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Abstract. Anomaly detection for high-dimensional time series is always a dif-
ficult problem due to its vast search space. For general high-dimensional data,
the anomalies often manifest in subspaces rather than the whole data space, and
it requires an O(2N ) combinatorial search for finding the exact solution (i.e.,
the anomalous subspaces) where N denotes the number of dimensions. In this
paper, we present a novel and practical unsupervised anomaly retrieval system to
retrieve anomalies from a large volume of high dimensional transactional time
series. Our system consists of two integrated modules: subspace searching module
and time series discord mining module. For the subspace searching module, we
propose two approximate searching methods which are capable of finding quality
anomalous subspaces orders of magnitudes faster than the brute-force solution.
For the discord mining module, we adopt a simple, yet effective nearest neighbor
method. The proposed system is implemented and evaluated on both synthetic and
real-world transactional data. The results indicate that our anomaly retrieval sys-
tem can localize high quality anomaly candidates in seconds, making it practical
to use in a production environment.

Keywords: Unsupervised Anomaly Retrieval · High-dimensional Time Series ·
Subspace Searching · Data Mining.

1 Introduction

Time series anomaly detection is important for building automatic monitoring systems.
Although anomaly detection in time series data has been extensively studied in literature
for decades, the majority of prior work only detects anomalies on either one or all
dimensions. While searching anomalies in subspaces is commonly studied in vector
space-based methods [4, 11], nearly no work has been done in searching anomalies in
subspaces of multidimensional time series. If the system does not retrieve anomalies
from the correct subspace, it often results in producing undesirable results due to false
dismissals similar to the case of multidimensional motif discovery [35].

Let us consider an example as shown in Fig. 1 where we have a three-dimensional
time series and aim to identify the days containing anomalies. The state-of-the-art
discord mining-based methods [4, 17] generally compare the distances between time
series associated with each pair of days and generate anomaly alerts once the nearest
neighbor distances exceed certain thresholds. If we apply these methods independently
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on each dimension (dim. 0, 1, or 2), as every daily pattern occurs twice, all nearest
neighbor distances between the days are low and no alert will be generated on any of
these dimensions. These results also hold if we apply the same algorithm to the combined
time series (all dim.). Only if we combine dimension 0 and dimension 1 (dim. 0 + 1), the
anomaly, which occur on day one, can be detected by the discord mining-based method.
In other words, the anomaly detection system will falsely dismiss the anomalies if it
does not exhaustively search anomalies in all possible combinations of dimensions (i.e.,
subspaces).
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Fig. 1. The anomalous patterns
(red/bold) are detectable only when
dimension 0 and dimension 1 are
combined. The blue/thin lines are
recurrent (i.e., normal) patterns.

Detecting anomalies in subspaces is crucial in
many domains. In this paper, we focus on finding
anomalies in financial transaction data, a particular
area where a failed detection strategy may cause
multi-million-dollar losses. For example, during
the 2013 ATM cyber looting attack, US$2.4 mil-
lion was looted from about 3,000 ATMs in New
York City [27]. The attackers evenly distributed
looting to the targeted ATMs so that only an extra
US$800 was withdrawn from each ATM. Given
that such a small amount of perturbation can be
considered as a normal daily fluctuation, this at-
tack is not discoverable by monitoring ATM’s as-
sociated time series3 individually. Meanwhile, this
attack can neither be detected by monitoring the
aggregated transaction volume of all the ATMs in
the U.S. as the targeted ATMs represent only 5%
of the total ATMs [32]. Although some pre-defined
rules (e.g., detecting withdrawals with the same dollar amount that occurred at multiple
ATMs within a short time) can capture the anomalies in this case, attackers can quickly
learn the rules and adapt their behaviors accordingly. Therefore, we need to develop an
algorithm to detect the “correct” combinations of time series associated with each ATM
without relying on simple rules.

A simple solution is exhaustive search (i.e., brute-force), by examining anomalies in
all possible subspaces (i.e., combination of dimensions), potential anomalies manifested
in subspaces can be identified. However, such brute-force solution is not scalable: search-
ing all possible dimension combinations requires an O(2N ) time complexity where N
denotes the number of dimensions. Such complexity is infeasible for most real-world
data, especially for transactional data. Collectively, a typical global payment company
generates hundreds of millions of transaction records per day and each transaction record
is typically associated with hundreds of attributes, representing different characteristics,
such as transaction type, zipcode, and transaction amount. By aggregating statistics
for transaction records associated with different common categorical attributes (e.g., a
particular zipcode) hourly, we can generate multidimensional time series from transac-
tional data. As anomalies may manifest in subspaces of the multidimensional time series,

3 The time series is generated by hourly withdrawn amount.
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the anomaly retrieval system needs to quickly identify the potential most suspicious
subspaces.

This paper presents a novel unsupervised anomaly retrieval system on multidimen-
sional time series data. We design the anomaly retrieval system with two modules,
i.e., subspace searching and time series discord mining. We present and evaluate two
alternative approaches to perform approximate subspace search, i.e., greedy search
and evolutionary search. The proposed approximate subspace searching methods are
capable of finding quality anomalies with their runtime being an order of magnitude
faster than the brute-force solution. For time series discord mining, we design a nearest
neighbor-based method with Dynamic Time Warping (DTW) to locate and score the
anomalies. We outline two different advanced implementations of the discord mining
method with 86% runtime reduction over the naive implementation. Adopting improve-
ments proposed for both modules, the proposed system is practical for deployment in
the production environment for monitoring transactional data. Our paper makes the
following contributions.

1. We investigate the unsupervised anomaly retrieval problem on multidimensional
time series. We divide the problem into two sub-problems and design an anomaly
retrieval system with two modules: subspace searching and discord mining.

2. We propose two different approaches to find the most anomalous subspace from an
O(2N ) search space for financial transactional data.

3. We design an efficient discord mining method based on DTW distances to identify
the temporal location of the anomalies and evaluate the anomalous degree of the
anomalies.

4. We implement our algorithm and conduct comprehensive experiments on both
synthetic data and real-world transactional data. The experiment results show that
our system outperforms all alternative approaches and it is practical for applications
in real-world products.

2 Related Work

The anomaly detection problem has been extensively studied for over a decade, and there
are many variants of the problem [2, 4, 11, 12]. In this section, we focus on two variants
that are mostly relevant to this work: high-dimensional data anomaly detection and time
series anomaly detection.

High-dimensional data anomaly detection: The proposed methods for high-dimensional
data anomaly detection problem usually attempt to solve the curse of dimensionality
associated with high-dimensional data and find anomalies that manifest in subspace span
by a subset of dimensions [12]. These methods either use alternative anomaly scores to
combat the curse of dimensionality or define/search for a subspace where the anomalies
are most likely to manifest. For example, angle-based methods solve the curse of dimen-
sionality by mining anomalies based on angles between the vector space representation
of the data instead of Euclidean distance [12, 18, 38, 39]. The hyperplane-based method
proposed in [19] defines subspaces with respect to each data point’s neighbors. The
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UBL [5] method performs anomaly detection on all dimensions of system metrics based
on neural networks. To search the subspaces where anomalies may manifest, various
approaches have been explored such as bottom-up search [23, 34], dependency among
different dimensions [16], dimensionality unbiasedness [31], set enumeration tree [6],
evolutionary algorithm [1] and domain knowledge [33]. Nevertheless, existing work
typically identifies anomalous records in a database using the associated attributes repre-
sented as high-dimensional feature vectors. Even in the works that deal with streaming
data [37–39], time series view of the data is not considered for the anomaly detection
problem. To the best of our knowledge, our work is the first one to adopt time series
representation of high dimensional data for anomaly detection.

Time series anomaly detection: Various techniques like Markov models, dynamic
Bayesian networks, and neural networks are explored for time series anomaly detec-
tion [11], and different techniques are proposed to capture different types of anomalies.
For example, Siffer el al. [29] designed an extreme value detection system based on
extreme value theory for streaming time series data without requiring any manually-
determined thresholds. Both DILOF [24] and MiLOF [26] detect time series anomaly
based on the Local Outlier Factor (LOF) scores. Existing work such as [21] and [10] de-
fines the anomaly based on data density. Another simple yet effective definition for time
series anomaly is time series discord [4, 17]. It defines time series anomalies as the most
unusual subsequences (subsets of consecutive data points) in time series. Besides these
studies, many efforts have been made to apply deep learning-based anomaly detection
on time series in various domains [3, 8, 15]. Malhotra et al. [20] and Su et al. [30] detect
time series anomalies based on the reconstructed error computed from recurrent neural
networks. The TScope method [13] adopts a unique feature extraction method and a
customized Self-Organizing Map-based score to detect anomalies in system call traces.
Most of the aforementioned work either considers each data point independently [10,
21, 24, 26, 29], or does not consider the fact that anomalies could manifest in subspace
instead of full space [3, 8, 13, 15, 17, 20, 30]. As a result, to the best of our knowledge,
our method is the only method that is capable of identifying anomalies based on time
series discord definition in high-dimensional data.

3 Definitions and Notation

Definition 1. (Transaction record). Each record is formulated asD = [d1, d2, d3, ..., dn,
t, a], where each di represents a discrete attribute that has a finite set of possible values.
n is the number of discrete attributes. Besides these discrete attributes, each transac-
tion record has a timestamp t indicating the occurring time of the transaction and the
transaction amount a, which is a numerical value.

Definition 2. (Transaction database). A transaction database D stores a collection of
transaction records.
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Table 1. Four records from an example
transaction database.
Customer Merchant Location Timestamp Amount

Alice eBay CA 1559854527 35
Bob eBay CA 1559854635 35
Alice Amazon WA 1559854800 50
Carlos Walmart CA 1559859053 38

An example of a transaction database, consist-
ing of four transaction records, is shown in Table 1.
Three individuals (Alice, Bob, and Carlos) have
transactions at three different merchants (eBay,
Amazon, and Walmart) in two different states (Cal-
ifornia and Washington). To account for temporal
variations of the transaction database, we gener-
ate a time series from the database using a sliding
aggregator.

Definition 3. (Sliding aggregator). Given a transaction database D, a sliding aggregator
A(·) is an aggregating function that generates a time series by summarizing the statistics
of transactions satisfied given conditions with a sliding window of window size w and
hop size h.

For example, we want to look at the per hour transaction amounts in California
for a database D. Then we apply the sliding aggregator A(count(), w = 1hour, h =
1hour, Location = CA) on D. Using the example database shown in Table 1, the first
two transaction records, i.e., Alice and Bob, are fed into the count() function as they
satisfy the condition Location = CA and occur within the same hour-long window. The
function output is a time series that includes the aggregated transaction amounts of each
sliding window.

Applying a single sliding aggregator only creates one view of the transaction database.
To represent the database more holistically, we define the subspace set of a given
transaction database as follows.

Definition 4. (Subspace set). Given a transaction database D, the corresponding sub-
space set SD = [T1, T2, T3, ..., Tm] is a set of m univariate time series, where each
Ti ∈ SD is generated by applying different sliding aggregators and is considered as one
of m subspaces.

As each Ti ∈ SD stores one view of the database D, we regard each Ti as a subspace
of SD. Continuing with the example shown in Table 1, by simply calculating the hourly
counts for all combinations of locations, the total number of subspaces (i.e., number
of Ti ∈ SD) will be 250 − 1 ≈ 1 quadrillion. To help us explain our subspace search
methodology, we further define the concept of unit subspace.

Definition 5. (Unit subspace). Given a subspace set SD, a unit subspace is a subspace
that cannot be obtained through a combination of other subspaces within SD.

Let us say that the SD consists of the aforementioned one quadrillion subspaces
generated by selecting all combinations of locations, a unit subspace is a subspace
associated with a single location. For instance, the subspace TCA = A(Location = CA)4

is a unit subspace while the subspace TCA,WA = A(Location = CA ∨ Location = WA)
is not a unit subspace as TCA,WA can be generated by combining TCA and TWA.
Throughout the paper, we use the term “dimension” and “unit subspace” interchangeably.

4 Other inputs (i.e., count(), w = 1hour and h = 1hour) of A() are omitted for brevity.
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Therefore, each dimension of the multivariate time series shown in Fig. 1 is a unit
subspace, and the overall subspace set includes both the unit subspaces and all possible
combinations of the unit subspaces.

[       ,       ,       ,       ,       ,       ]

Time 
series, T

Subseq. length

Subseq.
set, T

Discord

1.5 1.4
54

2.2

Fig. 2. The discord (red) is the subse-
quence with the largest distance with its
nearest neighbor. Each subsequence’s
nearest neighbor is indicated by the
curved arrow and the curved arrow is
pointed toward its neighbor. The dis-
tances are shown next to the curved ar-
row.

With all the essential concepts associated with
subspace defined, we are at the stage of defining
concepts associated with time series discord min-
ing.

Definition 6. (Time series discord). Given a time
series T , the time series discord is the subsequence
with maximum dynamic time warping (DTW) dis-
tance with its nearest neighbor, and the anomaly
score is the DTW distance between the discord and
its nearest neighbor.

In order to identify the discord, we search for
the nearest neighbor of each subsequence based
on the z-normalizing DTW distance within T;
then, store the distance between each subsequence
and its nearest neighbor (see Fig. 2). Based on
the stored distance values, we identify the discord
from T in Fig. 2 by locating the subsequence with
largest nearest neighbor distance.
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Fig. 3. The architecture of the proposed anomaly search system.

In Fig. 3, we provide an overview of the proposed anomaly retrieval system. First, a
set of sliding aggregators are applied to the transaction database to extract unit subspaces.
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We then feed the unit subspaces into the Subspace Searching Module (see Section 4.1).
The Subspace Searching Module executes iteratively and searches for the subspace(s)
with the largest possibility of being anomalous. The set of suggested subspace(s) is sent
to Discord Mining Module for evaluating the anomaly score of the subspaces. The results
of Discord Mining Module are then sent back to the Subspace Searching Module to guide
the search direction in the next iteration. The goal of the Subspace Searching Module
is to suggest the next anomalous subspace in each iteration and the goal of the Discord
Mining Module is to evaluate the anomaly scores of the identified subspaces output by the
Subspace Searching Module. Finally, once the iterative process is done (i.e., convergence
is reached), a ranked list containing the identified anomalous subspaces, anomaly scores,
temporal location of the anomalies, and the anomaly patterns are returned to the user for
further investigation. The ranked list is formed by storing all the evaluated anomalies
during the search process.

4.1 Subspace Searching Module

As we describe in Section 3, it is impossible to perform discord mining on all the
combinations of unit subspaces for real-world transactional data because the size of
search space is exponential with respect to the number of unit subspaces. We design
two heuristic searching algorithms for the subspace search problem: greedy search and
evolutionary search.

Greedy search: The greedy search method finds the most anomalous subspace by
making a greedy choice at each iteration. We demonstrate the greedy search method
with an example. Assume we have four unit subspaces (i.e., S1, S2, S3, and S4) initially.
In the first step, we evaluate each unit subspace individually and find out that S2 has the
largest anomaly score. Next, we evaluate the combined subspace of S2 with S1, S3, and
S4, separately. Let us say the combined subspace of S2 and S3 has the largest anomaly
score; we aggregate them together (S2 + S3 = S2,3). For the next step, we evaluate the
aggregated spaces by combining S2,3 with other unit spaces, i.e., S1 and S4, separately.
The subspace produced by aggregating S2,3 with S1 has the largest anomaly score;
therefore, we proceed with S1,2,3 for the next iteration. Finally, we aggregate S1,2,3 with
the last unit subspace S4 to form the last candidate subspace. By comparing the anomaly
scores of S2, S2,3, S1,2,3, and S1,2,3,4, the algorithm returns a list of subspaces ordered
based on anomaly scores.

Evolutionary Search: Evolutionary search [7, 14] is a heuristic optimization method.
As its name suggests, evolutionary algorithms mimic the natural selection process, and
applying such a method to our problem requires defining the following functions: genetic
representation, fitness function, initialization, crossover, mutate, and selection strategy.
We use a bit vector to represent a subspace, where the 1’s in the vector indicating the
presence of a unit subspace. The length of the bit vector is equal to the number of unit
subspaces. For example, if we have unit subspaces S1, S2 and S3, we use [101] to
represent a particular subspace that is generated by combining S1 and S3. The fitness
function is the anomaly score generated from the Discord Mining Module.
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For the initialization, each individual within the population can be produced by
generating a random binary vector. Given two parent binary vectors for the crossover, for
every position of the offspring’s binary vector, we randomly copy the value from one of
the parents. If a mutation occurs, we randomly flip the mutated bit in the binary vector.
For selection strategy, we use the tournament selection method with three tournament
participants. The particular evolutionary algorithm we used is the (µ+ λ) algorithm [9],
and a ranked list of the individuals (subspaces) ordered based on anomaly scores is
returned.

There are several hyperparameters in the evolutionary search method (i.e., population
size per generation µ, number of offspring λ, probability of crossover pcx, and number of
generation n), and the time complexity is determined based on the hyperparameter setting.
Specifically, the time complexity is O(nλ) where n is the number of generations and λ
is the number of offsprings. There are two major factors that users need to consider when
deciding hyperparameter settings: the runtime requirement and the domain knowledge
about the potential solution. Other model hyperparameters can be set based on the user’s
domain knowledge. For example, if users believe the solution should only consist of
different unit subspaces, users should initialize the initial population with binary vectors
with higher sparsity.

Greedy versus evolutionary search: There is no clear winner when comparing the
greedy search method with the evolutionary search method. The decision on which
method to adopt should be decided in a case-by-case fashion. To help the decision
process, we show the cost comparison between the two approaches in Table 2.

Table 2. Comparison between greedy and
evolutionary search.

Advantages Disadvantages

Greedy
Fixed time complexity O(n2)
No hyperparameter Inflexible cost

Evolutionary Flexible computational cost Hyperparameters

The major differences between the two
methods are 1) flexibility in computational
cost and 2) the number of hyperparameters.
The greedy search method has a fixed time
complexity of O(n2) where n is the number
of unit subspace. The time complexity is sub-
stantially better than the naive approach of
O(2n), but it still could be too expensive for
problems that demand a faster algorithm. Be-
cause the time complexity of the evolutionary search method only depends on the
hyperparameter setting, the evolutionary search method can be parameterized in a way
that the required speed can be achieved. The adjustable time complexity associated with
evolutionary search comes with a disadvantage: it requires users to provide a set of
hyperparameters while greedy search requires no hyperparameters. In other words, the
greedy search method is much easier to use compared to the evolutionary algorithm. We
perform an empirical comparison of the two methods in Section 5.2.

4.2 Discord Mining Module

For the Discord Mining Module, we apply a nearest neighbor searching strategy based
on DTW distances. The brute-force method computes the distances of all pairs of
subsequences. The output is the subsequence with the largest DTW distance with the
nearest neighbor. We call this method Discord Mining V0 (DM-V0).
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Can we do better than DM-V0? Since computing the Euclidean distance is an order
of magnitude faster than the DTW distance, it is possible to derive a faster discord
mining algorithm using the fact that the z-normalized Euclidean distance for a pair of
subsequences is always greater than their z-normalized DTW distance. We only need to
evaluate the DTW distance of a subsequence pair when their Euclidean distance is greater
than the current solution (i.e., the pair with the largest DTW distance in the current
iteration of the search process); therefore, we can avoid unnecessary DTW distance
computation using precomputed Euclidean distances. On top of that, we can also guide
the search process using the precomputed Euclidean distances by evaluating the pair with
the largest Euclidean distances first because the pair is more likely to contain the discord.
We call the improved version Discord Mining V1 (DM-V1). The time complexity of
DM-V1 is still O(n2m2) where n is the number of subsequences and m is the length
of a subsequence, but empirically it has a smaller runtime comparing to DM-V0 (see
Fig. 4).
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Fig. 4. The runtime of DM-V0, DM-
V1, and DM-V2 under different over-
lapping condition. Note, the y-axis is
runtime on a logarithmic scale.

Can we do even better than DM-V1? Many ex-
isting time series data mining algorithms take ad-
vantage of the fact that subsequences could be
overlapped with each other [22, 25, 40]. Their su-
perior computational speed is achieved by avoiding
redundant computation for the overlapped regions.
It has been shown by Zhu et al. [40] that comput-
ing pairwise z-normalized Euclidean distance for
every subsequence in a time series can be reduced
fromO(n2m) with naive implementation toO(n2)
using a more optimal implementation. Using the
STOMP algorithm introduced in [40], we further
improve the efficiency of DM-V1. Note, the orig-
inal purpose of the STOMP is to compute the
matrix profile [36]. We modify the algorithm to
return the pairwise distance matrix (i.e., all com-
puted distance profiles [36]) instead of the matrix profile. We call the newly-introduced
algorithm, Discord Mining V2 (DM-V2).

When do we use DM-V2 versus V1? DM-V2 takes advantage of the fact that sub-
sequences within the subsequence set are overlapped with each other. However, the
runtime of the STOMP algorithm is longer than pair-wise Euclidean distance com-
putation when the overlap between subsequences is small. To study the relationship
between the runtime of different discord mining methods and the overlap ratio, we have
performed experiments on a synthetic random walk time series (|T | = 2, 880). We set
the subsequence length to 48, and the overlap between consecutive subsequences are
varied from 0 to 47. The experiment is repeated 100 times and the average value is
reported; the result is presented in Fig. 4.

DM-V1 is faster than DM-V0 which shows how precomputing the z-normalized
Euclidean distance can indeed reduce the search time. When the overlap is close to
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100% of the subsequence length, the runtime reduction is 72% by replacing DM-V0
with DM-V1. When DM-V2 is adopted, the runtime reduction is 86% comparing to
DM-V0, and the runtime reduction is 51% comparing to DM-V1. On the contrary, when
the subsequences have zero overlaps, the runtime of DM-V1 is the shortest compared
with the alternatives, and the runtime for DM-V2 requires an extra 119 milliseconds
compared to DM-V1 and 58 milliseconds compared to DM-V0. The runtime for DM-V1
and DM-V2 intersect when the overlap of subsequence is around 63.5%. In other words,
to achieve the optimal performance under this particular experiment setup, we should
use DM-V1 when the overlap between subsequence is less than or equal to 63.5% and
DM-V2 when the overlap is greater than 63.5%.

4.3 Discussion

The goal of our anomaly retrieval system is to obtain a list of anomalies ordered based
on their corresponding anomaly scores, and the anomaly with the highest anomaly score
may not be a true anomaly from the user’s standpoint. However, by providing users
a list of anomaly candidates with its contextual information (i.e., which subspace the
candidate is from, the candidate’s temporal location, the shape of the anomaly pattern),
the user can investigate further using the contextual information of each candidate. Such
interaction is similar to how people use an online search engine.

Our two-module design can be easily extended for different applications. Currently,
we use a nearest neighbor-based method to mine time series discord since we find it
is suitable for finding anomalies (e.g., extreme values, abnormal trends, and sudden
changes) in transactional time series data. In other applications, the Discord Mining
Module can be replaced by a more suitable anomaly mining method for the application.
As a result, we fix the Discord Mining Module design to the time series discord-based
method and focus on comparing different subspace searching methods in Section 5.

5 Evaluation

The experiments are all conducted on a Linux server with Intel Xeon CPU E5-2650
v4. We present several alternative algorithms for subspace searching to compare with
our system firstly. We then perform a stress test with synthetic transactional data to
understand our system’s runtime and output quality under different scenarios. Finally, we
evaluate our anomaly retrieval system on real transactional data to show its effectiveness
in real-world scenarios.

5.1 Alternative Approaches

Now, we introduce several alternative algorithms for the Subspace Searching Module to
compare with greedy and evolutionary search.

– All-dimension: The method returns the subspace that consists of all dimensions,
i.e., it aggregates all the unit subspaces then returns it as the output.
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– One-best dimension: The method computes the anomaly score associated with
each dimension (i.e., unit subspace), then returns the dimension (i.e., unit subspace)
with the largest anomaly score.

– Hierarchical clustering: The method performs hierarchical clustering on dimen-
sions, which means that dimensions with similar time series are clustered together.
Suppose we have n dimensions, the clustering process groups the dimensions in
n− 1 steps. In each step, the hierarchical clustering algorithm merges either a di-
mension or a pre-existing cluster (i.e., grouped dimensions) with another dimension
or pre-existing cluster. We consider each cluster of dimensions as a subspace, and
we evaluate each subspace then return the ranked list of subspaces ordered by the
anomaly scores. This method explores the possibility of using the similarity among
dimensions for reducing the search space.

5.2 Synthetic Data

Methodology: Since it is beyond the modern computers’ capability to obtain the
optimal solution on real-world transactional data, we generate a set of synthetic data
where the set of all possible combinations of unit subspaces is small enough for the
brute-force subspace searching. Additionally, we generate the time series for each unit
subspace directly instead of raw transactional data to streamline the data generation
process as both the Subspace Searching Module and the Discord Mining Module work
on time series representation of a transaction database. The synthetic data generated
using the default experiment setting consists of 8 unit subspaces, and each unit subspace
consists of 30 days of transactional data where each day is represented with 48 data
points.

To study the effect of various variables associated with the synthetic dataset on the
runtime and quality of the solution, we have varied one variable in the default experiment
setting for each set of experiments. We generate 100 synthetic data points using different
random seeds for each experiment setting to minimize the randomness effect.

Discord

Discord

Subspace with highest anomaly score

Subspace with lowest anomaly score

Fig. 5. The time series data of the most
and least anomalous subspace.

To obtain the optimal solution, we generate
all the subspaces Sbf (i.e., all combinations of the
unit subspaces) by brute force. Fig. 5 shows the
most anomalous subspace and the least anomalous
subspace. The anomalies are highlighted in red.

Aside from the runtime, we also measure the
performance of our system with averaged rank
which captures the quality of the approximated so-
lution. The averaged rank is computed as follows:
given a subspace S discovered by an approximated
algorithm, we find the rank of S in Sbf . Because we repeat the experiment on 100 syn-
thetic data points generated using different random seeds (with the same experiment
setting), we compute the average of these 100 ranks and report the averaged rank as the
performance measurement of the solution quality.

In addition to the two subspace search approaches, we also include the result of
a random baseline. The random baseline returns a random subspace as the solution.
Out of all the alternative approaches, we only include the hierarchical clustering-based
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method because all the other approaches are only capable of returning subspaces that
consist of either one unit subspace or all unit subspaces. For all the experiments, we use
multi-thread implementation with the number of threads set to 48. We use DM-V1 in all
experiments as there is no overlap between subsequences.
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Fig. 6. Experiment result on synthetic data. Note
that the y-axis of the plot in the first row is on a
logarithmic scale.

Results: The experiment result is sum-
marized in Fig. 6. The first row of Fig. 6
shows the averaged rank (i.e., quality of
solution) under different Subspace Search-
ing Modules. The number of unit spaces
ranges from 4 to 16, constituting 24 − 1
to 216 − 1 subspaces. As the number of
unit subspace increases exponentially, the
ranks of all the subspace searching meth-
ods increase correspondingly. All three
subspace searching methods grow at a
much slower rate compared to the expo-
nential growth of the random baseline. We
also observe that the performance of the
proposed methods (i.e., greedy and evo-
lutionary) is better than the hierarchical
clustering-based method. On the contrary,
the variable of the number of days does
not have any correlation with the average
rank: increasing or decreasing the number
of days does not change the search space
for anomaly retrieval. When the number of samples per day increases, the average ranks
of the proposed algorithms slightly improve.

The second row of Fig. 6 depicts the runtime under different Subspace Searching
Modules. We do not include the runtime of the random baseline in this study because
there is no subspace search operation in the random baseline. When we change the num-
ber of unit subspaces, the size of the search space explored by the Subspace Searching
Module is changed, thus varying such a variable could influence the runtime of the Sub-
space Searching Module. For the greedy method, the result shows that the computational
cost is linear to the number of unit subspaces. For the evolutionary method, the time
complexity only depends on the hyperparameter settings of the algorithm. Since we use
the same hyperparameter setting (i.e., the default setting presented in the next section)
throughout the experiment, the runtime is not affected by the change in the number of
unit subspaces. Note that though the runtime of the greedy method more than triples
when the number of subspaces grows from 4 to 16, it is still much faster than the brute
force method as the brute force method requires a whopping 33 minutes to find the
solution compared to the six seconds for the greedy method.

When we change either the number of days or the number of samples per day, the
module that is mostly affected by the change is the Discord Mining Module. Increasing
either of these variables, in theory, should increase the computational time quadratically



Mining Anomalies in Subspaces of High-dimensional Time Series 13

of the Discord Mining Module. Nevertheless, the number of days has a limited effect
on the greedy search method and the growing trend of the evolutionary search method
suggests a quadratic growth rate. The number of samples per day has a similar impact on
the runtime of both the greedy search method and the evolutionary search method. The
trend suggests a quadratic growth in both methods’ runtime with respect to the number
of samples per day. Overall, the hierarchical clustering-based method is faster than the
other methods due to its smaller search space; however, it also has the worst averaged
rank for the same reason. We also generated figures with other common performance
measurements for retrieval systems (i.e., MAP and NDCG [28]). Because the conclusion
remains the same, we omit those figures for brevity.
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Sensitivity Analysis for Evolutionary
Search: As there are many hyperpa-
rameters associated with the evolution-
ary search method, we perform sensitivity
analysis using synthetic data with 12 unit
subspaces, 30 days of transactional data,
and 48 data points per day. This analysis
also compares greedy search with evolu-
tionary search under different hyperpa-
rameter settings to help users decide on
which subspace searching method to use.
The result is shown in Fig. 7. Similar to
Fig. 6, the y-axis indicates performance
measurements like rank and time while
the x-axis indicates varied hyperparame-
ters. The “default” hyperparameter setting
is: µ = 64, λ = 32, pcx = 0.7, and n = 8
where µ is population size per generation,
λ is number of offspring, pcx is probability of crossover, and n is number of generation.

First of all, the runtime mostly depends on λ and n. When we increase either λ or n,
the runtime also increases linearly and the rank improves considerably before saturation.
The value associated with µ also has a positive correlation with the runtime, but the
growth rate is much less than λ and n while the improvement in rank remains prominent.
On the contrary, pcx does not affect the runtime, and setting it to 0.9 gives us the best
result comparing to other pcx settings. Note, although the evolutionary search method
almost always outperforms the greedy search throughout the sensitivity analysis, there
are still cases where the evolutionary search method is surpassed by the greedy search
method when the hyperparameter setting is not ideal. This demonstrates the benefit of the
greedy search method: there is no sensitivity analysis required for using greedy search
because there are no hyperparameters associated with the greedy search method. Similar
to previous experiments, the figures with other performance measurements are omitted
for brevity.
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5.3 Real-world Transactional Data

Data Collection: We collect all the California state transactional data in July 2018 from
a payment company. Each transaction is associated with tens of attributes. Particularly,
we determine that the unit subspaces are defined by Merchant Category Code (MCC).
The MCC is the code used to determine the business type (e.g., department store, clothing
store, and grocery) of a merchant. When transactions of different MCC are analyzed
together (i.e., combining their corresponding unit subspace to form a subspace), it could
reveal valuable information regarding certain business sectors. Discovered anomalous
MCC subspaces can be interpreted and used as guidance for designing business strategies.
For example, let’s say MCC1 stands for department stores, and MCC2 stands for
clothing stores. If an anomalous event with unusual rising transaction volume is detected
in the subspace (MCC1,MCC2) on a specific date, such an event could indicate that
there could be a big sale on the date for stores that sell garments.

The dataset is 70GB and consists of over 600 million transactions from 415 MCCs.
In each trial of the experiment, we randomly select one day and a subset of MCCs (1% of
the MCCs) in the transaction database; we then randomly add synthesized transactions
belonging to the selected MCCs to the day and randomly remove transactions from the
selected MCCs occurring on that day. We repeat the experiment 16 times. When we
apply the sliding aggregator, we use a sliding window of a half-hour and a hop size of
the same length. The particular statistics we compute with the sliding aggregator is the
sum of the transaction amounts spent in the window.

Table 3. Experiment results with real transac-
tional data.
Method Average Rank MAP NDCG Runtime (Sec)
Random 15.50 0.63 0.34 -
All-dimension 20.75 0.36 0.24 0.02
One-best Dimension 17.31 0.47 0.28 9.58
Hierarchical Clustering 17.31 0.47 0.28 4.17
Greedy Search 5.94 0.86 0.46 1,345.50
Evolutionary Search 8.63 0.72 0.39 87.62

Since we have the ground truth about
the temporal location of the anomalies,
we return the averaged rank of the real
anomalous day in the ranked list returned
by different anomaly retrieval systems
over the 16 trials. To obtain the ranked
list, the anomaly score associated with
each day in the subspace returned by each
system is computed; then the computed
scores are used as the sorting criteria. Be-
cause the tested systems are retrieval sys-
tems, we measure the performance of the systems using information retrieval perfor-
mance measures like MAP [28] and NDCG [28] to evaluate the quality of the ranked
list in addition to the averaged rank. Note, for the averaged rank, a lower number means
better performance; for MAP and NDCG, a higher number means better performance.

Results: The experiment results are shown in Table 3. All alternative approaches
listed in Section 5.1 are examined. The proposed system, either with greedy search or
evolutionary search, considerably outperforms the baseline methods with the greedy
search being slightly better than the evolutionary search. On the contrary, either the
one dimension or all dimension system fails to reliably detect the injected anomalies
as their corresponding performance is even worse than the random baseline. The use
of all dimension system fails because the injected anomalies only affect 1% of the unit
subspace. Additionally, the one dimension system fails because it cannot locate the
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anomaly when only one dimension is considered. The anomaly on one dimension is too
small to be captured. The hierarchical clustering-based system also produces poor results
as the assumption that the anomalous space consists of similar unit subspaces does not
hold for our database. In terms of the runtime, the proposed system, even with the slower
greedy search method, is capable of running in real-time as the runtimes are all less than
the data sampling period (i.e., 1,800 sec.). Similar to the results we present in Fig. 6,
the evolutionary search method is capable of finding a solution that has a comparable
quality with the solution located by greedy search with a shorter runtime.

6 Conclusion

In this paper, we propose an anomaly retrieval system for high-dimensional time se-
ries. The proposed system consists of two integrated modules, i.e., subspace searching
module and discord mining module. We implement the proposed system and perform
a comprehensive evaluation with synthetic data and real-world transactional data. Our
experimental results show that our system outperforms the baseline algorithms with an
execution time suitable for real-time analysis in the production environment. It only takes
22 minutes to process one month of transaction records (i.e., 600 million records) with
the greedy search variant of the proposed system, and 1.5 minutes for the evolutionary
search variant.

References

1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: ACM Sigmod
Record (2001)

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local
outliers. In: ACM sigmod record (2000)

3. Chakraborty, K., Mehrotra, K., Mohan, C.K., Ranka, S.: Forecasting the behavior of multi-
variate time series using neural networks. Neural networks (1992)

4. Chandola et al.: Anomaly detection: A survey. ACM computing surveys (2009)
5. Dean, D.J., Nguyen, H., Gu, X.: Ubl: Unsupervised behavior learning for predicting perfor-

mance anomalies in virtualized cloud systems. In: ICAC (2012)
6. Duan et al.: Mining outlying aspects on numeric data. DMKD (2015)
7. Eiben et al.: Introduction to evolutionary computing. Springer (2003)
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