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Abstract. The asset management of an insurance company is more
complex than traditional portfolio management due to the presence of
obligations that the insurance company must fulfill toward the clients.
These obligations, commonly referred to as liabilities, are payments whose
magnitude and occurrence are a byproduct of insurance contracts with
the clients, and of portfolio performances.
In particular, while clients must be refunded in case of adverse events,
such as car accidents or death, they also contribute to a common financial
portfolio to earn annual returns. Customer withdrawals might increase
whenever these returns are too low or, in the presence of an annual
minimum guaranteed, the company might have to integrate the difference.
Hence, in this context, any investment strategy cannot omit the inter-
dependency between financial assets and liabilities.
To deal with this problem, we present a stochastic model that combines
portfolio returns with the liabilities generated by the insurance prod-
ucts offered by the company. Furthermore, we propose a risk-adjusted
optimization problem to maximize the capital of the company over a
pre-determined time horizon.
Since traditional financial tools are inadequate for such a setting, we
develop the model as a Markov Decision Process. In this way, we can use
Reinforcement Learning algorithms to solve the underlying optimization
problem. Finally, we provide experiments that show how the optimal
asset allocation can be found by training an agent with the algorithm
Deep Deterministic Policy Gradient.

Keywords: Reinforcement Learning · Portfolio allocation.

1 Introduction

Portfolio management is a core activity in finance, whereby an entity, such as a
fund manager or an insurance company, oversees the investments of its clients
to meet some agreed-upon financial objectives. In the context of an insurance
company (henceforth simply referred to as ‘company’), the clients not only
contribute premiums to a common fund to buy assets, but also acquire the right
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to be paid in case of certain events (e.g., death in the case of a life insurance
policy). Therefore, the company has to manage not only the assets, but also
the liabilities deriving from the insurance. This combination of asset-liability
management, and their inter-dependency, is one of the reasons why the insurance
case is more complex than traditional portfolio management.

In this paper, we consider the problem of a company that handles insurance
products for its clients, and wishes to optimize the risk-adjusted returns of the
investment portfolio, while at the same time ensuring that its future liabilities are
covered despite possible market fluctuations. These liabilities can be stochastic,
and are usually correlated to some of the assets available to the company. In
this scenario, one cannot just optimize for the risk-adjusted return, rather the
investment portfolio has also to match the liabilities, and in particular their due
dates. Finally, in a life insurance setting, the time horizon of the problem is
relatively long (e.g., 30 years), and the portfolio gets rebalanced sporadically.

Commonly used financial tools for asset allocation such as Modern Portfolio
Theory (MPT) [16] are inadequate for the considered setting. First, Markowitz’s
theory does not take into account liabilities and the future negative cash flows
they generate. Second, it assumes a single decision point where the portfolio is
optimized. While the methodology can be repeatedly applied at each decision
point, it fails to take account for the path dependency of the problem: previous
choices affect later ones. For instance, the decision to buy a risky asset early on
in the lifetime of the fund might affect the ability to face negative cash flows later
on, and thus inform a more conservative strategy. Clearly, an optimal strategy
needs to take into account the whole decision space of the problem, i.e., the whole
sequence of decisions (asset allocations) that lead to the final outcome.

Given the stochastic nature of markets and the multi-period decision nature
of the problem, it is only natural to use a Markov Decision Process (MDP)
as a model. An MDP is an extension of a Markov chain (a stochastic model
of a sequence of events) that allows for account possible actions so that the
stochastic outcomes are partly under the control of a ‘decision maker’. The
system moves in discrete steps from a state s to a new state s′ according to some
transition probability Pa(s, s

′), which also depends on the action a taken. The
transition generates a reward Ra(s, s′), and the goal is to find an optimal policy,
i.e., a (stochastic) mapping of states to actions, such that the expected reward is
maximized.

While there are several possible ways to solve an MDP, such as linear and
dynamic programming [5], for large systems Reinforcement Learning (RL) is the
de-facto standard tool to tackle the problem [25].

The contributions of this paper can be summarized as follows:

• We describe, formalize, and implement a realistic model of the asset-liability
management process for an insurance company as a Markov Decision Process.
The action space of the model is particularly challenging to explore, as each
action can be sampled from a continuous k-1 simplex (where k is the number
of available assets).
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• We adapt a well-known algorithm for deep reinforcement learning for contin-
uous action spaces (DDPG [13]) to our problem. To do so, we employ several
techniques that are necessary for a quick and stable convergence: a warm-up
stage to pre-train the critic network, a modification to the exploration policy
to maintain important structural constraints of the problem, and a careful
crafting of the reward function to implement domain-specific, parametric
asset allocation constraints.

• We show experimentally that our solution is able to outperform a traditional
mean-variance optimization baseline computed via Monte-Carlo sampling.

2 Problem Definition

This section provides a detailed description of the inner workings of a life-insurance
company. We begin with a description of the mathematical model underlying
the financial evolution of the company. Then, we provide a brief description of
the implementation in terms of components and their interaction. Finally, we
formalize the optimization problem.

The problem consists in optimizing the investments of an insurance company
in order to maximize the profits. On the one side, the company manages a
segregated fund that handles a portfolio of assets of different nature (equity,
bonds, cash). On the other side, the company sells insurance products that
differ from each other in their client characterization (in terms of age, behavioral
properties such as the probability to pay premiums), and the percentage of the
profits owed to the client from the returns generated by the segregated fund
during the year. Irrespective of the profits generated by the portfolio, policies
usually stipulate a guaranteed minimum return on investment for the clients.
This minimum, referred to as Minimum Annual Yield (MAY) and denoted with
κ, is particularly important because the insurance company must integrate the
amount whenever the returns of the segregated fund are not able to meet the
MAY. Conversely, the insurance company is allowed to take part of the Surplus
(SP), by retaining a fixed spread over the surplus, or a fraction of it.

The profit of the company consists of the residual surplus once all the cash
flows of the policies have been paid off. These payments, referred to as liabilities,
are a consequence of several factors such as: insurance claims, and integration to
reach the MAY. Liabilities depend on the type of insurance policy, but are also
connected to the profits generated during the year for the client. For instance, the
probability of client withdrawal may be affected by the amount of profits generated
by the fund. To cover the liabilities, every insurance product is associated with
reserves, which represent the value of the outstanding liabilities. Unused reserves
contribute to the profits of the company.

2.1 Formalization

Our goal is to optimize the asset-liability management of the fund given an
economic scenario, over a finite time horizon in [0, T ] divided into discrete slots
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of one year. This scenario is a stochastic process which describes the financial
market, based on existing models whose parameters are calibrated by using
historical data. The model which generates the scenario is a black box from
the point of view of the optimization, and can only be queried to generate a
new realization from the process. Each realization from the process provides the
information necessary to characterize the financial assets along the considered
time interval. These random variables describe Key Financial Indicators (KFI)
such as equity indexes, interest rates, and market spreads.4 Therefore:

Definition 1 An Economy is a realization of KFIs from the stochastic process
E which defines the economic scenario.

We assume a set of financial asset classes, denoted with C and indexed from
1 to |C|, that can be exchanged during the considered time horizon. Assets of
each class are created at every time unit by combining a set of basic properties
specific of the asset class with their corresponding KFIs. The creation of an
asset corresponds to the definition of the minimal set of terms that allow for its
accounting.

Definition 2 An asset is a tuple composed of seven terms Y=〈c, t0, p0, tp,m, r, χ〉:

• c ∈ C the class of the asset;

• t0 ∈ [−∞, T ] the issue time (can be arbitrarily back in time);

• p0 ∈ R the issue price, the market price of the asset at the moment of creation;

• tp ∈ [−∞, T ] the purchase time (can be arbitrarily back in time);

• m ∈ [0,M ] the remaining maturity of the asset;

• r ∈ R the redeem value of the asset;

• χ ∈ RM a vector of coupons paid every year by the asset up to maturity
(maximum maturity M).

The accounting of any single asset Y at a given time t requires four basic
functions: market value fMV (t, Y ), book value fBV (t, Y ), cash-flow fCF (t, Y ),
and generated income fGI(t, Y ). The collection of assets owned by the fund at
time t is the portfolio.

Definition 3 The portfolio is a multiset P(t)= {Y1 : n1, Y2 : n2, . . . } where every
Yi is an asset that has not been sold yet and has tpi ≤ t < tpi + mi (purchased
before t and not expired yet), and ni ∈ R is its nominal amount, i.e., how many
units of that asset the portfolio contains.

The accounting functions listed above apply to the portfolio as the sum of the
function applied to each asset weighted by its nominal amount. To disambiguate
the notation, we use the letter g to denote the functions applied to the portfolio
while we keep the letter f for the functions applied to a single asset. As an
example, the market value applied to the portfolio corresponds to gMV (t).

4 Details about KFIs and asset accounting is provided in Appendix A.1.
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The contribution of a single asset class c to the portfolio value is calculated
as follows:

Ac(t) =

∑
Yi∈P(t)|ci=c ni · fMV (t, Yi)

gMV (t)
. (1)

Definition 4 We define the asset allocation at time t as a vector A(t) =
〈A1(t), A2(t), . . . , A|C|(t)〉.

The portfolio is modified by means of selling and buying functions that take in in-
put the current portfolio P(t) and a target asset allocationXt = 〈X1, X2, . . . , X|C|〉.

Selling is performed first in order to free resources to buy new assets. Selling is
guided by a projection function gsell(P(t), Xt) that returns in output a multiset
S = {Y1 : s1, Y2 : s2, . . .} which contain the nominal amount of each asset in
the portfolio that has to be sold in order to move the asset allocation toward
X.5 Thus, after the selling actions, the nominal amount of every asset Yi ∈ P(t)
is equal to ni − si. The purchase of new assets is done in a similar way by
using a projection function gbuy(P(t), Xt) that provides a multiset of new assets

{Ỹ1 : nb1, Ỹ2 : nb1, . . . , Ỹk : nbk} bought from the market where nbi is the nominal
amount of the asset to be added to the portfolio.

Putting all together, we can derive the portfolio at the next time step as:

P(t+ 1) = (P(t) \ gsell(P(t), Xt)) ∪ gbuy(P(t), Xt). (2)

In order to complete the functions necessary to describe the segregated fund,
let us define the capital gain of the portfolio at time t as follows:

gCG(t, S) =
∑

Yi∈P(t)

si · (fMV (t, Yi)− fBV (t, Yi)), (3)

and the portfolio return as gPR(t, S) = gGI(t)+gCG(t,S)
1/2(gBV (t−1)+gBV (t)) . The insurance com-

pany has to face liabilities in the form of insurance claims due to deaths and client
withdrawal from the contract (surrender). Each insurance product guarantees
different benefits to the clients. Hence, its liabilities affect the profits of the
company differently from those of another product. For this reason, we assume
that the the ith insurance product is completely described in terms of the negative
cash flow generated by the product.

Definition 5 The i-th insurance product is a function qNF (Zi,R(t)) which
determines the negative cash flow generated by the product as function of a set of
parameters6 Zi and the set of portfolio returns R(t) for time t ∈ [1, T ].

The market value of the portfolio is monitored yearly and adjusted every
time it moves outside a certain range in comparison with a projection of the
(discounted) liabilities in the future, denoted by qDL(t).

5 See Appendix A.3 for details on the functions.
6 See Appendix A.2 for the full list of parameters.
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Fig. 1: Diagram describing the main components and interactions of
the Insurance Company Model.

Adjustments are capital injections/ejections that corresponds to loans.7 Let
gCI(t) be the function that determines the amount of cash that is paid or earned

at time t by applying the interest rate φinjt to the open loans plus an additional
penalty ε for cash injections. Finally, we can define the return on capital at

time t as gR(t) = gCA(t)−gCA(t−1)
gCA(t−1) where gCA(t) = gMV (t)− qDL(t)− (gMV (0)−

qDL(0)) + gIJ (t) is the fund capital gain, net of the overall discounted liabilities
and the total injection gIJ(t) which corresponds to of the sum all the capital
adjustments (injections and ejections).

2.2 Implementation Details

Figure 1 provides a graphical description of the model, its components, and their
interactions. Components have been realized as black boxes, so that they can be
implemented with the desired level of detail and substituted without affecting
the soundness of the model as a whole.

At the top of the figure, we observe the Economy which provides three
different classes of KFIs. The current implementation is based on a combination
of Cox-Ingersoll-Ross models [3] but the underlying process can be changed
transparently.

At the bottom we find the block Decision Maker which is composed of: Buying
and Selling strategy which correspond to the the functions gsell(P(t), X), and
gbuy(P(t), X), respectively; the Discounting which perform the projection of the
liabilities in the future and discounts them according to a discount curve given by
the Economy; finally, the component named Capital Monitor implements capital
injection/ejection mechanism.

The component labelled as Loans manages the state of the loans and computes
the costs at every time unit. Costs are computed by using an interest curve taken
from the Economy. Insurance Products is a collection of insurance products where

7 See Appendix A.3 for further details.



Reinforcement Learning for Portfolio Allocation 7

Algorithm 1 Step forward in the evolution of the segregated fund in time
function Step(X)

costLoans = loans.gCI (t)
discounting = disc.qDL(insuranceProds)
inj = capitalMonitor.verify(portfolio.gMV (t), discounting)
if inj 6= 0 then

loans.insert(inj)

sells ← gsell(portfolio,X)

new ← gbuy(portfolio,X)

portfolio = (portfolio\sells) ∪ new
returns = returns ∪ portfolio.getReturn(sells)
t = t + 1
ncashflow = insuranceProds.qNF (returns)
pcashflow = portfolio.gCF (t)
portfolio.updateCash(pcashflow, ncashflow, costLoans)
return portfolio.gCA(t)

each entry stores the state of the reserves and calculates the negative cash flow
generated by the product. Finally, the component Portfolio contains all the assets
that have been bought and have not reached their maturity. The asset referring
to Cash is unique and always present because it interacts with other components.

To exemplify the temporal dynamic of the interactions, Algorithm 1 shows the
pseudo-code of the routine required to move the Company one year forward in
the future. This function constitutes the cornerstone for building the environment
of our RL framework.

The first observation is that the time update does not occur at the end of the
function but in the middle. This is because, in principle, this routine describes
what happens between the end of the current year and the beginning of the next.
The operations performed at the end of the year are: the computation of the costs
of the loans which can be either positive or negative and will be subtracted from
the cash in the next year; the capital injection/ejection if needed; finally, the
selling and buying operations as well as the computation of the capital gain of the
year. Then, the time counter is increased and the cash is updated by considering
negative and positive cash flow together with the costs of the loans. Finally, the
routine ends by returning the current capital. Let us remark that the capital
does not change only because of the cash flow, but also as a consequence of the
changes of the KFIs that are embedded in the assets composing the portfolio.

2.3 Optimization Problem

Our goal is to optimize the average final return on capital, adjusted for its
volatility. Specifically, we measure volatility as the standard deviation of the
return on capital over the time horizon, given an asset allocation strategy and
an economic scenario.

The volatility provides an estimation of the yearly oscillations of the returns
within each simulation run. The idea behind its use is to penalize portfolios that
lead to large oscillations of the returns during the considered time interval, which
are a hindrance to the payment of the liabilities. Let µ = 1

T

∑T
t=1 gR(t) be the aver-

age of the return within the same realization, and let σ =
√

1
T

∑T
t=1 (gR(t)− µ)2
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be the standard deviation. The objective function can be written as follows:

argmax
X0,...,XT−1

= E
E

[µ− λ · σ] (4)

where X0, . . . , XT−1 are the asset allocations at any point in time and λ is a
risk aversion factor representing the weight of the volatility over the return on
capital, and the expectation is over the possible realizations of the economy E .

We define the problem in such a way that the objective function in Equation (4)
can be guided by two different classes of constraints. The first class (Type 1 )
is necessary to maintain the problem sound from a theoretical point of view:
Xt,i ≥ 0 ∀t, i;

∣∣Xt

∣∣ = 1 ∀t, which verifies that each target asset allocation is
long-only and properly defined on a simplex. The second class (Type 2 ) includes
constraints depending on external parameters that are used to restrict the domain
of the asset allocation; for example, we might want to set boundaries for the
allocation of a subset of the asset classes (e.g., no more than 60% allocation on
all bonds). By denoting the subset with Q ⊂ C, we can formalize this type of

constraint as β̌ ≤
∑
q∈QAq(t) ≤ β̂, ∀t.

3 Solution

We use DDPG [13] as a starting point for the implementation of our Reinforcement
Learning agent. DDPG, or Deep Deterministic Policy Gradient, is an actor-critic,
off-policy, model-free algorithm based on deterministic policy gradient, and that
can operate over continuous action spaces. DDPG belong to the set of actor-critic
agents, whose high-level architecture is depicted in Figure 2.

Actor Network

Critic Network

Q-value

ActionState

Fig. 2: Actor-Critic agent architecture

The critic network learns to approximate the temporally discounted cumu-
lative reward of an action on a given state, exploiting the Bellman equation as
in Q-learning. The actor network, given a state, learns to produce actions that
maximize the Q-value estimated by the critic. It is worth observing that the actor
receives no direct feedback from the environment: the back-propagated error used
to train the actor flows through the critic first. During the experimental phase,
which will be described in the next section, we observed that, thanks to the
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off-policy property of the algorithm, pre-training the critic on randomly sampled
actions (and the respective environment-generated rewards) had a strong positive
impact on the performance of the RL agent. We therefore systematically perform
a critic warm-up phase before undergoing the standard actor-critic training loop.

3.1 Structural and Parametric Constraints

In our specific settings, actions are asset allocations, and are therefore modeled
as a point on a simplex. Within our Reinforcement Learning agent, the actions
are produced by the actor, and ensuring that these actions are on a simplex can
be easily achieved by setting the last actor activation function as a softmax. We
call these requirements structural constraints. However, DDPG implements
RL-exploration by means of a perturbation policy that adds to the action noise
produced by an Ornstein-Uhlenbeck process [6]. Clearly, a noisy action would
likely violate the structural constraints, thus producing non-admissible actions. In
order to maintain action admissibility, we modified the standard DDPG approach
by moving the perturbation upstream with respect to the activation function.
We have adopted the recently-proposed parameter perturbation approach, where
in order to perform explorative actions we add noise to the actor weights [22]. By
doing so we are sure to produce exploratory actions that satisfy the structural
constraints, as the action is produced by the final softmax activation function of
the actor. The weights are then reverted to their previous values before proceeding
with the training.

Our specific setting might impose additional, domain-related constraints,
such as upper or lower bounds on specific assets, for instance: the Equity asset
shall not surpass 20% of the total asset allocation. Since these values vary from
one scenario to another, we have implemented them in a parametric fashion,
where the threshold values are read from external configuration files, and we call
them parametric constraints. Unlike the structural constraints, there is no
straightforward way to design an actor network so that all proposed actions are
compliant with the parametric constraints. Instead of structurally preventing the
actor from expressing actions that violate the parametric constraints, we elected
to teach the agent, as a whole, that such actions are undesirable. We have therefore
added a regularization term to the environment reward that penalizes the action
by an amount proportional to the excess threshold violation, by using a hinge
loss function. With this approach, the actor can quickly learn that the simplest
way to obtain higher rewards is to propose admissible actions. At the same time,
this approach allows for high flexibility, since the parametric constraints are set
in the environment, and thus decoupled from the agent architecture.

4 Experimental Evaluation

Before presenting the results obtained by using the the reinforcement learning
framework to solve the asset allocation problem, we describe those settings that
are shared by all the experiments presented in this section. We assume an initial
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asset allocation composed of cash only. The initial amount of cash is equal to
1050, while the reserves amount to 1000, which implies an initial capital of 50.
The interest rate on loans is set to the interest rate of the “Italian BTP” bond
with one year maturity, and the penalty ε is set to 2%. Similarly, the discounting
interest rate is set to the 30% of “Italian BTP” bonds. A single insurance product
is considered. The product guarantees a minimum yield of 0.5% per annum, and
uses a uniform distribution over time of the payments for surrender or death.

In order to have a baseline to compare our RL framework to, we evaluate it on
a simplified scenario on which the traditional Markowitz/Black-Litterman [16, 1]
approach can be applied. In particular, we consider a scenario in which:

• a single asset allocation is decided at time zero;

• rebalancing aims only to replenish negative amounts of cash by selling the
other assets “pro quota” at every time t > 0.

These assumptions lead to a “fire and forget” scenario in which a single decision
taken at the beginning determines the overall quality of the investments. Hence,
X0 is the only decisional variable, and the entries of asset allocations Xt>0 are
determined directly the from state of the portfolio according to the formula:

Xt,i =

{
max(0, Ai(t)) i = Cash

Ai(t)
max(0,AC(t))+

∑
i6=C Ai(t)

otherwise.
(5)

The use of a single decisional variable allows the comparison of the policy found by
the agent with the results obtained by performing a gird search on the action space
combined with Monte-Carlo sampling. The grid search is performed by exploring
the action space simplex with a fixed step size in {0.20, 0.10, 0.05, 0.02, 0.01}.
Each action is evaluated by averaging the obtained reward over 500 realizations
of the economy. To avoid stochastic effects from affecting the comparison, these
realizations are drawn in advance and fixed for all the actions of the search,
and are used in round-robin during the training of the agent. The number of
realization is sufficiently large that the probability of an agent exploring all them
on a given small section of the action space is negligible.

4.1 Three assets scenario.

In the first experiment we focus on a scenario with three assets: cash, equity, and
bond. We include a parametric constraint that sets 0.17 as an upper bound for
the equity asset, and set the λ risk-aversion coefficient to 0.2. In order to create a
controlled experimental environment, we run a set of simulations with 0.01 grid
step – corresponding in this scenario to 5151 simulations. From this fine-grained
set of experiments we can obviously extract coarser subsets by increasing the
grid step size, as shown in Table 1.

We use the coarsest grid (step = 0.20) for the warm-up phase of the Critic,
while keeping the more fine-grained best actions and rewards aside in order to
use them to evaluate the Actor’s performance during and after training. The
warm-up phase is a standard fully supervised learning task, and we report the
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Table 1: Parameters and results for the grid-search based simulations:
respectively, step size for the grid, number of different actions ex-
plored, best action found with the given grid, corresponding average
reward estimated on the 500 fixed realizations of the economy.

Step # actions Best action Best reward

0.20 21 [0.0, 0.20, 0.80] 2.552
0.10 66 [0.0, 0.10, 0.90] 2.707
0.05 231 [0.0, 0.15, 0.85] 2.790
0.02 1326 [0.0 ,0.16, 0.84] 2.799
0.01 5151 [0.0 ,0.17, 0.83] 2.811

Critic loss (computed as mean absolute percentage error) during training in
Figure 3a. We then store the pre-trained critic weights and re-load them in
subsequent experiments.

The core learning task for all our experiments is the training of our custom
DDPG agent, and this process involves several hyper-parameters. These include
structural details for the Actor neural network (number of neurons per layer,
weight initialization parameters), training details (learning rate and decay for
both the Actor and Critic), memory buffer parameters (capacity, batch size), and
a noise parameter governing the weight perturbation process used for exploration.
We therefore carried out a hyper-parameter optimization, where we observed that
our system is rather sensitive to hyperparameter setting, with the Actor prone
to converge on one-hot actions – most commonly assigning everything to bonds.
The first hyper-parameter search rounds were used to define an ‘admissibility
subspace’ of hyper-parameters that did not cause the agent to spiral into such
states, while subsequent iterations (such as the one visualized in Figure 3b)
allowed to progressively approximate the known optimal scores. To obtain these
results we trained a batch of 32 agents with different configurations of hyper-
parameters and, every 100 iterations, measured their average score on the set
of 500 pre-computed realizations. In Figure 3b we show the cross-agent average
score and, as shaded area, its 99% confidence interval; we also show the known
best scores for grids with increasing granularity (as reported in Table 1) as
horizontal lines, with the black line corresponding to the .20 step used for the
Critic warm-up.

Figure 3c shows the learning curve of the optimal agent, able to match and
even surpass the best known action, corresponding to the 0.01-step grid. Figure 3d
also reports the actions played by the optimal Actor during the training phase.
It clearly shows that the agent learns to assign the Equity asset (which gives
the highest reward) to the highest possible value that would not incur a penalty
(horizontal black line, corresponding to the set parametric constraint of .17).

We remark that we use this three assets scenario as a sandbox where it is still
feasible to exhaustively explore the action space with non-trivial grid steps in
order to compute the best action and reward; with an increasing number of assets
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Fig. 3: Training agents on a three assets scenario.

this procedure quickly becomes computationally too expensive, as the number of
actions to explore grows exponentially.

4.2 Six assets scenario.

The second experiment aims to show that a near optimal solution can still be
found when actions have larger dimensionality. In particular, we test the case in
which the portfolio is composed only of cash, and Italian BTP Bonds with 3, 5, 10,
20, and 30 years tenors. No constraints have been considered; hence, any portion
of the action space might contain candidates for the optimum. Furthermore, the
risk-aversion factor λ has been set to a high value of 4 in order to avoid that the
optimal solution comprises solely of the most profitable and most risky asset,
i.e., the 30-years bond. In this setting, we perform 15 trainings of the agent by
using only 21 actions for the warm-up. This number of actions corresponds to an
exhaustive search on a grid with step size equal to 0.5. Only two actions used for
the warm-up were able to provide a positive reward. The largest average reward
included in the warm-up was equal to 0.0607 and was obtained by investing
equally in BTP with 5 and 30 years tenors.

All the experiments provided an improvement from the initial warm-up from
a minimum of 3.9% (reward 0.0631) to a maximum of 21.7% (0.0739). Figure 4
provides a summary of the experiments by showing the evolution of the best
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action found by the agent, both in terms of asset allocation8 and reward over
the training epochs. In order to provide a further comparison, we provide also
the best action found with an exhaustive search performed with a step size 0.1.
In this setting, the testing of a single action for all the 500 economies requires
around one minute, and the grid contains 3003 actions; hence, whole computation
required more than 2 days. In spite of this, the obtained reward is still quite
far from the best found by the agent, whose training requires only two hours.
The rationale behind this gap can be explained by observing the evolution of
the best asset allocation in Figure 4b where we can notice that a near optimal
solution can be found only at precision below 1%. In particular, the best reward
found was generated by an action representing an asset allocation where only
BTP at 5,10, and 30 years had non-zero weights equal to 0.19, 0.361, and 0.449,
respectively.

(a) Average Reward (b) Asset Allocation

Fig. 4: Training agents on a six assets scenario

5 Related Work

The excellent results obtained in games [24, 17] and robotics [12, 21] have put the
spotlight on the ability of RL to find near optimal solutions in large multi-stage,
high-dimensional problems. And as such, they have drawn the attention of the
financial sector since modern portfolio theory deals with similar settings.
Modern portfolio theory, initiated by Nobel-prize-winner Markowitz [16] and
improved by Black and Litterman [1], consists in finding the optimal financial
allocation over a single time horizon by using mean-variance asset allocation
models. These models heavily rely on Markov processes to characterize the
stochastic nature of the economy. Hence, they naturally suggests the coupling
of Markov Decision Process (MDP) with Reinforcement Learning (RL) as a
framework to solve these problems [25]. It is thus not surprising that the literature
on RL methods for asset allocation problems is growing year by year [23].

8 The other three assets are omitted as they go to zero very quickly.
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For example, Wang and Zhou [26] present a framework, called exploratory-mean-
variance (EMV), for continuous portfolio selection (action) in continuous time
and continuous wealth (state) spaces. Q-learning methods are also common.
Halperin [8] provides an example of a data-driven and model-free methods for
optimal pricing and hedging of options with RL by constructing a risk-adjusted
MDP for a discrete-time version of the classical Black-Scholes-Merton model.
Nevmyvaka et al. [20] use Q-learning for large scale optimal order execution.
Direct policy search for portfolio allocation is instead presented by Moody
et al. [18, 19], and a tree-search approach that integrates the advantages in
solving continuous action bandit problem with sample-based rollout methods is
introduced by Mansley et al. [14]. The algorithm, named Hierarchical Optimistic
Optimization applied to Tree (HOOT), adaptively partitions the action space,
thus enabling it to avoid the pitfalls encountered in algorithms that use a fixed
action discretization.
De Asis et al. [4] explore fixed-horizon temporal difference (TD) reinforcement
learning algorithms for a new kind of value function that predicts the sum of
rewards over a fixed number of future time steps. Jangmin et al. [9] perform
dynamic asset allocation with a reinforcement-learning framework which uses
the temporal information from both stock recommendations and the ratio of the
stock fund over the asset. Buhler et al. [2] tackle option pricing and hedging by
using deep RL methods. Since the seventies, portfolio theory has been extended
in order to consider liabilities. Notable examples are Asset-Liability Management
(ALM) and dedicated portfolio theory models [11]. These models were considered
intractable before it was suggested that they can be handled with an underlying
Markovian structure and deep learning techniques [10, 2]. In this direction,
Fontoura et al. [7] consider the optimization of investment portfolios where
investments have to match (or outperform) a future flow of liabilities within
a time constraint. They address an ALM problem with a variation of Deep
Deterministic Policy Gradient algorithm (DDPG). In spite of the fast growing
literature, only one work [7], takes in consideration a multi-stage setting that
takes into account both asset-allocation and liabilities by still allowing the use of
off-the-shelf RL methods. However, liabilities are far from the level of detail of
those presented in the current work, since their description is limited to simple
phenomena such as inflation. To the best of our knowledge, our work is the first
RL framework able to describe a strong correlation between asset allocation and
liabilities.

6 Conclusions

This paper presented a framework for the asset management of a life insurance
company which differs from traditional portfolio management due to the strong
dependency between the profits of the portfolio and the liabilities generated
by the obligations toward the clients. The framework has been developed as a
Reinforcement Learning environment by maintaining flexibility in many aspects
of the problem. The most important are: (i) not being bound to any specific set
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of assets; (ii) having user-defined buying/selling strategies; (iii) the modeling
of the liabilities directly from the parameters of the insurance products that
generate them; (iv) general strategies for capital control and leverage.

We defined a risk-adjusted optimization problem to maximize the capital over
a finite time horizon by choosing the asset-allocations at possibly any time unit.
We validated the framework by means of a set of experiments performed on a
simplified scenario where a single asset allocation must be chosen at time zero.
Despite the smaller setting, experiments demonstrate how fast the problem grows
in complexity by pointing at reinforcement learning as the only viable solution
for the problem.

Testing our proposed framework in a proper multi-stage setting is the future
work with the highest priority, although proper baselines for this case need to be
devised. However, the generality of the framework suggests many other problems.
For example, the compounding effect on the capital is currently not addressed but
should be taken into account as well as the definition of different measures for the
control of the risk. In addition, while our framework defines the objective function
in line with modern portfolio theory for comparison purposes, the literature on
risk-adjusted MDPs [15] might provide a more robust grounding for our portfolio
allocation problem. On the experimental side, since the results so far have shown
marked oscillations when the agent is close to a near optimal policy, early stopping
strategies should be explored. Finally, the design of more advanced buying and
selling strategies is an orthogonal but nevertheless interesting future direction.
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A Appendix

A.1 KFIs and asset accounting

In this section, we describe the considered KFIs and the definition of the assets
together with their accounting. For the purposes of this work, we considered
three types of KFIs. They are the following:

• a vector γ with T entries where the t-th entry describes the market price of
the equity at time t;

• a set of matrices
[
ζc
]
T×M which describe the interest rate vector for a given

asset class c for every possible maturity M ; in particular, the entry ζct,m refers
to the interest rate of an asset at time t with maturity m.

• a set of matrices
[
αv
]
T×M which describe the spread of a bond for its reference

market v; in particular, the entry αvt,m refers to the spread of a bond at time
t with maturity m.

These KFIs allows the creation of all the classes used in this work. Asset
classes can be grouped into three macro-classes. In particular, we have:

• Cash: a class describing both common cash in a given currency and “cash
equivalent” assets;

• Equity : a class describing stocks and shares that have a variable market value
and generate dividends;

• Bond : a class of fixed-income securities with a fixed interest rate and a final
payment at maturity.

The class of an asset determines its basic properties and two assets belong to
different classes if they differ for at least one basic property. For example, two
bonds purchased with the same tenure are different if they refer to different
reference market, i.e. one is an “Italian BTP” and the other is “German Bund”.

In this work, Cash and Equity are used as singletons whereas bonds have
different properties and reference market.

As defined in the paper, the general notation adopted for an asset in the
portfolio corresponds to a tuple Y = 〈c, t0, p0, tp,m, r, χ〉 since these are the min-
imal information required to describe an asset within the portfolio and compute
the relevant information for accounting purposes. However, the accounting of an
asset depends also on properties that are inherited from the economy. The aim
of this section is to describe these dependencies.

Cash Since assets of class Cash do not expire, their only possible maturity M
is equal to ∞ and their redeem value is equal to zero. Similarly, since they do
not pay coupons, their vector χ contains only zero values. The class receives only
the interest rate from the Economy. In particular, given that there is only one
possible maturity, the interest matrix

[
ζC
]

becomes an interest vector ζC . The
four main functions applied to assets of the class cash are defined as follows:

• Market Value:
fMV (t, Y ) = 1;
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• Book Value:
fBV (t, Y ) = 1;

• Cash-Flow:
fCF (t, Y ) = exp(ζCt )− 1;

• Generated Income:
fGI(t, Y ) = fCF (t, Y );

Equity The class Equity does not expire nor pays coupons. Thus, its maturity,
redeem values, and coupons are set in the same way as those of Cash. Equities
require one vector from the Economy γ which defines their market price, and a
vector ζE which defines the dividend yield rates.

The four main functions applied to assets belonging to the class equity are:

• Market Value:
fMV (t, Y ) = γt;

• Book Value:
fBV (t, Y ) = fMV (tp, Y ),

i.e., the book value is the market price at the time of purchase tp;

• Cash-Flow:
fCF (t, Y ) =

[
exp(ζEt )− 1

]
· fMV (t, Y ),

where ζEt is the specific dividend yield of the equity;

• Generated Income:
fGI(t, Y ) = fCF (t, Y );

Bond The Bond is a macro-class which has several sub-types. In particular, a
bond sub-class is uniquely identified by:

• its temporal bucket σ that aggregates the maturity in five different groups
(0-3 years, 3-5, 5-10, 10-20, and 20+ years);

• its status which can be Current or Fixed, and is determined by a boolean
value that is true whenever the bond is fixed;

• its reference market v which can be: Core, Non-Core, Industrial, or Financial.

Therefore, a given sub-class is identified by a triplet 〈σ, f, v〉.
Since the time to expiration changes while the time passes, also the bucket

of the Bond changes and so does the class of the asset. As an example, a Core
Bond Y is contained in the bucket:

• 0− 3 if 0 < m ≤ 3;

• in 3− 5 if 3 < m ≤ 5;

• in 5− 10 if 5 < m ≤ 10;

• in 10− 20 if 10 < m ≤ 20;

• in 20+ otherwise.
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The update of the class is always performed at the end of the time unit after any
accounting operation.

Bonds are initialized by a coupon vector χ and a redeem value r, which are
given as input. For simplicity, for newly-created assets, we create this coupon
vector by taking into account the risk-free interest rate matrix

[
ζB
]

and the

spread for the specific reference market
[
αv
]
. Their sum defines the interest rate

for the asset, and therefore the coupon value. Each matrix is indexed by the time
purchase tp to get the corresponding vector. This way, the issue price can be set
to 1. The book price is set at the moment of purchase, and is updated every year
in order to consider the coupons that have been already received.

The four main functions applied to the bond asset class are defined as
follows:

• Market Value:

fMV (t, y) =

m∑
τ=1

exp(−(ζBt,τ + αvt,τ )τ) · fCF (t+ τ, Y ),

i.e., the sum of the future cash flows discounted by the appropriate interest
rate;

• Book Value:

fBV (t, Y ) =

{
fBV (t− 1, Y ) + r−p0

t+m−t0 if Current

fBV (t− 1, Y ) + r−fBV (t−1,Y )
m+1 if Fixed

where the base of the recursion is fBV (t0, Y ) = p0. The change in book
price reflects the amortization of the bond premium/discount (the difference
between the issue price and the redeem value).

• Cash-Flow:

fCF (t, Y ) =

{
χt if m > 0

χt + r if m = 0

• Generated Income:

fGI(t, Y ) =


χt + r−p0

t+m−t0 if m > 0 and Current

χt + r−fBV (t−1,Y )
m+1 if m > 0 and Fixed

χt + r − fBV (t− 1, Y ) if m = 0

Bond with constant maturity A subclass of Bond are the constant-maturity
bonds: the class models a fund invested in bonds with a fixed maturity m, i.e.,
the expiring date moves forward as t increases. This fact implies that the bucket
σ remains constant. The four main function applied to the constant-maturity
bond asset class are defined as:

• Market Value:

fMV (t, Y ) = fMV (t− 1, Y )
exp(−(ζBt,m−1 + αvt,m−1)(m− 1))

exp(−(ζBt−1,m + αvt−1,m)m)
− fCF (t, Y )
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• Book Value:

fBV (t, Y ) = fMV (tp, Y );

• Cash-Flow:

fCF (t, Y ) = χt;

• Generated Income:

fGI(t, Y ) = fCF (t, Y );

A.2 Insurance product parameters

In this section, as first, we describe the set of parameters Zi which define the
benefits of an insurance product. Then, we describe the calculations necessary to
determine the yearly negative cash flow. Finally, we describe the discounting of
the liabilities and the cash injection/ejection mechanism.

The first type is directly connected with policyholders’ behavior and aging
properties. These parameters are vectors with as many entries as the length of
the time horizon. In detail they are:

• δd: percentage of death claims at time t;

• δs: percentage of surrender benefit given at time t;

• κ: minimum guaranteed yield;

• κs: minimum guaranteed yield on surrender benefit;

• π: percentage of premiums paid over time by the policyholders.

The second type of parameters are connected to the reserves dedicated by the
company to the specific insurance product. These parameters are scalar values
corresponding to the initial state of the reserves at time t = 0. They are the
following:

• ξ0: fund value in-force on minimum guaranteed bases at t = 0 (data received
from the actuarial system);

• ξs0: fund value in-force on minimum guaranteed bases at t = 0 (from surrender
benefit);

• η0: fund value in-force on yearly bonus bases at t = 0.

The third type of parameters defines the portion of the segregated fund dedicated
to the specific insurance product. This portion changes over time, therefore these
parameters are vectors with as many entries as the time horizon. Specifically,
they are:

• b: percentage attributed to the policyholder of the performance of segregated
funds;

• c: management fee.
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In addition, we consider dynamic releases as those surrenders which happen
because the yield of the insurance is lower than the yield of the general market.
The customer thus prefers to withdraw their money and invest them otherwise.
The problem considers dynamic releases in terms of four scalars describing the
probability of:

• ψ: corresponds to the expected market return over the year (as imposed by
the financial scenario);

• d: percentage of dynamic releases;

• e: max delta on dynamic release;

• q: toll on dynamic release;

• v: spread on dynamic release.

In order to define the evolution over time t of each liability and compute
the final profit, we need to describe the evolution over time of the funds, of the
payments to the policyholders, and other dimensions such as surrender benefits
and death claims. This requires heavy notation because all the functions depend
on the parameters described above and by the returns of the segregated fund at
the previous time unit. Let the negative cash flows generated by the ith insurance
product being defined as the sum of negative cash flows generated by surrender
benefits and death. Formally, we have

qNF (Zi,R(t)) = qNS(Zi,R(t)) + qND(Zi,R(t)) (6)

where qNS(Zi,R(t)) refers to surrender benefits and qND(Zi,R(t)) refers to
deaths. In order to define these functions, we need to define the evolution of the
reserves of the insurance product as function of the portfolio returns R(t).

Let ρt ∈ R(t) be the portfolio return at time t, then the net yield recognized
to the policyholder of the insurance product i is defined as:

qNY (Zi,R(t)) = bt · (ρt − ct). (7)

The dynamic evolution of the releases at time t is modeled as a multiplicative
coefficient to the base surrender rate (δs) and is defined as follows:

qDR(Zi,R(t)) = 1− sign(qNY (Zi,R(t))− ψt − v)·
min(e, d ·max(0, |(qNY (Zi,R(t))− ψt − v)− q|)). (8)

The premiums paid by the policyholders at time t are described by the
following function

qPP (Zi,R(t)) = qTR(Zi,R(t− 1)) · πt (9)

where the total reserves at time t are computed as follows:

qTR(Zi,R(t)) = max (qMG(Zi,R(t)), qSB(Zi,R(t)), qRS(Zi,R(t))) . (10)

The three functions depend on:
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• the minimum guaranteed

qMG(Zi,R(t)) =


qMG(Zi,R(t− 1))·
(1− δdt − δst qDR(Zi,R(t− 1)))·
(1 + κt) + qPP (Zi,R(t)) t > 0

ξ0 t = 0;

(11)

• the surrender benefit

qSB(Zi,R(t)) =


qSB(Zi,R(t− 1))·
(1− δdt − δst qDR(Zi,R(t− 1)))·
(1 + κst ) + qPP (Zi,R(t)) t > 0

ξs0 t = 0;

(12)

• the reserves

qRS(Zi,R(t)) =


qRS(Zi,R(t− 1))·
(1− δdt − δst qDR(Zi,R(t− 1)))·
(1 + qNY (Zi,R(t− 1))) + qPP (Zi,R(t)) t > 0

η0 t = 0.

(13)

Finally, the negative cash flows are generated from the surrender benefits

qNS(Zi,R(t)) = max (qSB(Zi,R(t− 1)), qRS(Zi,R(t− 1)))·δst qDR(Zi,R(t−1)),
(14)

and from death claims

qND(Zi,R(t)) = max (qMG(Zi,R(t− 1)), qRS(Zi,R(t− 1))) · δdt . (15)

Discounting and cash injection/ejection The projection of the liabilities
discounted at a given interest curve is done by assuming a worst case portfolio
return, denoted with R̃(τ), for every year in the future. Let I be the set of
insurance products and φDisct,τ be the discounting interest rate at time t for
the maturity τ , then the projection of the liabilities at time t corresponds to
qDL(t) =

∑
i∈I
∑T
τ=t+1 qNF (Zi, R̃(τ)) · (1 + φDisct,τ )−1.

κ̃si,t =

∑
i∈I qTR(Zi,R(t)) · κsi,t∑

i∈I qTR(Zi,R(t))
. (16)

The monitoring of the portfolio is based on three different thresholds that satisfy
the relation Γmin ≤ Γbase ≤ Γmax. Whenever the ratio between gMV (t) and
qDL(t) goes below Γmin or above Γmax, the level of cash is adjusted of a factor
∆cash in such a way that the overall capital becomes equal to Γbase. When
∆cash > 0, new cash is invested (called “capital injection”) otherwise a portion
of the cash is removed from the portfolio (called “capital ejection”). Both the
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operations are equivalent to a loan that has to be repaid in the future with
interest. The interests of the loan are paid every year. As a consequence, the

capital is adjusted of a factor ∆cash =
(
Γbase − gMV (t)

qDL(t)

)
·qDL(t) whenever it goes

above Γmax or below Γmin. As a consequence, the market value of the portfolio
becomes equal to Γbase. Note that ∆cash is positive when the lower threshold
is violated and negative when the market value is above the upper threshold.
Finally, Let gIJ(t) be the sum of all the capital adjustments (injections and
ejections), the interest on this measure generates a further cash flow, called “cost
of injection”, that modifies the cash level yearly. Formally, we define the cost of
injection as:

gCI(t) =

{
gIJ(t) · (exp(φFeeInjt + ε) + 1) gIJ(t) > 0

gIJ(t) · (exp(φFeeInjt ) + 1) gIJ(t) < 0
(17)

where ε is an additional penalty applied to cash injection, and is the interest rate
of the loan.

A.3 Buying and selling strategies

In this work, we use “pro quota” strategies for buying and selling assets. This
means that, given a target asset allocation:

– each asset belonging to an allocation that exceeds the target is sold propor-
tionally to its contribution to the current allocation;

– each asset belonging to an allocation below the target is bought with an a
proportion that reflects its market value in comparison with the other asset
belonging to its allocation.

Formally, the nominal amount of each asset contained in P(t) is reduced by a
factor equal to:

si =

{
(Ac(t)−Xc)

ni

Ac(t)
Xc −Ac(t) < 0

0 otherwise;
(18)

whereas the amount of an asset Ỹi belonging to the class c bought at time t is
equal to:

nbi =

{
(Xc −Ac(t)) gMV (t)

fMV (t,Ỹi)
Xc −Ac(t) > 0

0 otherwise.
(19)
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