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Abstract. In this paper, we proposed an Off-Policy Differentiable Logic
Reinforcement Learning (OPDLRL) framework to inherit the benefits
of interpretability and generalization ability in Differentiable Inductive
Logic Programming (DILP) and also resolves its weakness of execution
efficiency, stability, and scalability. The key contributions include the
use of approximate inference to significantly reduce the number of logic
rules in the deduction process, an off-policy training method to enable
approximate inference, and a distributed and hierarchical training frame-
work. Extensive experiments, specifically playing real-time video games
in Rabbids against human players, show that OPDLRL has better or
similar performance as other DILP-based methods but far more prac-
tical in terms of sample efficiency and execution efficiency, making it
applicable to complex and (near) real-time domains.

Keywords: Deep Reinforcement Learning · Interpretable Reinforcement
Learning · Neural-Symbolic AI.

1 Introduction

Despite the advantages and benefits of Deep Reinforcement Learning (DRL), its
successful application and deployment need to address the challenges including:
(1) Interpretability. The use of deep neural networks makes the learned policies
difficult to interpret and verify, restricting the application of DRL in many real-
world domains which require clear scientific interpretation, e.g., healthcare and
medical systems. (2) Generalization. The learned policies tend to “over-fit” the
training environment, leading the performance of learned polices to drastically
decrease even when the test environment slightly changes from the training envi-
ronment. (3) Sample efficiency. DRL methods generally require massive numbers
of samples to explore the environment.

Differentiable Inductive Logic Programming (DILP) [7,8,29,6,22] has been
integrated into DRL frameworks to achieve better interpretability and general-
ization. Trained with standard back-propagation, DILP provides a special formu-
lation of a function approximator, which generates interpretable and verifiable

? Xin Li is the corresponding author.



2 L Zhang, X Li et al.

0.0 0.2 0.4 0.6 0.8 1.0
Weight

100

101

102

103

# 
of

 c
la

us
es

(a) On

0.0 0.2 0.4 0.6 0.8 1.0
Weight

100

101

102

103

# 
of

 c
la

us
es

(b) Stack

Fig. 1. Weight distributions on two benchmark tasks.

logic rules via training samples. The logic rules also behave as a form of regular-
ization, helping to mitigate over-fitting and improve the generalization ability.
Integrating DILP into DRL helps to interpret policies, making the agent’s be-
havior more verifiable and robust.

[7,8] proposed ∂ILP to learn logic rules from noisy data, demonstrating the
strength of DILP in interpretability and generalization. [17] introduced Neural
Logic Reinforcement Learning (NLRL) which applies DILP in sequential decision
making tasks and trains it via vanilla policy gradient [38]. [6] proposed Neural
Logic Machines which trades off some interpretability for better scalability in
comparison with NLRL.

However, the integration of DILP and DRL suffers from its execution effi-
ciency, stability, and scalability, making it infeasible to many applications re-
quiring real-time or near real-time responses, such as autonomous driving and
game playing.

– Execution efficiency. DILP takes a top-down and generate-and-test ap-
proach, which first generates all potential logic rules and then finds the op-
timal subset. In general, the number of potential rules is relatively large and
the computational cost of DILP is much higher than Multi-layer Perceptron
(MLP) networks for policy learning. For an MLP with n linear layers and
h hidden neurons at each layer, e.g. in a medium-size problem where n = 3
and h = 256, its forward computational complexity is O(nh2) ≈ 2 × 105. In
comparison, the complexity of the DILP, which deduces n steps with l logic
rules and each rule matches k cases, m ground atoms, is O(nmlk) ≈ 2× 107

for a medium-size problem where n = 5, l = 2000, k = 10, and m = 200.
The number of logic rules in DILP is generally relatively large, resulting in
long periods of policy response. This prohibits its application in real-time
or near real-time domains. To address this issue, we proposed to reduce the
number of rules by at least an order of magnitude. In fact, our study of all
potential rules after training revealed that only a small number of rules are
non-trivial to induction. Fig. 1 depicts the weight distribution, in which the
experiment task “On” showed that 99.60%(1981/1989) rules have weight less
than 0.01, thus being negligible. Therefore, we proposed the solution of approx-
imate inference which extends the technique of network pruning [9,40,21,20]
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to DILP. It measures the importance of logic rules and maintains a dynamic
set of rules at run time. Due to the boost of execution efficiency, our model
can provide (near) real-time policy responses, which is difficult for previous
Neuro-Symbolic methods.
In addition, we developed a distributed reinforcement learning framework4

which decouples the learning (experience utilization) and acting (experience
collection) processes, enabling their parallel execution on different machines
to reduce the training time.

– Stability. In comparison with MLP, DILP, specifically, after the use of ap-
proximate inference, is much harder to be optimized and its learning curve
oscillates intensely (see Sec. 4). Therefore, we proposed to adopt Maximum
Entropy Reinforcement Learning (MERL) approach [10,11,12,42,39] which
augments an entropy term to the objective of standard reinforcement learn-
ing (cumulative reward), encouraging policies to consider both optimal and
sub-optimal actions. MERL can decrease overall estimation errors to stabilize
the training, as demonstrated by [41].

– Scalability. It is difficult to apply DILP in large-scale/continuous domains
due to its high computational cost. Thus, we further extended DILP with
hierarchical reinforcement learning [1,5,35,28], to decompose the entire task
to simpler sub-tasks, making it possible to employ DILP in complex domains,
such as video games.

Although approximate inference helps to significantly reduce the time re-
quired for the policy response, it also causes existing on-policy RL algorithms to
fail as agents cannot sample actions from online-policy due to non-trivial feature
of approximate inference. Our empirical results showed that the errors can be
ignored if the model is trained sufficiently. However, errors are inevitable in the
early learning stages. Thus, a well-designed off-policy training method becomes
the key to the success of approximate inference. Besides, off-policy training also
helps to greatly improve sample efficiency by reusing the samples in the experi-
ence replay buffer [25,15,37,16].

The natural solutions of policy gradient algorithms [32,31,33,24] are not di-
rectly feasible to train the policy expressed by DILP, or differentiable logic policy
(DLP), due to the requirement of off-policy training. Therefore, Q-learning [25,37,15],
a classic off-policy algorithm, is adopted. To enable Q-learning to work seam-
lessly with DLP in the MERL framework, we used the Soft Q-Learning and Soft
Policy Iteration theorem [10,11,12] as the bridge connecting the Q-value and
policy.

In summary, we proposed Off-Policy Differentiable Logic Reinforcement Learn-
ing (OPDLRL), which inherits the benefits of interpretability and generalization
ability from DILP but also resolves its weakness of execution efficiency, stability,
and scalability, making OPDLRL applicable to complex and (near) real-time
domains. The key contributions of the paper include:

– We proposed the use of approximate inference to significantly improve the
execution efficiency, making our model feasible in (near) real-time applica-

4 Details can be found in the Supplementary Material.
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tions. To achieve approximate inference and improve sample efficiency, we
proposed an off-policy training method in MERL framework, which uses the
soft Q-learning and soft policy iteration theorem to connect the policy and
Q-value.

– We developed a distributed and hierarchical training framework for DILP,
which significantly improves the training efficiency and makes our model fea-
sible in complex application domains.

– We tested OPDLRL extensively with both benchmark tasks and complex
domain tasks. The results showed that OPDLRL significantly outperformed
other DILP-based DRL algorithms regarding both performance and sample
efficiency in Block Manipulation and Car Avoiding tasks, and OPDLRL could
learn to play Rabbids5 video game and competed with human players success-
fully while MLP-based and other DILP-based solutions failed.

2 Preliminary

2.1 First-Order Logic Programming

An atom α = p(t1, . . . , tn) consists of the predicate (relation) p and terms
(entities) t1, . . . , tn, where ti is a variable or a constant. A ground atom has
all terms as constants. An extensional predicate is defined by a set of ground
atoms while an intensional predicate is defined by some clauses. A clause
α← α1, . . . , αn consists of the head α and body α1, . . . , αn, meaning that the
head is true if all atoms of body are true. A deduction starts from a set of
ground atoms, and applies a set of clauses to generate more ground atoms.

2.2 Differentiable Inductive Logic Programming

An Inductive Logic Programming (ILP) problem [26,27] is a tuple {B,P,N},
in which B,P,N are sets of background , positive and negative atoms, re-
spectively. DILP denotes the truth of an atom as p ∈ [0, 1], representing the
probability that the atom is true. Let G be the set of all ground atoms, and a
valuation is a vector v ∈ [0, 1]||G|| representing the probability of all ground
atoms. A language frame defines target predicates (objective of ILP), exten-
sional predicates, their arity and constants. A program template defines avail-
able auxiliary predicates, their arity and rule templates. A rule template de-
scribes whether intensional predicates can be used, and claims the number of
existentially quantified variables. With language frames and program templates
specified, the set of all possible clauses can be generated, and DILP assigns a
probability/confidence for each clause or combination of clauses. The deduction
(forward computation) of DILP evaluates the results of all clauses and weights
them by corresponding confidence, which is trained to maximize the probability
for positive and negative atoms to be satisfied via standard back-propagation.
Please refer to [7] for more details.

5 https://en.wikipedia.org/wiki/Raving_Rabbids

https://en.wikipedia.org/wiki/Raving_Rabbids


Off-Policy Differentiable Logic Reinforcement Learning 5

2.3 Maximum Entropy Reinforcement Learning

A Markov Decision Process (MDP) is defined as a tuple {S,A, T,R}, where
S is the state space, A is the action space, T is the transition function, and
R is the reward function. In standard RL, the objective is to find a policy
that can maximize the expectation of cumulative discount reward E[

∑T
t=0 γ

trπt ],
where γ is the discount factor and rπt is the reward at time step t. In maximum

entropy RL, the objective is augmented with an entropy term: E[
∑T
t=0 γ

t[rπt +
αH(π(·|st))]], where α is the temperature/weighting parameter and H(π(·|st))
is the entropy of action distribution of a policy π given state st.

The entropy augmented objective can be optimized via soft policy itera-
tion [11][12][10]. In the soft policy evaluation step, soft Q-value is computed
based on policy π to evaluate its performance:

Qπ(s, a) = r(s, a) + γEs′∼T [V π(s′)]

V π(s) = Ea∼π[Qπ(s, a)− α log π(a|s)]
(1)

In the soft policy improvement step, a new policy is generated by minimizing
the Kullback–Leibler (KL) divergence between the action distribution and the
exponential of soft Q-value under the old policy π for each state:

πnew = argmin
π′∈Π

DKL(π′(·|s)||
exp( 1

αQ
π(s, ·))

Zπ(s)
) (2)

where Π is the set of all potential policies and Zπ(s) is the partition function
normalizing the distribution.

3 Off-Policy Differentiable Logic Reinforcement Learning

Fig. 2 shows an overview of the OPDLRL framework. The following sections
explain its components.

3.1 Differentiable Logic Policy

To implement logic programming in DRL, symbolic compilers are first required
to align logic expressions with reinforcement learning environments. In this pa-
per, a symbolic state is represented by a set of ground atoms s̄ ⊆ Gs, where Gs
is the set of all ground state atoms. A state compiler S → {0, 1}||Gs|| translates
environment states into symbolic states. A symbolic action is represented by
a ground atom ā ∈ Ga where Ga is the set of all ground action atoms. Once
a symbolic action is decided by policies, it needs to be translated to an envi-
ronment action by an action compiler Ga → A. These compilers are usually
hand-crafted or initiated by a pre-trained neural network. A set of background
atoms is provided to describe the relations of constants regarding the task.
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Fig. 2. Framework of Off-Policy Differentiable Logic Reinforcement Learning.

With the symbolic compilers, a MDP becomes a First-order MDP (FOMDP)
problem [2,18,30] in a stricter form. We define the target and extensional pred-
icates of the language frame as the action and state predicates of FOMDP re-
spectively, and define the auxiliary predicates that help to represent policies in
the program template. Thereafter, all possible clauses can be generated with the
language frame and program template.

We denote the policy of the FOMDP as πθ, the i-th rule template of predicate
e as τei , and the corresponding set of clauses as Γ ei . For each Γ ei , we initialize
a vector θei of length ||Γ ei || by Gaussian distribution with mean 0.00 and stan-
dard deviation 0.05. The probability (confidence) of the j-th clause in Γ ei is
parameterized as:6

pei (j) =
θei (j)

2

||θei ||2
. (3)

In a single deduction step, the output valuation vector is computed by:

v = min(1,v0 +
∑
e

⊕
i

∑
j

pei (j)ve,i,j) (4)

where ve,i,j denotes the valuation inferred by the j-th clause in the clause set
Γ ei according to input valuation of current deduction step. The weighted sum
amalgamates the valuations for different clauses but with the same rule tem-
plate, the probabilistic sum ⊕ (x⊕ y = x+ y− xy) amalgamates the valuations
for different rule templates, and finally, the valuations for different predicates
are summed up. v0 is the initial valuation which is a multi-hot vector defined

6 The comparison of different parameterization methods can be found in the Supple-
mentary Material.
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jointly by the current symbolic state and background atoms, and it is added
in each deduction step to steer off the local optima as suggested in [17]. The
final valuation is clipped to [0, 1] to prevent the overflow and treated as input
valuation to the next deduction step.

3.2 Approximate Inference

The inference process in DLP involves all clauses, thus significantly more expen-
sive than an MLP policy regarding the computational cost. We propose approx-
imate inference to reduce the response time of the inference process, given as:

v = min(1,v0 +
∑
e

⊕
i

∑
k∈{j|pei (j)>η}

pei (k)ve,i,k) (5)

where η is the threshold to filter out the negligible clauses to the deduction.

3.3 Off-Policy Training

Sec. 1 has shown approximate inference can significantly reduce the computation
time of the deduction, but cannot leverage existing on-policy RL algorithms due
to its non-trivial feature. Thus, we propose an off-policy approach to train the
approximate inference-facilitated DLP.

Our off-policy training process stems from soft policy iteration theorem,
which connects Q-learning and policy gradient method in MERL framework.
Therefore, the solution benefits from both Q-learning, which implements off-
policy to enable approximate inference and improve sample efficiency, and policy
gradient, which applies a separate policy network to achieve better interpretabil-
ity.

For the soft policy evaluation, we use MLP networks to approximate soft Q-
value and train it by minimizing TD-error (with an augmented entropy term),
given as:

JQ(ϑ) = E(s,a,r,s′)∼D[
1

2
(r + γV (s′)−Qϑ(s, a))2]

V (s) =
∑
a

πθ(a|s)[Qϑ̄(s, a)− α log πθ(a|s)]
(6)

where D is the replay buffer, ϑ and ϑ̄ are the parameters of online and target
Q-network respectively, and πθ(a|s) is the action distribution computed by the
exact inference of DLP. Target Q-network [25] periodically syncs with online
Q-network to stabilize the learning of soft Q-value. Note that our method has
two expectation terms in Eq. (1): Es′∼T is computed by Monte-Carlo estimation
(sampling from replay buffer), and Ea∼π is computed as the weighted sum of
networks’ output values for all actions (discrete space).

For the soft policy improvement, we ignore the constant partition function
Zπ(s) and take the logarithm of Eq. (2) to jointly optimize πθ and Qϑ, given as:

Jπ(θ) = Es∼D[
∑
a

πθ(a|s)(α log πθ(a|s)−Qϑ(a|s))] (7)
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The expectation term in KL-divergence in Eq. (2) is computed as weighted sum.

3.4 Hierarchical Policy Implementation

To enable OPDLRL to work effectively for complex tasks with large/continuous
state/action space and (near) real-time response requirement, we further develop
a hierarchical policy implementation in which the agent’s policy is formulated
as being hierarchical. OPDLRL works at the top level to determine which sub-
policy should be taken according to the symbolic state (high-level state) and
tries to minimize external reward. A sub-policy (skill) is pre-trained to achieve a
sub-goal and it takes the primary states and outputs primary actions. Symbolic
compilers perform the translation between different hierarchies.

4 Experiments

OPDLRL, its variants, and other relevant methods have been extensively tested
in two relational RL benchmark tasks, namely Block Manipulation and Car
Avoiding, and one real-time task Rabbids, which is a popular video game consist-
ing of many mini-games. In this paper, we used OPDLRL to play the bumper-car
game in Rabbids against behavior tree [4] agent and human players.

Table 1. Performance comparison on different tasks. Items in table are the mean and
standard deviation for 300 different runs.

On Stack Unstack Car Avoiding

OPDLRL− 0.936(±0.01) 0.941(±0.03) 0.950(±0.01) 0.960(±0.00)
OPDLRL 0.934(±0.01) 0.942(±0.03) 0.950(±0.01) 0.960(±0.00)

NLRL 0.881(±0.05) 0.908(±0.05) 0.909(±0.05) 0.947(±0.16)
NLRL(AI) 0.816(±0.08) 0.817(±0.12) 0.902(±0.05) 0.488(±0.82)

SAC 0.933(±0.01) 0.947(±0.02) 0.953(±0.01) 0.960(±0.00)
PPO 0.940(±0.00) 0.957(±0.05) 0.960(±0.00) 0.960(±0.00)

PPO(DLP) 0.940(±0.00) 0.870(±0.09) 0.897(±0.06) 0.952(±0.11)
PPO(DLPAI) 0.888(±0.05) 0.862(±0.09) 0.898(±0.05) 0.953(±0.11)

On+ Stack+ Unstack+ Car Avoiding+

OPDLRL− 0.936(±0.01) 0.953(±0.03) 0.950(±0.02) 0.960(±0.00)
OPDLRL 0.935(±0.01) 0.948(±0.04) 0.949(±0.02) 0.960(±0.00)

NLRL 0.880(±0.05) 0.908(±0.05) 0.896(±0.06) 0.947(±0.16)
NLRL(AI) 0.805(±0.09) 0.800(±0.13) 0.894(±0.06) 0.465(±0.84)

SAC −0.985(±0.23) −0.390(±0.79) 0.295(±0.66) −0.896(±0.44)
PPO −0.821(±0.49) −0.437(±0.77) −0.989(±0.22) −0.974(±0.22)

PPO(DLP) 0.940(±0.00) 0.906(±0.08) 0.894(±0.06) 0.946(±0.16)
PPO(DLPAI) 0.877(±0.06) −0.866(±0.46) 0.905(±0.06) 0.946(±0.16)
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Fig. 3. Learning curve in different tasks.

4.1 Methods for Evaluation

8 methods have been experimented, including: i) OPDLRL: the method we
proposed. ii) OPDLRL−: OPDLRL without approximate inference. iii) NLRL:
refer to Sec. 1. iv) NLRL(AI): NLRL with approximate inference. v) SAC:
Soft Actor Critic [11,12,3], a state-of-the-arts off-policy RL algorithm based on
MLP networks. vi) PPO: Proximal Policy Optimization [32], a state-of-the-arts
on-policy RL algorithm based on MLP networks. vii) PPO(DLP): PPO with
differentiable logic policy. viii) PPO(DLPAI): PPO(DLP) with approximate
inference. Note that all the compared methods share the same observation space,
task hierarchies and pre-trained subpolicies for fairness.

4.2 Experiment Setting

Block Manipulation In Block Manipulation, the agent keeps on moving the
top block of a pile until the goal block state is achieved. The constants include
{a, b, c, d, f loor} where a, b, c, d are blocks. The predicates include a state pred-
icate on(X,Y ) representing block X is on top of Y and Y can be a block or
floor, an action/target predicate move(X,Y ) representing moving block X to
the top of Y , and floor(X) representing whether X is floor and the background
is {floor(floor)}. The agent will get −0.02 reward for each step if it cannot
achieve the goal within 50 steps, and +1 reward when it achieves.

There are three kinds of goals in the experiments: (1) On task: The goal state
is having block X right on top of block Y which is represented as an additional
background predicate goal(X,Y ). The initial state has all blocks in a pile. (2)
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Stack task: The goal state is having all blocks in a pile and the initial state has
all blocks on floor. (3) Unstack task: The goal state is having all blocks on floor
and the initial state has all blocks in a pile.

Car Avoiding A Car Avoiding task has two cars in a circular platform. The
goal of the agent is to control one car to occupy the center without colliding
with the opponent car. The platform is divided into 12 regions which are de-
noted as (X,Y ) where X ∈ {a, b, c} describes the distance levels from center
and Y ∈ {0, 1, 2, 3} describes quadrants. The predicates include: me(X,Y ) and
enemy(X,Y ) for the position of agent and opponent respectively, forward(),
backward(), left(), and right() for actions of going forward, backward, turning
left and right respectively, and outer(X,Y ) for the relation between a, b, c with
the background as {outer(a, b), outer(b, c)}. In the initial state, the agent is at
(c, 0) and opponent is at (a, 0). The opponent car will move along (a, 0) →
(b, 0) → (c, 0) and remain at (c, 0). The agent gets −1 reward if it is hit by its
opponent and +1 reward if it occupies the center ((a, ∗)). The game terminates
if the agent is hit or fails to reach the center within 50 steps.

4.3 Results and Analysis

Performance Table. 1 shows the performance results of OPDLRL7 and other
methods. The top section shows the experiments with the same training and
test environments. The performance of OPDLRL and OPDLRL− is very close
to the best in all tasks. MLP-based methods (SAC and PPO) perform slightly
better than OPDLRL in this setting as MLP has a more flexible structure and
is easy to be optimized. Note that the number of trained parameters in MLP
is much larger than that in DILP. In the experiments, MLP-based approaches
have about 5 × 104 parameters while DILP requires only 2 × 103, indicating
a better fitting ability in MLP. In comparison with the DILP-based methods
(NLRL, NLRL(AI), PPO(DLP) and PPO(DLPAI)), OPDLRL and OPDLRL−

7 We used the same setting of hyper-parameters for all tasks.
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show evident advantages as they adopt the entropy-augmented reward and opti-
mize with soft policy iteration to reduce the overall estimation error and stabilize
the training, as discussed by [41].

Interpretability The logic rules learned by our method in tasks On and Car
Avoiding8 are as follows (for concise, we only show the rules with probability
greater than 0.1):

On:
1.00 : aux2(X)← on(X,Y ), on(Y, Z)

1.00 : aux1(X)← aux2(X), top(X)

0.97 : move(X,Y )← floor(Y ), aux1(X)

0.90 : move(X,Y )← goal(X,Y ), top(X)

(8)

where aux1 and aux2 are the auxiliary predicates induced by our method.
aux2(X) is true if there is a Y such that X is on the top of Y and Y is on
the top of Z. Y on Z means Y is not floor (Y is a block), thus aux2(X) means
X is on the top of a block (X is not on floor). aux1(X) is true if X is not on
floor (aux2(X)) and X is the top of a pile (top(X)). The behavior of an agent
can be interpreted as: 1) For a pile with 2 or more blocks, move the top block to
floor. 2) If the goal is to have X on Y and X is movable (X is the top block),
then move X to Y .

Car Avoiding:

1.00 : forward()← enemy(X,Y ), outer(Z,X)

0.58 : left()← me(X,Y ), enemy(Z, Y )

0.59 : right()← me(X,Y ), enemy(Z, Y )

(9)

The goal of an agent is to control one car to occupy the center without colliding
with the opponent car. The behavior of an agent can be interpreted as: 1) If the
agent and opponent are in the same quadrant, then move left or right. 2) If the
opponent is not in (a, ∗) then move forward.

Generalization The bottom section of Table. 1 shows the experiments with
different training and test initial state, thus evaluating the generalization ability
of models. Specifically, (1) On+: changing the order of blocks in the test. (2)
Stack+: using 2 piles in the test while 4 piles for the training. (3) Unstack+:
using 2 piles in the test while 1 pile for the training. (4) Car Avoiding+: chang-
ing the initial position of two cars in the test. OPDLRL and OPDLRL− achieve
the best performance in this new task settings as our methods utilize logic expres-
sions to capture the essence of task operations, resulting in better generalization.
The performance of MLP-based methods (SAC and PPO) decreases drastically
due to their over-fitting to the training environment. PPO(DLP) has a slightly
better performance than ours in task On and On+ but lags in all other tasks.
Note that the loss function of PPO also includes an entropy term but it is used
as a regularization term to help exploration.

8 The induced rules of other tasks are included in the Supplementary Material.
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Off-Policy Training Fig. 3 depicts the learning curves of all DILP-based meth-
ods on four tasks. OPDLRL and OPDLRL− substantially outperform others in
all tasks regarding sample efficiency (convergence), indicating the effectiveness
of the off-policy training and the approximate inference strategy in our frame-
work. For each task, NLRL(AI)/PPO(DLPAI) perform remarkably worse than
their corresponding variant without approximate inference because NLRL and
PPO(DLP) apply on-policy training but the use of approximate inference re-
quires off-policy, resulting in the outstanding performance loss. The learning
curves of OPDLRL and OPDLRL− are similar as they both apply off-policy
training. In fact, OPDLRL converges faster than OPDLRL− in Stack, Unstack,
and Car Avoiding tasks because of efficient Exploration-Exploitation: the noisy
produced by approximate inference helps policy to diverge from the local-optima
in early training stages. Moreover, the use of approximate inference in OPDLRL
can significantly reduce the response/deduction time of policies due to dropping
a large number of negligible rules (90% potential rules were discarded in the ex-
periments without compromising the performance). SAC and PPO have similar
convergence patterns as our methods but with worse generalization. Therefore,
they are not included in the comparison.

Impact of Approximate Inference Fig. 4 illustrates the impact of approx-
imate inference by measuring the difference between the policy π with full in-
ference and π̂ with approximate inference on task On for given training steps
and drop rates9. 1000 states {s1, · · · , s1000} were sampled from the environment
based on π. For each si, the KL-divergence between π(·|si) and π̂(·|si) was used.
The difference between π and π̂ is computed as:

Esi∼π[DKL(π(·|si)||π̂(·|si)) +DKL(π̂(·|si)||π(·|si))] (10)

The heatmap depicts the log scale value of Eq. (10). The difference caused by
approximate inference is only notable in the early training stages. The difference
becomes trivial after 440 learning steps even with a large drop rate (e−20 ≈
2 × 10−9 when x = 440, y = 0.9). The observation supports the discussion in
Sec. 1 and the key motivation of the paper: approximate inference with off-policy
training can significantly boost the execution efficiency without sacrificing the
benefits of DILP.

4.4 Rabbids Game

Experiments Setting To test OPDLRL’s capability of (near) real-time in-
ferences in complex domains, we developed a real-time game-play agent with
OPDLRL to compete with other models and human players in the bumper-car
mini-game of the Rabbids, which requires a policy response within the interval
between frames. The state (vector) implies the position coordinates, velocity,

9 Drop rate represents the percentage of rules ignored in the approximate inference,
see Eq. (5).
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and orientation of four cars, and the actions are forward, backward, left, right,
as well as their combination. The state compiler translates the continuous state
vector to high-level symbolic states, and the action compiler translates the high-
level symbolic actions to a sub-goal, which a sub-policy tries to achieve. The
high-level symbolic environment of Rabbids is a super-set of Car Avoiding with
the following extra predicates: danger(X,Y ) for whether a region (X,Y ) can be
reached by an opponent, reach(X,Y ) for whether a region (X,Y ) can be reached
by agent, to(X) for a sub-goal of moving to the opponent X, avoid() for a sub-
goal of avoiding the opponent, and tocenter() for a sub-goal of moving to the
center. The action predicates in Car Avoiding are also considered as sub-goals
to make high-level policy more flexible. danger(X,Y ) and reach(X,Y ) contains
the velocity and orientation information, computed by a pre-trained network.
Our agent was trained against behavior tree agents. Agent gets +1 reward when
an opponent falls from the platform and get −1 reward when agent itself falls.
Within one episode, each car has three chances to re-spawn. Agent wins the
episode if and only if it stays alive until the end.

Results After the training, both OPDLRL agent and SAC agent achieved
higher win rates against the behavior tree agent (OPDLRL:100.0%(124/124),
SAC:97.1%(99/102)). To evaluate the generalization ability, we organized a series
of competitions against human players, and OPDLRL agent kept 100.0%(21/21)
win rate while SAC agent decreased to only 20.0%(4/20). We observed that most
loss of SAC agent was caused by states which were unseen during training. For
example, SAC agent may act a self-killing behavior when an opponent stays still,
as staying still has never occurred during the training against a behavior tree
agent. The higher win rates of OPDLRL agent show that our method success-
fully captures/induces the key point via DILP. Unfortunately, other DILP-based
approaches failed this test as they cannot compute a practical response within
the time limit.

5 Discussion

Mirror Descent Reinforcement learning with interpretable policy representa-
tion is challenging because of its highly structured nature of the policy space.
Thus, the training of interpretable policies cannot be seen as an unconstrained
policy optimization. Mirror descent is an efficient method to solve a constrained
optimization problem and [34] has demonstrated how to learn a programmatic
policy via mirror descent. SAC is known as a special form of mirror descent
[36,23]. The use of SAC to optimize DILP in our paper can thus be interpreted
from a perspective of mirror descent: i) learning an unconstrained policy via
MLP-based Q-function (Eq. (6)); ii) projecting the unconstrained policy into
constrained DILP-based policy space (Eq. (7)). From a theoretical perspective,
this view may help understand the advantages of our method and provide insight
to further improving Neuro-Symbolic methods with structured nature.
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Multi-Agent Rabbids can also be seen as a multi-agent game. Generally, single-
agent RL algorithms cannot converge to a robust policy which can rationally
respond to various opponent’s policy due to the non-stationary feature caused
by the change of opponent’s policy. Currently, the most popular and successful
solution to multi-agent game is self-play [14,19,13]. Instead of using self-play,
in this paper, we explored to learn a robust/well-performed single-agent policy
for a multi-agent video game via a specified regularization, which restricts the
policy within the interpretability structure. The results proved the effectiveness
of our solution when dealing with the multi-agent environment.

6 Conclusion

In this paper, we proposed Off-Policy Differentiable Logic Reinforcement Learn-
ing (OPDLRL) framework to inherit the benefits of interpretability and gener-
alization ability in DILP and also resolve its weakness of execution efficiency,
stability, and scalability. OPDLRL has similar or better performance than other
DILP-based methods but far more practical in terms of sample efficiency and ex-
ecution efficiency, making it applicable to complex and (near) real-time domains.
The key contributions include the use of approximate inference to significantly
reduce the number of logic rules required for inferences and the well-designed
off-policy training process to enable approximate inference. Various experiments,
specifically playing real-time video games in Rabbids against human players,
demonstrated its strength and practicability.
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