) (12)

An example of optimal solution is depicted in Figure 3. Features 1, 2, 3 and 4
are selected in run i while features 2, 5, 6 and 7 are selected in run j. Feature
1 is heavily correlated to feature 6 (s1,6 = 0.8) and relatively well correlated
to feature 5 (s1,5 = 0.6). Feature 6 is also somewhat correlated to feature 3
(s3,6 = 0.4). To maximize the objective, the link x1,5 between features 1 and 5
is set to the maximum possible value, 0.7. The remaining importance of feature
1 is shared with feature 6 (x∗1,6 = 0.6) and the link between feature 3 and 6 is
set to the maximum remaining importance of feature 6 (x∗3,6 = 0.8).

F5, Ij,5 = 0.7 F2, Ij,2 = 1 F6, Ij,6 = 1.4 F7, Ij,7 = 0.9

F1, Ii,1 = 1.3 F2, Ii,2 = 0.7 F3, Ii,3 = 1 F4, Ii,4 = 1

s1,5 = 0.6

x∗1,5 = 0.7

⇒ S += 0.42

s1,6 = 0.8

x∗1,6 = 0.6 ⇓
S += 0.48

s2,2 = 1

x∗2,2 = 0.7

⇒ S += 0.7

s3,6 = 0.4

x∗3,6 = 0.8

⇒ S += 0.32

Fig. 3. Example of optimal solution with S(i, j) = 0.42+0.48+0.7+0.32
4 = 0.48. One

can verify that x∗1,5 + x∗1,6 ≤ Ii,1 = 1.3 and x∗1,6 + x∗3,6 ≤ Ij,6 = 1.4.

The stability φmsi behaves correctly in the two scenarios presented in sec-
tion 4. Considering the first scenario (Figure 1), the constant cumulative impor-
tance of the correlated group, independently of its size q, guarantees that the sta-
bility is also constant with q. Indeed, the optimal solution verifies

∑
q′,q′′∈[1,q] xq′,q′′

= k̄
4 which implies

S(i, j) =

∑
q′,q′′∈[1,q] sq′,q′′xq′,q′′ + k̄

4

k̄
=

k̄
4 + k̄

4

k̄
=

1

2
,∀q ≥ 1,

as all the similarities sq,q′ are equal to 1. In scenario 2 (Figure 2), the importance
of feature 1 in the first run is shared among the q correlated features in the second

1 Since this normalization is undefined for a run i with ki = 0 (a limit case with no
feature selected in this run), we pose S(i, j) = 0 if ki = 0 ⊕ kj = 0, and S(i, j) = 1
if ki = kj = 0, with ⊕ the XOR operator.
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run: x1,q′ = I2,q′ , for all 1 ≤ q′ ≤ q, the optimal objective value is then

S(i, j) =

∑
1≤q′≤q s1,q′x1,q′ + k̄

4

k̄
=

∑
1≤q′≤q I2,q′ + k̄

4

k̄
=

k̄
4 + k̄

4

k̄
=

1

2
,∀q ≥ 1.

Section 6.1 further illustrates on simulated data that our measure φmsi does not
suffer from the limitations of current measures.

We show below that φmsi is bounded, which is necessary for a sound inter-
pretation of the stability value, and fully defined (Property 5.1 and 5.2). We also
demonstrate its maximality conditions in Property 5.3.

Property 5.1. The stability measure φmsi is bounded in [0, 1].

Proof. As every variable xf,g and every entry of the similarity matrix S are
positive, the objective (8) is positive as well. The measure is thus lower-bounded
by 0.

If one assumes maximally similar features (sf,g = 1,∀f, g) instead of their
actual similarity values, the resulting optimization problem has an optimal ob-
jective value at least equal to the optimal objective value of the initial problem.
The set of feasible solutions is the same as the constraints do not depend on sf,g,
and every solution has a larger or equal objective value than the corresponding
solution of the initial problem. The optimal solution becomes

S(i, j) =

∑
f∈Fi

∑
g∈Fj

xf,g

k̄
≤

∑
f∈Fi

Ii,f

k̄
=
k̄

k̄
= 1, (13)

using constraint (9). The stability φmsi is thus upper-bounded by 1.

Property 5.2. The stability measure φmsi is fully defined.

Proof. We have posed S(i, j) = 0 if ki = 0 ⊕ kj = 0 and 1 if ki = kj = 0, with
⊕ the XOR operator. It remains to show that the optimization problem always
admits a feasible solution when ki and kj are both non-zero. Since Ii,f ≥ 0,∀f ∈
Fi,∀i, the trivial assignation xf,g = 0,∀f, g is a solution.

Property 5.3. The stability measure φmsi is maximal (= 1) iff, for all pairs of
runs i and j, each feature importance in run i can be fully shared with the
importance of one or several perfectly correlated features in run j. In other
words, there exists no link xf,g > 0 with sf,g < 1, and all constraints from the
set (9) are active:

∑
g∈Fj

xf,g = Ii,f ,∀f ∈ Fi.

Proof. Suppose there exists a variable xf,g > 0 with sf,g < 1. Then increasing
sf,g strictly increases the objective value. The previous objective value was thus
not maximal. Suppose that sf,g = 1 for every variable xf,g > 0. Then, similarly
to equation (13),

S(i, j) =

∑
f∈Fi

∑
g∈Fj

xf,g

k̄
(14)

which is maximal (= 1) iff
∑

g∈Fj
xf,g = Ii,f ,∀f ∈ Fi. By reciprocity, the set of

constraints (9) is active iff the set of constraints (10) is active.
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Theorem 5.1 shows that solving the optimization problem (8) is equivalent
to solving a maximum weighted bi-partite matching problem whenever the im-
portance of all selected features is evenly distributed between them in any given
run and the number of selected features is constant across the M runs. In this
specific case, φmsi reduces to the measure proposed by Yu et al. [11].

Theorem 5.1. Whenever the importance of all selected features is evenly dis-
tributed between them in any given run and the number of selected features is
constant across the M runs, the constrained optimization problem (8) is a max-
imum weighted bi-partite matching problem.

Proof. The assumptions imply Ii,f = 1,∀f ∈ Fi,∀i. Problem (8) has the form
of {max cx|Ax ≤ b, x ≥ 0}, with A the matrix of constraints (9) and (10). We
first show that A is totally submodular, i.e. every of its square submatrix has
determinant 0,+1 or −1. The following four conditions are sufficient for a matrix
to be totally submodular [1]:

1. Every entry in A is 0, +1, or -1;
2. Every column of A contains at most two non-zero (i.e., +1 or -1) entries;
3. If two non-zero entries in a column of A have the same sign, then the row of

one is in B and the other in C, with B and C two disjoint sets of rows of A;
4. If two non-zero entries in a column of A have opposite signs, then the rows

of both are in B or both in C, with B and C two disjoint sets of rows of A.

Condition 1 is satisfied as the coefficients multiplying xf,g in the set of con-
straints (9) and (10) are 0 or 1. Condition 2 holds because each variable xf,g
has a non-zero coefficient in two constraints, one from the set of constraints (9)
and one from (10). Condition 3 holds as we let B be the rows of A representing
the set of constraints (9) and C be the rows of A corresponding to the set of
constraints (10). If two non-zero entries in a column of A have the same sign,
then one row represents a constraint in set (9) (and is thus in B) while the other
represents a constraint in set (10) (and is thus in C). Condition 4 is trivially
satisfied as two non-zero entries of A never have opposite signs.

If A is totally submodular and b is integral (which is here the case as Ii,f =
1,∀f ∈ Fi,∀i), then linear programs of the forms {max cx|Ax ≤ b, x ≥ 0} have
integral optimal solutions. In our case, the variables xf,g can only belong to
{0, 1} which makes the original optimization problem equivalent to maximum
weighted bipartite matching.

Computing S(i, j) requires to solve a linear programming problem with kikj
variables, which can currently be done in O((kikj)

2.055) time [2]. The overall

time complexity to compute φmsi is then O(M2(kikj)2.055) ≈ O(M2k
4.11

). Even
though this is a somewhat high computational cost, it does not depend on the
typically very high number d of features, unlike φS which requires O(d2) time.

6 Experiments

In this section, we illustrate on simulated data that our proposed measure φmsi

improves the behavior of current measures in the presence of highly correlated
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feature groups (section 6.1). We further show on microarray and mass spectrom-
etry data that the (accuracy, stability) Pareto fronts change when the stability
measure includes feature correlation and feature importance values (section 6.2).

Classification accuracy and stability of the feature selection are estimated
through bootstrapping. Feature selection is applied on each bootstrap sample
and the stability is computed across M runs. Classification accuracy is evaluated
on the out-of-bag examples of each run and its average value is reported.

6.1 Simulated Data

We use an artificially generated data set with N = 5 groups of variables. Each
group contains q features that are highly correlated to each other (average corre-
lation of ρg ≥ 0.8). In addition to these correlated groups, the data set contains
l = 1000 variables. Feature values are sampled from two multivariate normal
distributions using the mvrnorm R package. Positive examples (n+ = 100) are
sampled from a first distribution, centered on µ+, a vector with µ+,f = µg

+ if
feature f belongs to one of the N = 5 correlated groups, µ¬g+ otherwise. Nega-
tive examples (n− = 100) are sampled from a second distribution, centered on
µ− = −µ+. Both distributions have unit variance. We consider three scenarios
with different values of µg

+, µ¬g+ and ρg, specified in Table 2. In all scenarios, fea-
tures inside a correlated group are very relevant to the binary prediction task,
while features outside such groups are less but still marginally relevant. The
group lasso is used as feature selection method (scenarios 1 and 2), regularized
such as to select all features inside a group or none of them. The standard lasso,
which tends to select only a few features inside each correlated group, is also
evaluated (scenario 3). The regularization parameter λ of the lasso and group
lasso is chosen so as to select approximately 40 features when q = 1 (each
correlated group is reduced to a single feature). For larger q values, the N = 5
correlated groups are expected to be selected in most of the M = 30 selection
runs while the selection of the additional features is likely to be unstable. This
experiment is repeated 10 times using different generative seeds for the data sets
and the mean stability values are reported on Figure 5 as a function of q, the
size of the correlated groups.

Table 2. Experimental settings for the 3 scenarios. The relevance of features
inside one of the N = 5 correlated groups is related to µg

+ while the relevance
of features outside any group (∼ µ¬g+ ) is constant across scenarios. The average
intra-group correlation is ρg and inter-group correlation is negligible.

Scenario µg
+ µ¬g+ ρg method

1 0.35 0.05 0.8 group lasso

2 0.5 0.05 0.8 group lasso

3 0.5 0.05 0.95 lasso
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Fig. 4. Feature stability maps of the group lasso (scenario 1) when the size of
the correlated groups q is equal to 1 (top) and 10 (bottom). As the cumulative
importance of each group is approximately constant in both feature stability
maps, their stability should be similar.

Figure 4 represents the cumulative importance of the features that are se-
lected by the group lasso in scenario 1 when q = 1 (top) and q = 10 (bottom).
We use here a similar representation as in Figures 1, 2 and 3, extended to M = 30
runs. We refer to such a representation as a feature stability map. Figure 4 il-
lustrates that the group lasso gives more importance to the features of the
5 “groups” when q = 1 as they are more relevant (by design) to the classifi-
cation. When q = 10, the cumulative importance of each correlated group is
approximately the same as in the q = 1 case, with the individual feature impor-
tance proportionally reduced. This result supports the assumptions made when
defining the limit case represented in Figure 2.

In this controlled experiment, the similarity matrix S is estimated as the
absolute values of the pairwise Spearman’s ρ correlation: sf,f ′ = |ρf,f ′ |. Such
similarities are used when computing φmsi and φS . Figure 5 compares φ, φpears

(with the importance values Ii,f as feature weights), φmsi, φS and POGR when
the size q of the correlated groups increases. When the group lasso is used
(Figures 5a and 5b), φ and POGR increases with q while φpears decreases with q.

The evolution of φS depends on the scenario considered. The experiments
reported in Figure 5b are such that the correlated groups are sufficiently relevant
for the classification so as to be selected in nearly all selection runs. In such a
situation, φS tends to increase with q. Whenever some correlated groups are
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Fig. 5. Stability values of φ, φS , φmsi, φpears and POGR in the presence of highly
correlated feature groups, in function of q, the size of such groups. The group
lasso is used for feature selection in (a)(scenario 1) and (b)(scenario 2), the
lasso in (c)(scenario 3). Given the design of these experiments, the stability
value should not depend on q, which is only the case for φmsi in the 3 scenarios.

regularly not selected, as in scenario 1 reported in Figure 5a, φS actually tends
to decrease with q and decays to −∞.

Figure 5c is obtained with the pure lasso selection which selects a few fea-
tures inside correlated groups instead of the whole groups. In such a scenario, φ
and φpears decreases with q as the selection of a few features inside each group
becomes more and more unstable and because these measures do not take feature
correlations into account. POGR somewhat increases with q. This is the only
scenario for which φS is approximately constant, with a lower value than φmsi.
The novel stability measure φmsi is the only one to be approximately constant
with q, in all 3 scenarios.

6.2 Stability of Standard Selection Methods

In this section, we report (accuracy, stability) Pareto fronts on real data sets, in-
cluding microarray and mass spectrometry data. We compare here the standard
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stability φ, which ignores feature correlations, and φmsi. The similarity matrix
S is estimated as the absolute values of the pairwise Spearman’s ρ correlation:
sf,f ′ = |ρf,f ′ |. We consider the following feature selection methods and report
performances over M = 100 selection runs.

– Random forests with 1000 trees. A first forest is learned on the original d
features. The 20 features whose removal would cause the greatest accuracy
decrease on the out-of-bag examples are selected. A second forest of 1000
trees built on those 20 features is used for prediction.

– Logistic regression with a lasso and elastic-net penalty. For the elastic-
net λ1(λ2L1 + (1 − λ2)L2), the parameter λ2, which dictates the balance
between L1 and L2 norms, is set to 0.8. The parameter λ1 is set to select,
on average, k̄ = 20 features over the M runs.

– The relief algorithm with 5 neighbors with equal weights to select 20 fea-
tures. Predictive models are 5-NN classifiers.

– The logistic or hinge loss RFE. Predictive models are obtained by logistic
regression or by fitting a linear svm on the 20 selected features.

– The t-test, Mutual Information Maximization (mim) (infotheo R package)
and minimum Redundancy Maximum Relevance (mRMR) (mRMRe R pack-
age) information theoretic methods. For these three last approaches, the
final model used for prediction is logistic regression estimated from the 20
selected features.

We report experiments on 5 microarray data sets (alon, singh, chiaretti,
gravier and borovecki) from the datamicroarray R package and one mass-
spectrometric data set, arcene, from the uci machine learning repository. They
have a high number of features (from 2,000 for alon to 22,283 for borovecki)
with respect to the number of training examples (from 31 for borovecki to
198 for arcene), which generally leads to instability. In each selection run, the
feature space is pre-filtered by keeping the 5,000 features with highest variance
before running a specific selection algorithm.

Figure 6 represents the (accuracy, stability) Pareto front across all feature
selection methods on two representative datasets (chiaretti (top) and singh

(bottom)), for the two stability measures φ (left) and φmsi (right). Results on all
6 datasets are summarized in Table 3. These results show that the choice of best
performing feature selection methods highly depends on the stability measure
used. Figure 6 and Table 3 further show that the stability φmsi is much higher
than φ for all selection methods. This phenomenon is the most pronounced on
borovecki where 0.06 < φ < 0.24 and 0.7 < φmsi < 0.88. This indicates that
the observed instability is largely due to the high correlation between the input
features. Even though the selection is unstable at the level of the input features,
selected features from different selection runs tend to be highly correlated.

Correcting for the correlation between features, as done by φS , is not enough
however. Stability results according to φS are detailed in appendix, with even
lower values than those of φ. The proposed measure φmsi behaves better because
it does not only consider feature correlations but also feature importance values,
which are matched between predictive models from several selection runs.
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(a) chiaretti, φ (b) chiaretti, φmsi

(c) singh, φ (d) singh, φmsi

Fig. 6. Pareto fronts across selection methods obtained when φ (a,c) or φmsi (b,d)
estimates stability, on two representative datasets: chiaretti and singh.

Table 3. Stability ranges and Pareto fronts for φ and φmsi on all datasets.
Data Range φ Pareto front φ Range φmsi Pareto front φmsi Range ac.

chiar. 0.19-0.41 logrfe/ttest 0.54-0.62 logrfe/lasso/en/rf 0.77-0.83

singh 0.32-0.51 svmrfe/logrfe/rf 0.69-0.81 svmrfe/en/rf 0.89-0.93

alon 0.21-0.47 logrfe/svmrfe 0.64-0.76
logrfe/en/

relief/svmrfe
0.77-0.82

grav. 0.11-0.27 logrfe/ttest 0.36-0.47 logrfe/ttest/en 0.68-0.75

arcene 0.11-0.3
rf/relief/

logrfe/en
0.41-0.7 rf 0.68-0.75

borov. 0.06-0.24 ttest 0.7-0.88 ttest/rf 0.88-0.97

7 Conclusion

Current feature selection methods, especially applied to highly dimensional data,
tend to suffer from instability since marginal modifications in data sampling may
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result in largely distinct selected feature sets. Such instability may strongly limits
a sound interpretation of the selected variables.

In this work, we focus on estimating stability in feature spaces with strong
feature correlations. We pose stability as the optimal objective value of a con-
strained optimization problem, which can be efficiently solved by linear pro-
gramming. This objective depends on a similarity measure between features and
on their relative importance values in predictive models. We demonstrate on
handcrafted examples and on simulated data that our approach provides more
relevant stability estimates than existing stability measures. Experimental re-
sults on microarray and mass spectrometry data also illustrate that a sound
stability estimation may strongly affect the choice of selection method when
picking an optimal trade-off between feature selection stability and predictive
performance.
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