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Abstract. Interactions between pieces of information (entities) play a
substantial role in the way an individual acts on them: adoption of a
product, the spread of news, strategy choice, etc. However, the under-
lying interaction mechanisms are often unknown and have been little
explored in the literature. We introduce an efficient method to infer
both the entities interaction network and its evolution according to the
temporal distance separating interacting entities; together, they form
the interaction profile. The interaction profile allows characterizing the
mechanisms of the interaction processes. We approach this problem via
a convex model based on recent advances in multi-kernel inference. We
consider an ordered sequence of exposures to entities (URL, ads, situa-
tions) and the actions the user exerts on them (share, click, decision). We
study how users exhibit different behaviors according to combinations of
exposures they have been exposed to. We show that the effect of a com-
bination of exposures on a user is more than the sum of each exposure’s
independent effect—there is an interaction. We reduce this modeling to a
non-parametric convex optimization problem that can be solved in paral-
lel. Our method recovers state-of-the-art results on interaction processes
on three real-world datasets and outperforms baselines in the inference
of the underlying data generation mechanisms. Finally, we show that in-
teraction profiles can be visualized intuitively, easing the interpretation
of the model.

1 Introduction

When told in the year 2000 that the XX** century was the century of physics
and asked whether he agrees that the next one would be the century of biology,
Stephen Hawkins answered that he believed the XXI*" century would be the
century of complexity. Be it a reasoned forecast or a tackle to promote scientific
multidisciplinarity, there has been an undeniable growing interest for complex
systems in research over the past decades. A complex system can be defined as
a system composed of many components that interact with each other. Their
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study often involves network theory, a branch of mathematics that aims at mod-
eling those interactions —that can be physical, biological, social, etc. A significant
point of interest is understanding how information spreads along the edges of
a network—with a particular interest in social networks. If the social network
skeleton (edges, nodes) plays a significant role in such processes, recent studies
pointed out that the interaction between spreading entities might also play a
non-trivial role in it [23,2]. The histograms presented Fig.1 illustrate this find-
ing: the probability for a piece of information to be adopted (or spread) varies
according to the exposure to another one at a previous time. We refer to this
figure as the interaction profile. The study of this quantity is a novel perspec-
tive: the interaction between pieces of information has been little explored in
the literature, and no previous work aims at unveiling trends in the information
interaction mechanisms.
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Fig. 1. Interaction profiles between pairs of entities — Examples of interaction
profiles on Twitter; here is shown the effect of URL shortening services migre.me (left),
bit.ly (right-top), tinyurl (right-middle) and t.co (right-bottom) on the probability
of tweeting a t.co URL and its evolution in time. This interaction profile shows, for
instance, that there is an increased probability of retweet for a t.co URL when it
appears shortly after a migre.me one (interaction). This increase fades when the time
separation grows (no more interaction). In blue, the interaction profile inferred by our
model.

The study of interactions between pieces of information (or entities) has
several applications in real-world systems. We can mention the fields of recom-
mender systems (the probability of adoption is influenced by what a user saw
shortly prior to it), news propagation and control (when to expose users to an
entity in order to maximize its spreading probability [20]), advertising (same
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reasons as before [3]), choice behavior (what influences one’s choice and how
(4]).

In the present work, we propose to go one step further and to unveil the
mechanisms at stake within those interacting processes by inferring information
interaction profiles. Let us imagine, for instance, that an internet user is exposed
to an ad at time t; and to another ad for a similar product at time to > t7.
Due to the semantic similarity between the two exposures, we suppose that the
exposure to the first one influences the user’s sensitivity (likeliness of a click) to
the second one a time ¢, —t; later. Modeling this process involves quantifying the
influence an ad exerts on the other and how it varies with the time separation
between the exposures. The reunion of those quantities form what we call the
interaction profile —illustrated Fig.1), that is, the influence an exposure exerts
on the adoption (click, buy, choice, etc.) of another one over time.

Following this idea, we introduce an efficient method to infer both the entities
(ad, tweets, products, etc.) interaction network and its evolution according to
the temporal distance separating the interacting entities (the influence of an
entity A on entity B will not be the same depending on whether A appeared 10
minutes or 10 hours before B). Together they form the interaction profile.

First, we develop a method for inferring this interaction profile in a continuous-
time setup using multi-kernel inference methods [5]. Then we show that the
inference of the parameters boils down to a convex optimization problem for
kernel families obeying specific properties. Moreover, the problem can be subdi-
vided into as many subproblems as entities, which can be solved in parallel. The
convexity of the problem guarantees convergence to the likelihood’s global op-
timum for each subproblem and, therefore, to the problem’s optimal likelihood.
We apply the model to investigate the role of interaction profiles on synthetic
data and in various corpora from different fields of research: advertisement (the
exposure to an ad influences the adoption of other ads [3]), social dilemmas (the
previous actions of one influences another’s actions [4]) and information spread
on Twitter (the last tweets read influence what a user retweets [12])*. Finally,
we provide analysis leads and show that our method recovers state-of-the-art
results on interaction processes on each of the three datasets considered.

1.1 Contributions
The main contributions of this paper are the following:

— We introduce the interaction profile, which is the combination of both the
interaction network between entities and its evolution with the interaction
time distance, according to the inferred kernels. The interaction profile is a
powerful tool to understand how interactions take place in a given corpus
(see Fig.6) and has not been developed in the literature. Its introduction in
research is the main contribution of the present work.

! Implementation codes and datasets can be found at
https://github.com/GaelPouxMedard /InterRate
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— We design a convex non-parametric algorithm that can be solved in parallel,
baptized InterRate. InterRate automatically infers the kernels that account
the best for information interactions in time within a given kernel family. Its
output is the aforementioned interaction profile.

— We show that InterRate yields better results than non-interacting or non-
temporal baseline models on several real-world datasets. Furthermore, our
model can recover several conclusions about the datasets from state-of-the-
art works.

2 Related work

Previous efforts in investigating the role of interactions in information diffu-
sion have shown their importance in the underlying spreading processes. Several
works study the interaction of information with users’ attention [11], closely
linked to information overload concepts [18], but not the interaction between
the pieces of information themselves. On the other hand, whereas most of the
modeling of spreading processes are based on either no competition [19,15] or
perfect competition [17] assumption, it has been shown that relaxing this hy-
pothesis leads to a better description of competitive spread [2] —with the example
of Firefox and Chrome web browsers, whose respective popularities are corre-
lated. According to this finding, a significant effort has been done in elaborating
complex processes to simulate interaction [22,17] on real-world networks.
However, fewer works have been developed to tackle interaction in informa-
tion spread from a machine learning point of view. The correlated cascade model
[23] aims to infer an interacting spreading process’s latent diffusion network. In
this work, the interaction is modeled by a hyper-parameter [ tuning the in-
tensity of interactions according to an exponentially decaying kernel. In their
conclusion, the authors formulate the open problem of learning several kernels
and the interaction intensity parameter 3, which we address in the present work.
To our knowledge, the attempt the closest to our task to model the interaction
intensity parameter J is Clash of the contagions [12]; this aims to predict retweets
on T'witter based on tweets seen by a user. This model estimates the probability
of retweet for a piece of information, given the last tweets a user has been
exposed to, according to their relative position in the Twitter feed. The method
suffers various flaws (scalability, non-convexity). It also defines interactions based
on an arguable hypothesis made on the prior probability of a retweet (in the
absence of interactions) that makes its conclusions about interactions sloppy. It
is worth noting that in [12], the authors outline the problem of the inference of
the interaction profile but do so without searching for global trends such as the
one shown in Fig.1. Recent works address the various flaws observed in [12] and
suggest a more general approach to the estimation of the interaction intensity
parameters [16]. The latter model develops a scalable algorithm that correctly
accounts for interacting processes but neglects the interactions’ temporal aspect.
To take back the Twitter case study, it implies that in the case of a retweet at
time t, a tweet appearing at t; < ¢ in the news feed has the same influence on
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the retweet as a tweet that appeared at to =~ ¢t. A way to relax this assumption
is to integrate a temporal setting in the interaction network inference problem.

In recent years, temporal networks inference has been a subject of interest.
Significant advances have been made using survival theory modeling applied to
partial observations of independent cascades of contagions [6, 7]. In this context,
an infected node tries to contaminate every other node at a rate that is tuned
by . While this work is not directly linked to ours, it has been a strong influ-
ence on the interaction profile inference problem we develop here; the problems
are different, but the methodology they introduce deserves to be mentioned for
its help in the building of our model (development and convexity of the prob-
lem, analogy between interaction profile and hazard rate). Moreover, advances
in network inference based on the same works propose a multi-kernel network
inference method that we adapted to the problem we tackle here [5]. Inspired by
these works, we develop a flexible approach that allows for the inference of the
best interaction profile from several candidate kernels.

3 InterRate

3.1 Problem definition

We illustrate the process to model in Figure 2. It runs as follows: a user is first
exposed to a piece of information at time ty. The user then chooses whether to
act on it at time tg + ¢; (an act can be a retweet, a buy, a booking, etc.); ts
can be interpreted as the “reaction time” of the user to the exposure, assumed
constant. The user is then exposed to the next piece of information a time &t
later, at t1 = tg + 0t and decides whether to act on it a time t, later, at ¢1 + ts,
and so on. Here, 0t is the time separating two consecutive exposures, and t;
is the reaction time, separating the exposure from the possible contagion. In
the remaining of the paper, we refer to the user’s action on an exposure (tweet
appearing in the feed, exposure to an ad, etc.) as a contagion (retweet or the
tweet, click on an ad, etc.).

This choice of modeling comes with several hypotheses. First, the pieces of
information a user is exposed to appear independently from each other. It is the
main difference between our work and survival analysis literature: the pseudo-
survival of an entity is conditioned by the random arrival of pieces of information.
Therefore, it cannot be modeled as a point process. This assumption holds in
our experiments on real-world datasets, where users have no influence on what
information they are exposed to. Second hypothesis, the user is contaminated
solely on the basis of the previous exposures in the feed [12,23]. Third, the
reaction time separating the exposure to a piece of information from its possible
contagion, tg, is constant (i.e. the time between a read and a retweet in the case of
Twitter). Importantly, this hypothesis is a deliberate simplification of the model
for clarity purposes; relaxing this hypothesis is straightforward by extending the
kernel family, which preserves convexity and time complexity. Note that this
simplification does not always hold, as shown in recent works concluding that
response time can have complex time-dependent mechanisms [21].
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Fig. 2. Illustration of the interacting process — Light orange squares represent
the exposures, dark orange squares represent the exposures that are followed by conta-
gions and empty squares represent the exposures to the information we do not consider
in the datasets (they only play a role in the distance between exposures when one con-
siders the order of appearance as a time feature). A contagion occurs at a time ¢, after
the corresponding exposure. Each new exposure arrives at a time 0t after the previous
one. Contagion takes place with a probability conditioned by all previous exposures.
In the example, the contagion by A at time ¢+t depends on the effect of the exposure
to A at times ¢ and ¢ — 34t, and to B at times ¢t — §t and t — 24t.

3.2 Likelihood

We define the likelihood of the model of the process described in Figure 2.
Let tz(-'r) be the exposure to x at time t;, and tz(-m) + ts the time of its possi-
ble contagion. Consider now the instantaneous probability of contagion (hazard
function) H(tl(-x) + t5|t§-y),6wy), that is the probability that a user exposed to
the piece of information = at time ¢; is contaminated by x at ¢; + ¢ given an
exposure to y at time t; < ¢;. The matrix of parameters 3;; is what the model
aims to infer. 3;; is used to characterize the interaction profile between enti-
ties. We define the set of exposures preceding the exposure to x at time ¢; (or
history of tEm)) as HEI) = {t;y) < tl(,“)}j’y_ Let D be the whole dataset such as
D= {(Hgm), tl(-m), cgf))}w Here, c is a binary variable that account for the con-
tagion (cgf) = 1) or non-contagion (c(f) = 0) of = at time ¢; + t5. The likelihood

for one exposure in the sequence given tg»y) is:

L(ﬁ$y|D7t‘g) = P(DmxyvtS) =

(@) @
H(t® + )t Bay) % - (1= H(t 4 6 t9), ) 0%

contagion at tgw) + ts due to tg.y) Survival at tgx) + ts due to t;y)

The likelihood of a sequence (as defined Fig.2) is then the product of the previous
expression over all the exposures that happened before the contagion event tgz) +
ts e.g. for all t;y) € ’Hl(-x). Finally, the likelihood of the whole dataset D is the
()

product of L(8;|D, ts) over all the observed exposures ¢, . Taking the logarithm



Information Interaction Profile of Choice Adoption 7

of the resulting likelihood, we get the final log-likelihood to maximize:

BID, t,) =
S dog (HE + 18", Bay)
D W) gy (@ (1)
J i

+ (1= ) og (1= HE™ + 6,6, 5,,))

3.3 Proof of convexity

The convexity of a problem guarantees to retrieve its optimal solution and allows
using dedicated fast optimization algorithms.

Proposition 1 The inference problem ming —£(3|D, ts) VB > 0, is convex in all
of the entries of B for any hazard function that obeys the following conditions:

Hl2 > H//H
H? > _H"(1 - H) 2)
H e€]0;1]

where ' and " denote the first and second derivative with respect to 3, and H is
the shorthand notation for H(tz(-w) + t3|t§y),ﬁxy) Vi, j, T, y.

Proof. The negative log-likelihood as defined in Eq.1 is a summation of —log H
and —log(1— H); therefore H € ]0; 1[. The second derivative of these expressions
according to any entry f,,, (noted ") reads:

! ! / "
(~log H)" = () = 2254

/ 2 17
"o H’ _ H”"+H"(1-H)
(_log(l - H)) - (17]-[) = a—m)2

3)

The convexity according to a single variable holds when the second derivative
positive, which leads to Eq.2. The convexity of the problem then follows from
composition rules of convexity. O

A number of functions obey the conditions of Eq.2, such as the exponential
(e=P!), Rayleigh (e~ %'"), power-law (e~#1°8%) functions, and any log-linear com-
bination of those [5]. These functions are standard in survival theory literature
8]

The final convex problem can then be written ming>o —¢(3|D, ts). An inter-
esting feature of the proposed method is that the problem can be subdivided
into N convex subproblems that can be solved independently (one for each piece
of information). To solve the subproblem of the piece of information x, that is
to find the vector (,, one needs to consider only the subset of D where x ap-
pears. Explicitly, each subproblem consists in maximizing Eq.1 over the set of

observations D) = {(Hgm),tgw),cg))}i.
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4 Experimental setup

4.1 Kernel choice

Gaussian RBF kernel family (IR-RBF) Based on [5], we consider a log-
linear combination of Gaussian radial basis function (RBF) kernels as hazard
function. We also consider the time-independent kernel needed to infer the base
probability of contagion discussed in the section “Background noise in the data”
below. The resulting hazard function is then:

2

S als)
log H(t{” +t,|t\"), Bi;) = =857 = 5 (ti+ts —t; —s)

ij
s=0

The parameters ) of Rayleigh kernels are the amplitude of a Gaussian distri-
bution centered on time s. The parameter S represents the maximum time shift
we consider. In our setup, we set S=20. We think it is reasonable to assume that
an exposition does not significantly affect a possible contagion 20 steps later. The
parameter ﬂz(]b 9) corresponds to the time-independent kernel —base probability of
contagion by i. The formulation allows the model to infer complex distributions
from a reduced set of parameters whose interpretation is straightforward.

Exponentially decaying kernel (IR-EXP) We also consider an exponen-
tially decaying kernel that can be interpreted as a modified version of a mul-
tivariate Hawkes point process (or self-exciting point process). A multivariate
Hawkes process is a point process where different classes of objects exert an in-
fluence on the point process of the others [9]. The most common (and historical)
form of such a process considers a time-decaying exponential function to model a
class’s influence on others. However, in our setup, we cannot consider a Hawkes
process: we infer the variation of contagion probabilities in time conditionally
on the earlier random exposure to a piece of information. The studied process
is therefore not rigorously self-exciting. We consider the following form for the
hazard function and refer to this modeling as IR-EXP instead of a Hawkes pro-
cess:
log H (1) +t[t{"), Buy) = =857 — Bij(ti + ts — 1))

Where ng ) once again accounts for the background noise in the data discussed
further in this section.

4.2 Parameters learning

Datasets are made of sequences of exposures and contagions, as shown in Fig.2.
To assess the robustness of the proposed model, we apply a 5-folds cross-validation
method. After shuffling the dataset, we use 80% of the sequences as a training
set and the 20% left as a test set. We repeat this slicing five times, taking care
that an interval cannot be part of the test set more than once. The optimization
is made in parallel for each piece of information via the convex optimization
module for Python CVXPY.
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We also set the time separating two exposures 0t as constant. It means that
we consider only the order of arrival of exposures instead of their absolute ar-
rival time. The hypothesis that the order of exposures matters more than the
absolute exposure times has already been used with success in the literature [12].
Besides, in some situations, the exact exposure time cannot be collected, while
the exposures’ order is known. For instance, in a Twitter corpus, we only know in
what order a user read her feed, unlike the exact time she read each of the posts.
However, from its definition, our model works the same with non-integer and
non-constant ¢t in datasets where absolute time matters more than the order of
appearance.

4.3 Background noise in the data

1.0

Underlying generation process
Po

Observed data

0.8

>
=
(%]
c
)
O 4]
0.2 1
0.0 11— . . ; /\ : .
0.0 25 5.0 7.5 100 125 15.0 175 20.0

Fig. 3. Underlying generation process vs observed data — The red curve rep-
resents the underlying probability of contagion by C given an exposure observed At
steps before C. The orange bars represent the observed probability of such events. We
see that there is a noise Py(C) in the observed data. The underlying generation process
can then only be observed in the dataset when its effect is larger than some threshold

Py(C).

Because the dataset is built looking at all exposure-contagion correlations in
a sequence, there is inherent noise in the resulting data. To illustrate this, we
look at the illustrated example Fig.2 and consider the exposure to C leading to
a contagion happening at time ¢. We assume that in the underlying interaction
process, the contagion by C at time ¢+, took place only because C appeared at
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time ¢t. However, when building the dataset, the contagion by C is also attributed
to A appearing at times t — dt, t — 36t and t — 6Jt, and to B appearing at times
t — 46t and t — 56t. It induces a noise in the data. In general, for any contagion
in the dataset, several observations (pair exposure-contagion) come from the
random presence of entities unrelated to this contagion.

We now illustrate how this problem introduces noise in the data. In Fig.3, we
see that the actual underlying data generation process (probability of a contagion
by C given an exposure present At step earlier) does not exactly fit the collected
resulting data: the data gathering process induces a constant noise whose value
is noted Py(C') —that is the average probability of contagion by C. Thus the
interaction effect can only be observed when its associated probability of con-
tagion is larger than Py(C). Consequently, the performance improvement of a
model that accounts for interactions may seem small compared with a baseline
that only infers Py(C'). That is we observe in the experimental section. How-
ever, in this context, a small improvement in performance shows an extended
comprehension of the underlying interacting processes at stake (see Fig.3, where
the red line obviously explains the data better than a constant baseline). Our
Po (i)

method efficiently infers Py(C) via a time-independent kernel function BL j

4.4 Evaluation criteria

The main difficulty in evaluating these models is that interactions might occur
between a small number of entities only. It is the case here, where many pairs
of entities have little to no interaction (see the Discussion section). This makes
it difficult to evaluate how good a model is at capturing them. To this end,
our principal metric is the residual sum of squares (RSS). The RSS is the sum
of the squared difference between the observed and the expected frequency of
an outcome. This metric is particularly relevant in our case, where interactions
may occur between a small number of entities: any deviation from the observed
frequency of contagion is accounted for, which is what we aim at predicting
here. We also consider the Jensen-Shannon (JS) divergence; the JS divergence
is a symmetric version of the Kullback—Leibler divergence, which makes it usable
as a metric [14].

We finally consider the best-case F1l-score (BCF1) of the models, that is, the
F1-score of the best scenario of evaluation. It is not the standard F1 metric (that
poorly distinguishes the models since few interactions occur), although its com-
putation is similar. Explicitly, it generalizes F'1-score for comparing probabilities
instead of comparing classifications; the closer to 1, the closer the inferred and
observed probabilities. It is derived from the best-case confusion matrix, whose
building process is as follows: we consider the set of every information that ap-
peared before information i at time ¢; in the interval, that we denote H;. We
then compute the contagion probability of i at time ¢; + t5 to every exposure
event t;y) € H;. Confronting this probability with the observed frequency f of
contagions of i at time ¢; + t¢ given t§-y) among N observations, we can build the
best-case confusion matrix. In the best case scenario, if out of N observations



Information Interaction Profile of Choice Adoption 11

the observed frequency is f and the predicted frequency is p, the number of True
Positives is N X min{p, f}, the number of False Positives is N x min{p — f, 0},
the number of True Negatives is N x min{l — p,1 — f}, the number of False
Positives is N x min{f — p,0}.

Finally, when synthetic data is considered, we also compute the mean squared
error of the 8 matrix inferred according to the § matrix used to generate the
observations, that we note MSE £.

We purposely ignore evaluation in prediction because, as we show later, in-
teractions influence quickly fades over time: probabilities of contagion at large
times are mainly governed by the background noise discussed in previous sec-
tions. Therefore, it would be irrelevant to evaluate our approach’s predictive
power on the whole range of times where it does not bring any improvement
over a naive baseline (see Fig.1). A way to alleviate this problem would be to
make predictions only when interactions effects are above/below a certain thresh-
old (at short times, for instance). However, such an evaluation process would be
debatable. Here, we choose to focus on the descriptive aspect of InterRate.

4.5 Baselines

Naive baseline For a given piece of information i, the contagion probability is
defined as the number of times this information is contaminated divided by its
number of occurrences.

Clash of the contagions We use the work presented in [12] as a baseline. In
this work, the authors model the probability of a retweet given the presence of a
tweet in a user’s feed. This model does not look for trends in the way interactions
take place (it does not infer an interaction profile), considers discrete time steps
(while our model works in a continuous-time framework), and is optimized via a
non-convex SGD algorithm (which does not guarantee convergence towards the
optimal model). More details on implementation are provided in SI file.

IMMSBM The Interactive Mixed-Membership Stochastic Block Model is a
model that takes interactions between pieces of information into account to
compute the probability of a (non-)contagion [16]. Note that this baseline does
not take the position of the interacting pieces of information into account (time-
independent) and assumes that interactions are symmetric (the effect of A on B
is the same as B on A).

ICIR The Independent Cascade InterRate (ICIR) is a reduction of our main
IR-RBF model to the case where interactions are not considered. We consider
the same dataset, enforcing the constraint that off-diagonal terms of 5 are null.
The (non-)contagion of a piece of information i is then determined solely by the
previous exposures to i itself.
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5 Results

5.1 Synthetic data

RSS JS div. BCF1 MSE 8

S |IR-RBF 18.4151 0.002 28 0.919 0.001

& |ICIR 139.5926 0.009 98 0.827 0.016
E [Naive ~ ~ ] 145.5132 0.01038 0.822
& |CoC 123.0583 0.009 38 0.822
IMMSBM 222.0555 0.01729 0.727

v |IR-RBF 0.1169 0.000 22 0.974 0.005

:é ICIR | 8.2661 0.008 12 0.850 0.019
g [Naive 10.0264 0.009 96 0.821
0 |CoC 0.1154 0.000 20 0.976
IMMSBM 11.6936 0.01362 0.769

Fig. 4. Experimental results — Darker is better (linear scale). Our model outper-
forms all of the baselines in almost every dataset for every evaluation metric. The
standard deviations of the 5 folds cross-validation are negligible and reported in SI file.

We generate synthetic data according to the process described in Fig.2 for a
given f matrix using the RBF kernel family. First, we generate a random matrix
B, whose entries are between 0 and 1. A piece of information is then drawn with
uniform probability and can result in a contagion according to 3, the RBF kernel
family and its history. We simulate the outcome by drawing a random number
and finally increment the clock. The process then keeps on by randomly drawing
a new exposure and adding it to the sequence. We set the maximum length of
intervals to 50 steps and generate datasets of 20,000 sequences.

We present in Tab. 4 the results of the various models with generated in-
teractions between 20 (Synth-20) and 5 (Synth-5) entities. The interactions are
generated using the RBF kernel, hence the fact we are not evaluating the IR-EXP
model —its use would be irrelevant. The InterRate model outperforms the pro-
posed baselines for every metric considered. It is worth noting that performances
of non-interacting and /or non-temporal baselines are good on the JS divergence
and F'1-score metrics due to the constant background noise FPy. For cases where
interactions do not play a significant role, IMMSBM and Naive models perform
well by fitting only the background noise. By contrast, the RSS metric distin-
guishes very well the models that are better at modeling interactions.

Note that while the baseline [12] yields good results when few interactions are
simulated (Synth-5), it performs as bad as the naive baseline when this number
increases (Synth-20). This is due to the non-convexity of the proposed model,
which struggles to reach a global maximum of the likelihood even after 100 runs
(see supplementary materials for implementation details).
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5.2 Real data

RSS JS div. BCF1

IR-RBF 0.0015 0.000 06 0.983

j.g IR-EXP 0.0011 0.00005 0.986
= |ICIR 0.0137 0.000 63 0.961
5 Naive 0.0161 0.00073 0.938
CoC 0.0017 0.00007 0.957
IMMSBM 0.0147 0.000 68 0.954
IR-RBF 1.1268 0.007 58 0.979
IR-EXP 1.5526 0.008 67 0.966

E ICIR | 3.5359 0.01823 0.938
Naive 3.6527 0.01915 0.945
CoC 1.2409 0.008 09 0.974
IMMSBM 20.3773 0.08701 0.767
IR-RBF 0.0043 0.000 04 0.981

» |IR-EXP 0.0030 0.000 03 0.985
E ICIR 0.0983 0.000 85 0.966
Naive ~ =~~~ 7 0.1453 0.001 26 0.913
CoC 0.0045 0.000 05 0.974
IMMSBM 0.0155 0.00015 0.954

Fig. 5. Experimental results — Darker is better (linear scale). Our model outper-
forms all of the baselines in almost every dataset for every evaluation metric. The
standard deviations of the 5 folds cross-validation are negligible and reported in SI file.

We consider 3 real-world datasets. For each dataset, we select a subset of en-
tities that are likely to interact with each other. For instance, it has been shown
that the interaction between the various URL shortening services on Twitter is
non-trivial [23]. The datasets are a Twitter dataset (104,349 sequences, expo-
sure are tweets and contagions are retweets) [10], a Prisoner’s dilemma dataset
(PD) (2,337 sequences, exposures are situations, contagions are players choices)
[13,1] and an Ads dataset (87,500 sequences, exposures are ads, contagions are
clicks on ads) [3]. A detailed description of the datasets is presented in SI file,
section Datasets.

The results on real-world datasets are presented in Tab.5. We see that the
IMMSBM baseline performs poorly on the PD dataset: either considering the
time plays a consequent role in the probability of contagion, or interactions are
not symmetric. Indeed, the core hypothesis of the IMMSBM is that the effect
of exposition A on B is the same as B on A, whichever is the time separation
between them. In a prisoner’s dilemma game setting, for instance, we expect that
a player does not react in the same way to defection followed by cooperation as to
cooperation followed by defection, a situation for which the IMMSBM does not
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Fig. 6. Visualization of the interaction profiles — Intensity of the interactions
between every pair of entities according to their time separation (one line is one pair’s
interaction profile, similar to Fig.1 seen ”from the top”). A positive intensity means
that the interaction helps the contagion, while a negative intensity means it blocks it.
The key linking numbers on the y-axis to names for each dataset is provided in the
Datasets section.

account. When there are few entities, the CoC baseline performs as good as IR,
but fails when this number increases; this is due mainly to the non-convexity of
the problem that does not guarantee convergence towards the optimal solution.
Overall, the InterRate models yield the best results on every dataset.

6 Discussion

In Fig.6, we represent the interaction intensity over time for every pair of in-
formation considered in every corpus fitted with the RBF kernel model. The
intensity of the interactions is the inferred probability of contagion minus the
base contagion probability in any context: P;;(t) — Py(¢). Therefore, we can de-
termine the characteristic range of interactions, investigate recurrent patterns in
interactions, whether the interaction effect is positive or negative, etc. Overall,
we understand why the EXP kernel performs as good as the RBF on the Twitter
and Ads datasets: interactions tend to have an exponentially decaying influence
over time. However, this is not the case on the PD dataset: the effect of a given
interaction is very dependent on its position in the history (pike on influence at
At = 3, shift from positive to negative influence, etc.).

In the Twitter dataset, the most substantial positive interactions occur before
At=3. This finding agrees with previous works, which stated that the most
informative interactions within Twitter URL dataset occur within the 3 time
steps before the possible retweet [12]. We also find that the vast majority of
interactions are weak, matching with previous study’s findings [12, 16]. However,
it seems that tweets still exert influence even a long time after being seen, but
with lesser intensity.

In the Prisoner’s Dilemma dataset, players’ behaviors are heavily influenced
by the previous situations they have been exposed to. For instance, in the situa-
tion where both players cooperated in the previous round (pairs 2-x, 3"¢ section
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in Fig.6-PD). The probability that the player defects is then significantly in-
creased if both players cooperated or if one betrayed the other exactly two rounds
before but decreased if it has been two rounds that players both cooperate.

Finally, we find that the interactions play a lesser role in the clicks on ads. We
observe a slightly increased probability of click on every ad after direct exposure
to another one. We also observe a globally decreasing probability of click when
two exposures distant in time, which agrees with previous work’s findings [3].
Finally, the interaction profile is very similar for every pair of ads; we interpret
this as a similarity in users’ ads perception.

We showed that for each of the considered corpus, considering the interac-
tion profile provides an extended comprehension of choice adoption mechanisms
and retrieves several state-of-the-art conclusions. The proposed graphical visu-
alization also provides an intuitive view of how the interaction occurs between
entities and the associated trends, hence supporting its relevance as a new tool
for researchers in a broad meaning.

7 Conclusion

We introduced an efficient convex model to investigate the way interactions
happen within various datasets. Interactions modeling has been little explored
in data science, despite recent clues pointing to their importance in modeling
real-world processes [23,12]. Unlike previous models, our method accounts for
both the interaction effects and their influence over time (the interaction pro-
file). We showed that this improvement leads to better results on synthetic and
various real-world datasets that can be used in different research fields, such
as recommender systems, spreading processes, and human choice behavior. We
also discussed the difficulty of observing significant interaction profiles due to the
data-gathering process’s inherent noise and solved the problem by introducing a
time-independent kernel. We finally proposed a way to easily explore the results
yielded by our model, allowing one to read the interaction profiles of any couple
of entities quickly.

In future works, we will explore the way interactions vary over time and work
on identifying recurrent patterns in interaction profiles. It would be the next step
for an extended understanding of the role and nature of interacting processes in
real-world applications.
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