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Abstract. The small-loss criterion is widely used in recent label-noise
learning methods. However, such a criterion only considers the loss of
each training sample in a mini-batch but ignores the loss distribution in
the whole training set. Moreover, the selection of clean samples depends
on a heuristic clean data rate. As a result, some noisy-labeled samples
are easily identified as clean ones, and vice versa. In this paper, we pro-
pose a novel yet simple sample selection method, which mainly consists
of a Hierarchical Voting Scheme (HVS) and an Adaptive Clean data
rate Estimation Strategy (ACES), to accurately identify clean samples
and noisy-labeled samples for robust learning. Specifically, we propose
HVS to effectively combine the global vote and the local vote, so that
both epoch-level and batch-level information is exploited to assign a hi-
erarchical vote for each mini-batch sample. Based on HVS, we further
develop ACES to adaptively estimate the clean data rate by leverag-
ing a 1D Gaussian Mixture Model (GMM). Experimental results show
that our proposed method consistently outperforms several state-of-the-
art label-noise learning methods on both synthetic and real-world noisy
benchmark datasets.

Keywords: Noisy labels · Label-noise learning · Sample selection

1 Introduction

In recent years, Deep Neural Networks (DNNs) based methods have achieved
remarkable success in a variety of artificial intelligence-related tasks. Generally,
these methods rely heavily on a large number of high-quality annotated training
samples. Unfortunately, collecting large-scale samples with fully accurate anno-
tations is labor-intensive and time-consuming, which unavoidably yields noisy
labels [2, 11, 27]. Many DNNs-based methods easily overfit noisy-labeled sam-
ples, mainly due to the high learning capability of DNNs involving millions of
parameters. A recent study [26] has shown that DNNs severely suffer from poor
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Fig. 1. Comparison between (a) the small-loss criterion and (b) our proposed small-
vote sample selection method in the two randomly chosen mini-batches (the batch size
is 30) during training. The purple dotted lines represent the thresholds obtained by the
heuristic clean data rate (80% in two cases) and the green dotted ones represent the
adaptive thresholds obtained by our method. The samples whose indices are smaller
than or equal to the orange dotted lines are selected as clean samples.

generalization capability when they are trained on the samples containing noisy
labels.

To alleviate the adverse effects of noisy labels, label-noise learning methods
have been proposed to learn robust representations. Some methods [19, 14, 10, 24,
4] address the problem of noisy labels by selecting or weighting clean samples for
each mini-batch during training. These methods usually take advantage of the
small-loss criterion, which first identifies small-loss training samples as clean ones
and then uses them for updating the network parameters [7, 20]. Such a criterion
is well justified by the memorization effect that DNNs are able to learn simple
and general patterns from clean samples before fitting noisy-labeled samples [1].
However, the small-loss criterion only considers the loss of training samples in
each single mini-batch but ignores the loss distribution in the whole training set.
Moreover, a heuristic clean data rate is used to select clean samples, whereas the
noisy label distribution varies in randomly chosen mini-batches. Therefore, the
small-loss criterion may not accurately identify clean samples and noisy-labeled
samples, as illustrated in Figure 1(a). This raises the difficulty of learning robust
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models. Hence, how to accurately distinguish clean samples from noisy-labeled
samples remains a great challenge.

To address the above challenge, in this paper, we propose a novel small-vote
sample selection method to accurately select clean samples and noisy-labeled
samples, and robustly train DNN simultaneously. Specifically, our proposed
method mainly consists of a Hierarchical Voting Scheme (HVS) and an Adap-
tive Clean data rate Estimation Strategy (ACES). First, we develop HVS to
assign a hierarchical vote for each mini-batch sample. Then, based on HVS, we
introduce ACES to estimate the clean data rate by leveraging a 1D Gaussian
Mixture Model (GMM). Some intermediate training results are given in Fig-
ure 1(b). Obviously, our proposed method adaptively estimates clean data rates
reflecting well the different proportions of clean samples in the two randomly
chosen mini-batches.

The contributions of this paper are summarized as follows:

– We propose a novel yet simple small-vote sample selection method, which
performs noisy label detection and learns from noisy data in an end-to-end
manner. In particular, we develop HVS to effectively combine the global vote
from previous epochs and the local vote from the current mini-batch. In this
way, both epoch-level and batch-level information can be fully exploited for
voting. Based on HVS, we design ACES to adaptively and accurately identify
clean samples, guiding the learning of a robust model.

– We conduct extensive experiments on four benchmark datasets (including
MNIST, CIFAR-10, CIFAR-100, and Clothing 1M) with synthetic and real-
world noisy labels. Without bells and whistles, our proposed method achieves
excellent performance in terms of both test accuracy and label F1-score
in comparison with state-of-the-art label-noise learning methods. Moreover,
we show the good generalization capability of our method by introducing
the proposed sample selection method into several representative label-noise
learning methods.

2 Related Work

Roughly speaking, existing label-noise learning methods can be classified into
three categories, including label transition matrix estimation, robust regulariza-
tion, and sample selection.
Label transition matrix estimation. This category of methods is based on
the estimation of the label transition matrix, which characterizes the label tran-
sition probabilities from a true class to an assigned one [22]. For example, Gold-
berger et al. [5] add an additional softmax layer in the neural network to model
the label transition matrix. Patrini et al. [15] develop a two-step solution to
heuristically estimate the label transition matrix. Yao et al. [23] introduce an
intermediate class to decompose the original label transition matrix into the
product of two easy-to-estimate transition matrices. Note that this category of
methods cannot deal with a large number of labels and is fragile to a large ratio
of noisy-labeled samples.
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Robust regularization. This type of methods leverages robust regularization
techniques to avoid overfitting on noisy labels and thus improve the general-
ization ability of DNNs. Pereyra et al. [16] estimate the marginalized effect of
noisy labels during training and prevent DNN from assigning a full probabili-
ty to the noisy-labeled sample, thereby reducing overfitting. Zhang et al. [28]
regularize the DNN to favor simple linear behaviors in-between training sam-
ples to address the overfitting problem. Although these methods have achieved
promising performance, they usually depend on additional hyperparameters that
are sensitive to the data type [17, 13]. Moreover, some methods may completely
memorize noisy-labeled samples with high capacity networks, since DNNs are
often over-parameterized [6].
Sample selection. Recently, sample selection methods, which aim to select
clean samples from noisy training data, have attracted considerable attention in
label-noise learning. The small-loss criterion that identifies samples with small
training losses as clean samples has been widely used in recent methods. For
example, MentorNet [10] develops a collaborative learning paradigm, where a
mentor network is first pre-trained and then used to select clean samples based
on the small-loss criterion for guiding the training of a student network. Co-
teaching [7] also involves two networks, where small-loss samples are selected by
each network and fed into the peer network to update the network parameters
in each mini-batch. Different from Co-teaching, Co-teaching+ [24] only selects
small-loss samples with different prediction results from two networks. JoCoR
[20] calculates a joint loss with co-regularization for each sample based on two
networks, and then chooses the small-loss samples to simultaneously update
the parameters of two networks. Yao et al. [22] use an AutoML method to
dynamically determine the noise rate during the training process.

Different from conventional small-loss criterion based sample selection meth-
ods that only take into account the loss of each training sample in the current
mini-batch, we also exploit the loss distribution in the whole training set at
previous training epochs. This enables our method to more accurately identify
clean samples or noisy-labeled samples in each mini-batch during training.

3 Proposed Method

In this section, we develop a novel and effective sample selection method for label-
noise learning. After introducing preliminaries, we present the key components
of our proposed method in detail.

3.1 Preliminaries

Considering a K-class classification problem with the noisy training data D =
{xi, yi}Ni=1, where xi denotes the i-th sample (e.g., an image) in the training
set and yi ∈ {1, 2, . . . ,K} represents the label corresponding to the sample xi.
A sample is noisy-labeled when the corresponding label mismatches its ground-
truth label. A large number of methods [10, 7, 24, 20] identify the samples that
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are likely to be clean ones by using the small-loss criterion, and thus a robust
model can be trained with small-loss samples in each mini-batch. The details of
the small-loss criterion are described as follows.

A mini-batch data Dtb = {xbj , ybj}Jj=1 at epoch t is randomly drawn from the

noisy training data D, where xbj and ybj represent the j-th training sample in
mini-batch b and the corresponding label, respectively. J denotes the batch size.
The loss of each sample can be obtained by feeding Dtb into the model and then

used to identify clean samples. The selected clean data D̃tb can be formulated as

D̃tb = arg min
D′:|D′|≥λt·|Dt

b
|
L(fΘ,D′), (1)

where fΘ denotes the network with the parameters Θ, L represents the cross-
entropy loss, and λt denotes the clean data rate which controls how many small-
loss samples should be selected into D̃tb. λt is heuristically defined as

λt = 1− τ ·min(
t

T
, 1), (2)

where τ is the estimated noise rate, which can be inferred using validation sets
[12, 25]. The value of λt decreases quickly at the first T epochs until reaching
1− τ . Then, the selected clean data D̃t

b are used to calculate the average loss for
updating the network parameters Θ.

Despite its popularity, the small-loss criterion suffers from the following two
limitations. First, this criterion only considers the losses of mini-batch samples
but ignores the loss distribution of all the samples in the whole training set.
Such a way is not globally optimal. For example, as shown in the top row of
Figure 1(a), when a mini-batch mainly contains noisy-labeled samples, the loss-
es of this mini-batch may not be effectively used to indicate whether the label
is noisy or clean. Second, the clean data rate λt is critical to exploit the memo-
rization effect [1]. But according to Eq. (2), the value of λt is usually set without
fully exploiting the knowledge on the data. In other words, λt is heuristic and
it is often difficult to manually determine λt for each dataset. Therefore, some
noisy-labeled samples may be improperly selected as clean ones, and vice versa
(note that the mini-batch samples are randomly chosen from the whole training
set). This clearly leads to a performance decrease.

The above limitations motivate us to formulate and design an effective small-
vote sample selection method, which not only takes both the whole training
set and the current mini-batch into account, but also adaptively selects clean
samples. The proposed method mainly consists of a novel Hierarchical Voting
Scheme (HVS) and an Adaptive Clean data rate Estimation Strategy (ACES).

3.2 Hierarchical Voting Scheme (HVS)

HVS combines the global vote (based on the loss distributions of all the samples
at previous epochs) and the local vote (based on the losses of current mini-batch
samples) to assign a hierarchical vote for each mini-batch sample. In general, we
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compute and sort the loss of each sample in the whole training set after each
epoch, and combine the normalized rank indices of each mini-batch sample at
previous epochs as the global vote. Similarly, we view the normalized rank index
of each sample in the current mini-batch as the local vote. Then, a hierarchical
vote is performed by combining the global vote and the local vote from the
epoch-level and batch-level, respectively.

To be specific, at epoch t, we compute the losses of all the samples in the
whole training data. Suppose that the cross-entropy losses for the noisy training
data are denoted as Lt = {lt1, · · · , ltN}, where lti represents the loss of the i-th
sample at epoch t. Then, we sort all the elements in Lt in the ascending order to
obtain the sorted set Lt = {ltµ1

, · · · , ltµN }, where the permutation {µ1, · · · , µN}
is obtained such that ltµ1

≤ · · · ,≤ ltµN . Hence, the normalized rank index set Pt
at epoch t can be formulated as

Pt = {ptxµj |p
t
xµj

= j/N, ∀ xµj ∈ D}, (3)

where ptxµj
∈ [0, 1] represents the normalized rank index of the µj-th sample.

For the global vote, we vote each mini-batch sample based on the normalized
rank index set obtained at previous C training epochs, which can be formulated
as

Gtb = {gtxb
j
|gtxb

j
=

1

C

C∑
c=1

p
(t−c)
xb
j

,∀ xbj ∈ Dtb}, (4)

where gtxb
j

∈ [0, 1] indicates the global vote of xbj for mini-batch b at epoch t.

C is a hyper-parameter used to control how many previous epochs are used to

perform the global vote, and p
(t−c)
xb
j

represents the normalized rank index of xbj

at epoch (t− c).
Similarly, the losses for mini-batch b at epoch t are denoted as Ltb = {lt1b, · · · , ltJb},

where ltjb represents the loss of the j-th sample in the mini-batch. All the ele-

ments in Ltb are sorted in the ascending order to obtain the sorted set Ltb =
{ltν1b, · · · , l

t
νJb
}, where the permutation {ν1, · · · , νJ} is obtained such that ltν1b ≤

· · · ,≤ ltνJb. The normalized rank index set P̂tb in the mini-batch is

P̂tb = {p̂txbνj |p̂
t
xbνj

= j/J, ∀ xbνj ∈ D
t
b}, (5)

where p̂txbνj
∈ [0, 1] indicates the local vote of xbνj .

Finally, since both the global vote and the local vote have the same value
range, we define the hierarchical votes of mini-batch samples at epoch t by simply
combining them, i.e.,

Vtb = {vtxb
j
|vtxb

j
= gtxb

j
+ p̂txb

j
,∀ xbj ∈ Dtb}, (6)

where vtxb
j

∈ [0, 2] represents the hierarchical vote of xbj for mini-batch b at epoch

t. It is worth noting that instead of directly relying on the loss of the sample, we
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(a) Symmetry-20%. (b) Symmetry-40%.
(a) Symmetry-20%. (b) Symmetry-40%.

Fig. 2. Histograms of hierarchical votes at an epoch on the training sets involving (a)
symmetry-20% and (b) symmetry-40% noisy labels from the CIFAR-10 dataset. The
ground-truth noisy-labeled samples and clean samples are marked with different colors.
The red dotted lines denote the thresholds estimated by ACES.

take advantage of the normalized rank index for both the global vote and the
local vote. Such a manner is able to address the problem of different scales of
loss distributions at epochs and mini-batches.

3.3 Adaptive Clean Data Rate Estimation Strategy (ACES)

Intuitively, a noisy-labeled sample tends to have a higher hierarchical vote than
a clean sample (note that a sample will be assigned with a high hierarchical vote
if the corresponding local and global votes show large normalized rank indices).
In Figure 2, we visualize the histograms of hierarchical votes at an epoch on
the training sets involving two different levels of noisy labels from the CIFAR-
10 dataset. We can find that the histogram of samples at an epoch shows two
distinct modes which correspond to noisy-labeled samples and clean samples,
respectively.

The λt defined in Eq. (2) depends on a fixed noise rate τ , which is heuristic.
As a result, some noisy-labeled samples are incorrectly identified as clean ones,
and vice versa. Such a manner leads to a performance decrease. Therefore, we
develop ACES to adaptively estimate the clean data rate by taking advantage of
a 1D Gaussian Mixture Model (GMM) to model the histogram with two modes.

More specifically, given the noisy training data D and the corresponding
hierarchical votes V(t−1) at epoch (t − 1), we fit these votes using a 1D GMM
with two components:

F (V(t−1)) =
∑
i=1,2

πtiN{V(t−1)|mt
i, γ

t
i}, (7)
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Algorithm 1: The small-vote sample selection method

Input: Network fΘ with the parameters Θ, the number of epochs C for the
global vote, the maximum number of epochs Tmax, the maximum
number of iterations Imax, noisy training data D, the learning rate η;

Output: training parameters Θ;
1 for t = 1, 2, . . . , Tmax do
2 Shuffle the noisy training data D;
3 if t ≤ C then
4 Update the parameters Θ according to the small-loss criterion;
5 else
6 for b = 1, 2, . . . , Imax do
7 Fetch a mini-batch Dt

b from D;
8 Compute Gtb via Eq. (4);

9 Compute P̂t
b via Eq. (5);

10 Update Vt
b based on the global vote and the local vote via Eq. (6);

11 Select the training data D̂t
b by using α(t−1) via Eq. (8) from Dt

b;
12 Update the parameters Θ via gradient descent based on the selected

training data;
13 end

14 end
15 Compute and store Pt via Eq. (3);
16 Compute and store the threshold αt;
17 Update the learning rate η;

18 end
19 return Θ

where N denotes a Gaussian distribution, mt
i and γti are the mean and standard

deviation of the i-th component, respectively. πti represents the weight of the
i-th component. The parameters of 1D GMM can be estimated by using the EM
algorithm [3]. Then, the threshold α(t−1) is determined by finding the intersection
point of two Gaussians.

After obtaining the threshold α(t−1), we can select the mini-batch samples
whose votes are lower than the threshold as clean samples at epoch t. Mathe-
matically, the selected training data D̂t

b can be obtained as

D̂t
b = {xbj |vtxb

j
≤ α(t−1), ∀ xbj ∈ Dt

b}, (8)

where vtxb
j

is the hierarchical vote of xbj for mini-batch b at epoch t. Hence, the

clean data rate is estimated as |D̂t
b|/J .

The overall procedure of our proposed small-vote sample selection method
is shown in Algorithm 1. It is worth noting that our proposed method can be
viewed as an extension of the small-loss criterion. When only the local vote
(defined in Eq. (5)) and the heuristic clean data rate (defined in Eq. (2)) are
adopted, our proposed method degenerates to the small-loss criterion.
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Table 1. The details of four benchmark datasets.

Datasets # of train # of test # of class size

MNIST 60K 10K 10 28 × 28
CIFAR-10 50K 10K 10 32 × 32
CIFAR-100 50K 10K 100 32 × 32
Clothing1M 1M 10K 14 256 × 256

4 Experiments

We conduct experiments on several commonly used benchmark datasets and
compare the proposed method with several state-of-the-art label-noise learning
methods.

Datasets. We show the effectiveness of our proposed method on four benchmark
datasets, MNIST, CIFAR-10, CIFAR-100, and Clothing 1M [21]. These datasets
are widely used for evaluating the performance of label-noise learning methods
[7, 20]. The details of the four benchmark datasets are shown in Table 1.

For MNIST, CIFAR-10, and CIFAR-100, we follow the common settings to
add synthetic noise into the training sets, as done in the literature [7, 9]. Specif-
ically, the noisy labels are modified in the following two ways: (1) Symmetry
flipping: a sample is assigned to a uniform random label rather than its true
label with the probability ps, where ps = 20% or 40% in our experiments, as
done in [18]; (2) Pair flipping: a sample in one class is assigned to have the same
label of another class [7]. The probability pk of sample mislabelling in a class is
simply set to 40% in our experiments due to space limits. Similar results can be
observed for other values of ps or pk.

For Clothing 1M, we follow the same settings as [20]. We use 1M images
with noisy labels as the training set and 10K clean images as the test set. For
each image in the Clothing 1M dataset, we resize it to 256 × 256 and crop the
middle 224× 224 as the input of the model.

Competing Methods. We compare our proposed small-vote sample selec-
tion method (called as small-vote) with the following state-of-the-art label-noise
learning methods, including Co-teaching [7], Co-teaching+ [24], O2U-Net [9],
and JoCoR [20]. The baseline method that trains the standard Convolutional
Neural Network (CNN) with the small-loss criterion is also used.

Network Structure and Optimizer. For a fair comparison, we re-implement
all the methods based on the open-source codes by PyTorch and conduct all the
experiments on a NIVIDIA 2080Ti GPU. For MNIST, CIFAR-10, and CIFAR-
100, we adopt a 9-layer CNN [7]. For Clothing 1M, we use ResNet-18 [8]. All
experiments are trained for 200 epochs with the Adam optimizer (momentum =
0.9). The batch size is set to 128 for each dataset. The number of epochs C for
the global vote is set to 10. Similarly to O2U-Net [9], we use a linear decrease
function to cyclically adjust the learning rate, which linearly decreases from 0.1
to 0.001 in a cycle round. All our code will be released soon.
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(b) Symmetry-40%. (c) Pair-40%.(a) Symmetry-20%. 

t t t

t t t

Fig. 3. Results on the MNIST dataset under different settings of noisy labels. Top: test
accuracy (%), vs. epochs; bottom: label F1-score (%) vs. epochs.

Evaluation Metrics. We use two commonly used evaluation metrics: test ac-
curacy (i.e., test accuracy = (# of correct predictions ) / (# of test data)) and
label F1-score (i.e., Label F1-score = 2×P×R

P+R , where P = (# of clean labels) /
(# of all selected labels) is the label precision and R = (# of clean labels) / (#
of all clean samples) is the label recall).

4.1 Comparisons with State-of-the-Arts

We evaluate the performance obtained by all the competing methods on the
synthetic noisy labels by using MNIST, CIFAR-10, and CIFAR-100. Figures 3-5
show the results on the three datasets, respectively. We report the test accuracy
vs. the number of epochs and the label F1-score vs. the number of epochs on the
three datasets under different settings of noisy labels (including Symmetry-20%,
Symmetry-40%, and Pair-40%).

Moreover, we also show the superiority of our proposed method on the real-
world noisy labels by using the Clothing1M dataset. The comparison results are
given in Table 2, where “best” and “last” respectively denote the trained models
at the epoch (when the validation accuracy is optimal) and at the end of training
epochs.
Results on MNIST. As shown in Figure 3, our proposed small-vote method
outperforms the other competing methods in terms of both test accuracy and
label F1-score for different settings of noisy labels. This is because HVS effective-
ly assigns a hierarchical vote for each mini-batch sample and ACES adaptively
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(a) Symmetry-20%. (b) Symmetry-40%. (c) Pair-40%.

tt t t

t t t

Fig. 4. Results on the CIFAR-10 dataset under different settings of noisy labels. Top:
test accuracy (%), vs. epochs; bottom: label F1-score (%) vs. epochs.

estimates the clean data rate, leading to accurate identification of both noisy-
labeled samples and clean samples. O2U-Net involves two stages, where noisy
labels are detected in the first stage and then a model is trained on clean data in
the second stage. However, O2U-Net does not fully use the memorization effect
to alleviate the negative impact of noisy-labeled samples for training. Hence, the
test accuracy obtained by O2U-Net is inferior to our method. Note that O2U-
Net is not shown in the second row of Figure 3 since no sample selection is used
in O2U-Net.

Results on CIFAR-10. As shown in the first row of Figure 4, our proposed
small-vote method outperforms the other competing methods with a large mar-
gin. The recent state-of-the-art JoCoR obtains much worse performance than
our method in terms of average test accuracy over the last ten epochs (about
11.96%, 2.56%, and 2.49% decrease under three settings of noisy labels). From
the second row of Figure 4, the label F1-scores obtained by Co-teaching, Co-
teaching+, and JoCoR gradually decline after several epochs. In contrast, our
small-vote method not only achieves high label F1-scores under all the settings,
but also shows better performance at larger epochs. This can be ascribed to the
effectiveness of our method for discriminating noisy-labeled samples from clean
samples, enabling the capability of learning a more robust model.

Results on CIFAR-100. CIFAR-100 is more challenging than MNIST and
CIFAR-10. The overall test accuracy obtained by all the methods on CIFAR-100
is much lower than that on CIFAR-10, since there are more classes in CIFAR-100.
As shown in Figure 5, the label F1-score obtained by other competing method-
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(b) Symmetry-40%. (c) Pair-40%.(a) Symmetry-20%. 

tt t t

t t t

Fig. 5. Results on the CIFAR-100 dataset under different settings of noisy labels. Top:
test accuracy (%), vs. epochs; bottom: label F1-score (%) vs. epochs.

s first increases and then gradually decreases during the training. This shows
that the ability to identify noisy-labeled samples is limited for these methods.
However, the label F1-score obtained by the proposed method keeps very sta-
ble after several epochs under different settings, leading to better test accuracy.
Compared with the baseline method, our proposed method obtains much better
performance, which shows the excellent classification ability of our method. In
general, our proposed method performs favorably against the other competing
methods.
Results on Clothing 1M. From Table 2, our proposed small-vote method
obtains better results than the other competing methods on best. Moreover,
small-vote achieves a significant improvement in accuracy of 11.53% over Co-
teaching+, and an improvement of 0.53% over the JoCoR on last. Therefore,
small-vote can effectively identify noisy-labeled samples and clean samples on
the dataset containing real-world noisy labels. In summary, our proposed method
achieves state-of-the-art results against several competing methods on four dataset-
s with synthetic and real-world noisy labels.

4.2 Ablation studies

In this subsection, we perform ablation studies to analyze the effectiveness of key
components of small-vote and the influence of the key parameter on CIFAR-10.
Moreover, we show the generalization capability of our method by integrating
small-vote with several state-of-the-art label-noise learning methods.
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Table 2. Results on the Clothing 1M dataset. The test accuracy (%) is used for
performance comparison. The best results are highlighted in bold.

Methods best last

Co-teaching 69.21 68.51
Co-teaching+ 59.32 58.79

JoCoR 70.30 69.79
Baseline 68.72 68.21

Small-vote 70.43 70.32

Table 3. Ablation study of key components of our small-vote on CIFAR-10. The
average test accuracy (%) over the last ten epochs is used for performance comparison.
The best results are highlighted in bold.

Methods Symmetry-20% Symmetry-40% Pair-40%

HVS-L 89.67 86.54 80.46
HVS-G 90.12 87.53 83.12

HVS 90.99 88.27 84.51
Small-vote 91.56 89.59 85.70

First, to evaluate the importance of two main components (i.e., HVS and
ACES) in small-vote, we compare the following variants. The HVS-G and HVS-
L methods denote our proposed method based on the global vote and the local
vote, respectively, without using ACES (we use λt defined in Eq. (2) to select
clean samples instead). The HVS method denotes our proposed method based
on HVS without using ACES. The results are given in Table 3. Note that HVS-L
is equivalent to the baseline method.

Compared with HVS-L, HVS achieves a performance boost. HVS-L only re-
lies on the local information from the current mini-batch and uses a heuristic
clean date rate. On the contrary, HVS effectively combines the global infor-
mation from previous epochs and the local information from the current mini-
batch. HVS also obtains higher test accuracy than HVS-G. This shows that both
the global vote and the local vote play an important role in sample selection.
Small-vote outperforms HVS under different settings of noisy labels. This can
be ascribed to the adoption of ACES. ACES is a data-dependent clean data rate
estimation strategy, which can effectively address the problem of unknown noisy
label distribution in the mini-batch (note that the mini-batch is randomly chosen
from the whole training data). Therefore, small-vote is able to identify clean and
noisy-labeled samples more accurately, thereby leading to a more robust DNN
model.

Second, we evaluate the influence of the key parameter C defined in Eq.
(4) on the final performance. We set the values of C to 0, 5, 10, and 50. The
results are given in Table 4. We can see that our small-vote achieves the best
performance when the value of C is set to 10. When the value of C is set to
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Table 4. Influence of different values of C on CIFAR-10. The average test accuracy
(%) over the last ten epochs is used for performance comparison. The best results are
highlighted in bold.

C Symmetry-20% Symmetry-40% Pair-40%

0 89.67 86.54 80.46
5 91.05 88.10 84.95
10 91.56 89.59 85.70
50 90.87 88.50 82.05

Table 5. Performance comparison between small-loss and small-vote in the frameworks
of Co-teaching, Co-teaching+, and JoCoR on the CIFAR-10 dataset. The average test
accuracy (%) over the last ten epochs is used for performance comparison. The best
results are highlighted in bold.

Methods Symmetry-20% Symmetry-40% Pair-40%

Co-teaching (small-loss) 83.92 79.25 73.93
Co-teaching (small-vote) 85.44 81.35 75.17

Co-teaching+ (small-loss) 78.09 64.27 52.79
Co-teaching+ (small-vote) 80.32 66.24 66.67

JoCoR (small-loss) 89.07 86.75 73.73
JoCoR (small-vote) 90.32 88.09 82.50

0, only the local vote is used. When the value of C is large, too old historical
information is exploited to perform the global vote. For these two extreme cases,
the performance drops. Therefore, in all the experiments, we fix the value of C
to 10.

Finally, to demonstrate the generalization ability of our small-vote sample
selection method, we replace the small-loss criterion used in several state-of-
the-art label-noise learning methods (including Co-teaching, Co-teaching+, and
JoCoR) with our proposed small-vote. Table 5 shows the test accuracy obtained
by different methods on CIFAR-10. As we can see, our small-vote sample selec-
tion outperforms the small-loss criterion with a moderate margin for different
types and levels of noisy labels in the frameworks of Co-teaching, Co-teaching+,
and JoCoR. Therefore, our small-vote sample selection is able to distinguish
clean samples from noisy-labeled samples more effectively than the small-loss
criterion, leading to performance improvements. The above results further show
the great generalization of small-vote for label-noise learning.

5 Conclusion

In this paper, we have proposed a simple yet effective small-vote sample se-
lection method for label-noise learning. The proposed method is comprised of
two main components, including a Hierarchical Voting Scheme (HVS) and an
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Adaptive Clean data rate Estimation Strategy (ACES). HVS effectively com-
bines the global vote from previous epochs and the local vote from the current
mini-batch to assign hierarchal votes for each mini-batch. Based on HVS, ACES
adaptively estimates the clean data rate, so that clean samples and noisy-labeled
samples can be accurately identified in the mini-batch. Experimental results on
noisy-labeled data from four benchmark datasets including MNIST, CIFAR-10,
CIFAR-100, and Clothing1M have shown the superiority of our proposed method
over several state-of-the-art methods. Moreover, the good generalization capa-
bility of our method has been verified by incorporating our small-vote method
into representative label-noise learning methods.
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