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Abstract. Multiple Instance Learning (MIL) aims at extracting pat-
terns from a collection of samples, where individual samples (called bags)
are represented by a group of multiple feature vectors (called instances)
instead of a single feature vector. Grouping instances into bags not only
helps to formulate some learning problems more naturally, it also sig-
nificantly reduces label acquisition costs as only the labels for bags are
needed, not for the inner instances. However, in application domains
where inference transparency is demanded, such as in network security,
the sample attribution requirements are often asymmetric with respect
to the training/application phase. While in the training phase it is very
convenient to supply labels only for bags, in the application phase it is
generally not enough to just provide decisions on the bag-level because
the inferred verdicts need to be explained on the level of individual in-
stances. Unfortunately, the majority of recent MIL classifiers does not
focus on this real-world need. In this paper, we address this problem and
propose a new tree-based MIL classifier able to identify instances respon-
sible for positive bag predictions. Results from an empirical evaluation
on a large-scale network security dataset also show that the classifier
achieves superior performance when compared with prior art methods.

Keywords: Explainable AI · Network security · Randomized trees.

1 Introduction

Multiple Instance Learning (MIL) generalizes the traditional data representation
as it allows individual data samples B1,B2, . . . (called bags) to be represented
by a group of multiple d-dimensional feature vectors B = {x1,x2, . . .}, x ∈ Rd
(called instances), which are order independent and their counts may vary across
bags. In the supervised classification, it is further assumed that each bag is
associated with label y (e.g. y ∈ {−1,+1} in the binary case), and the goal is
to infer function F from dataset D = {(B, y)1, (B, y)2, . . .}, using algorithm A,
such that the function F can predict labels for new bags F(B) = y.

This formalism (originally introduced in [9]) has recently gained significant
traction in domains dealing with complex data structures and/or labeling limita-
tions [6]. A prime example of such a domain is network security and its problem
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of detecting infected users in computer networks. While network traffic logs can
be converted into feature vectors relatively easily, their labeling is often very
labor-intensive and time-consuming. This is caused not only by the volume of
logs that needs to be processed by experienced threat analysts (and can not be
outsourced due to privacy issues), but also by the fact that the individual log
records may not carry enough discriminatory information for making verdicts
about them and a broader context of the communication must be considered by
the analysts1. Previous works [10, 18, 22, 13] have shown that MIL can greatly
facilitate this problem as it enables to: (i) formulate the problem more naturally:
users can be represented by bags of instances, where the instances correspond to
users’ communications with web servers; here the flexibility in bag sizes reflects
the reality that each user can establish a different number of communications
within a given time window, (ii) reduce the label acquisition costs: threat ana-
lysts do not have to pinpoint individual log records responsible for the infection;
it is enough to provide labels for the whole users, (iii) open new ways of ac-
quiring labels: since it is sufficient to know whether the user was infected in a
particular time period or not, a completely separate source of data can be used
for annotating (e.g. anti-virus reports) and thus benefit from cheaper and less
ambiguous labels, (iv) increase classification performance: MIL classifiers can
detect more types of infections as they make decisions by analysing the entire
context of user’s communications rather than individual log records in isolation.

The goal of this paper is to contribute to the above list of MIL advantages by
further enabling to: (v) explain the raised alerts: although in the training phase
the labels are supplied only for bags, in the application phase the model should
be able to explain the raised alerts (positive bag predictions) by promoting
instances responsible for the decisions. We argue that this capability is of great
need, especially in applications where subsequent acting upon the raised alerts
is associated with high costs (e.g. reimaging a user’s computer) and therefore
the verdicts need to be well justified. Time spent on the justification is usually
strongly affected by the order in which the instances are investigated. Most prior
approaches can not effectively prioritize instances of positive bags because they
perform some sort of bag aggregation inside models to make learning on bags
(i.e. sets of vectors) possible. The algorithm proposed in this paper works on an
instance selection rather than the aggregation principle.

2 Instance Selection Randomized Trees

The algorithm for learning Instance Selection Randomized Trees (ISRT) follows
the standard top-down greedy procedure for building an ensemble of unpruned
decision trees. Every tree learner recursively divides the training sample set into

1 For example, a seemingly legitimate request to google.com might be in reality related
to malicious activity when it is issued by malware checking Internet connection.
Similarly, requesting ad servers in low volumes is considered as a legitimate behavior,
but higher numbers might indicate Click-fraud infection.
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two subsets until class homogeneity is reached or the samples can not be divided
any further.

The main difference to the standard (single instance) tree-based learners
applies in the way the conditions are evaluated inside the splitting nodes. In the
MIL setting, the decision whether to send a sample (i.e. bag) to the left or right
branch can no longer be based on a condition of type — if feature f is greater
than value v — as the bag might contain multiple feature vectors (i.e. instances)
that may or may not fulfill that condition. To cope with this problem, every
node of ISRT (denoted as NISRT) is further parametrized with vector w, called
instance selector, in addition to the feature index f and the threshold value v
(Equation 1). The purpose of the instance selector is to select a single instance
x∗ from a bag B upon which the feature value comparison x∗f > v is made. The
selection mechanism is implemented via calculating the inner product (denoted
as 〈·, ·〉) between the vector w and individual bag instances x ∈ B, followed by
selecting the instance x∗ associated with the maximum response. Note that if
bags are of size one, then ISRT nodes behave like the traditional ones regardless
of the extra parameter w.

NISRT(B; f, v,w︸ ︷︷ ︸
Φ

) =

left, if x∗f > v, x∗ = argmax
x∈B

〈w,x〉,

right, otherwise.
(1)

Assuming the positive class is the class of interest, we would like to train an
instance selector (on a local training subset available to the considered node) to
give maximum values to the instances of positive bags (and thus cause their se-
lection) that are most responsible for these bags being positive. More specifically,
the selector should assign low (i.e. negative) values to all instances of negative
bags and high (i.e. positive) values to at least one instance from each positive
bag. We do not force the selector to assign high values to all instances of positive
bags, since not all of them are necessarily relevant. For example, not all websites
visited by an infected user within the last 24 hours are automatically malicious.
In fact, the vast majority of them will typically still be legitimate. These re-
quirements lead to the following zero-one loss function for a single training data
point (B, y):

`01 (w; (B, y)) = 1

[
ymax

x∈B
〈w,x〉 < 0

]
, (2)

where 1 [·] stands for an indicator function, which equals one if the argument
is true and zero otherwise. If we approximate the indicator function 1 [z] with
hinge loss surrogate max{0, 1 − z}, take average over the local training subset
S ⊆ D and add regularization term λ, we obtain Multiple Instance Support
Vector Machines [2] optimization problem:

argmin
w

λ

2
‖w‖2 +

1

|S|
∑

(B,y)∈S

max{0, 1− ymax
x∈B
〈w,x〉}. (3)

To approximately solve this non-convex optimization problem in linear time,
we adapted Pegasos solver [21] (originally designed for conventional SVMs) to



4 T. Komárek et al.

the MIL setting. The resulting pseudo-code is given in Algorithm 1. It is a
stochastic sub-gradient descent-based solver, which at each iteration t updates
the current solution wt+1 ← wt − ηt∇t (row 9 in Algorithm 1) using step
size ηt = 1/(tλ) and sub-gradient ∇t of the objective function (Equation 3)
estimated on a single randomly chosen training sample. To avoid building strong
classifiers inside nodes, which would go against the randomization principle for
constructing diverse independent trees [4], we restrict the selectors to operate
on random low-dimensional subspaces. Input zero-one vector s ∈ {0, 1}d then
serves as a mask defining the feature subspace. By taking element-wise product
with that vector (i.e. s � w or s � x), only feature positions occupied by ones
remain effective. In Section 4.2, we empirically demonstrate that using sparse
selectors, where the number of effective dimensions equals to the square root of
the total dimensions d rounded to the closest integer (i.e.

∑
f sf = [

√
d]), plays

a crucial role in the overall ensemble performance. This subspace size ensures
that in high dimensions the selectors will be approximately orthogonal and thus
independent [12].

Algorithm 1: ISRT’s routine for training selectors.

Function TrainSelector(S;λ,E, s)

Input : Training set of bags along with labels S = {(B, y)1, . . .},
the regularization λ > 0,
the number of epochs E > 0,
the zero-one vector defining feature subspace s.

Output: Instance-level selector wt approximately solving Problem 3.

1 extend all instances by a bias term [x, 1] including the subspace vector [s, 1]
2 t← 1
3 w0 ← random vector w0

f ∼ N(0, 1) // length(w) = length(x) = length(s)
4 w1 ← s�w0 // � element-wise product

5 for 1 in E do
6 for 1 in |S| do
7 (B, y)← (class-balanced) random draw (with replacement) from S
8 x∗ ← argmaxx∈B〈wt,x〉
9 wt+1 ← wt − 1

tλ

(
λwt − 1

[
y〈wt,x∗〉 < 1

]
y(s� x∗)

)
10 t← t+ 1

11 return wt[start : end− 1] // removing the bias term

Being equipped with the routine for training selectors, we can represent bags
in a local training subset {(B, y)1, . . .} with selected instances {(x∗, y)1, . . .}.
Now, on top of this representation, a standard search for the best splitting
parameters, based on measuring purity of produced subsets (e.g. Information
gain [20] or Gini impurity [5]), can be executed. This allows us to build an en-
semble of ISRT in the same way as (Extremely) Randomized Trees [11] are. In
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particular, unlike e.g. Breiman’s Random Forests [4], where each tree is grown
on a bootstrap replica of the training data, the Randomized Trees (as well as
our ISRT) are grown on the complete training set, which yields to a lower bias.
Variance is then reduced by output aggregation of more diversified trees. The
higher diversification is achieved through stronger randomization in splitting
nodes, as for each feature f out of [

√
d] randomly selected ones, only a limited

number2 T of uniformly drawn threshold values v from [xmin
f , xmax

f ) is considered
for splitting rather than every sample value as realized in Breiman’s Random
Forests. In the case of ISRT, the randomization is even stronger due to the fact
that selected instances may vary from node to node. The whole training proce-
dure of ISRT is summarized in Algorithm 2. Time complexity of the algorithm,
assuming balanced trees, is Θ(M

√
d T E NI logNB), where M is the number of

constructed trees, E the number of epochs for training selectors, NI the average
number of instances in bags and NB the number of training bags.

In the testing phase, a bag to be classified is propagated through individual
trees and the final score ŷ ∈ [−1, 1] is calculated as an average of leaves scores
the bag falls into (Algorithm 3). However, besides the prediction score, the ISRT
can also output a histogram of selection counts over the bag instances i. This
information might help to identify relevant instances upon which the decision
was made and thus serve as an explanation for positive bag predictions. For
example, an explanation — an user was found to be infected because it has
communicated with these three hostnames (out of hundreds) within the last 24
hours — can greatly speed up the work of threat analysts and reinforce their trust
in the model if the hostnames will be shown to be indeed malicious. On the other
side, it should be noted that this approach can not explain a positive prediction
that would be based on an absence of some type of instance(s) in the bag.
For example, there might be malware, hypothetically, its only visible behaviour
would be preventing an operating system (or other applications like an anti-
virus engine) from regular updates. For the same reason, negative predictions in
general can not be explained with this approach.

3 Related Work

Surveys on MIL [1, 6] categorize classification methods into two major groups
according to the level at which they operate. Methods from the first instance-
level group (proposed mostly by earlier works) construct instance-level classifiers
f(x) → {−1,+1} as they assume that the discriminative information lies on
the level of instances. Meaning that a bag is positive if it contains at least
one instance carrying a characteristics positive signal, and negative if does not
contain any such instance. Bag-level predictions are then obtained by aggregating
instance-level verdicts F(B) = maxx∈B f(x). MI-SVM [2], which is defined in its
primary form in Equation 3, is a representative example of this group.

The second bag-level group involves methods (proposed mainly by later works)
assuming that the discriminative information lies at the level of bags. These

2 Term extremely in Extremely Randomized Trees [11] corresponds to setting T = 1.
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Algorithm 2: ISRT’s routine for building an ensemble of trees.

Function BuildTreeEnsemble(D;M,T,E,Λ)

Input : Training set of bags along with labels D = {(B, y)1, . . .},
the number of trees to grow M > 0,
the number of considered threshold values T > 0,
the number of epochs E > 0 (for training selectors).

Output: Ensemble of Instance Selection Randomized Trees E .

1 E ← ∅
2 for 1 in M do
3 E ← E ∪ {BuildTree(D;T,E,Λ)}
4 return E

Function BuildTree(S;T,E)

Input : Local training subset S ⊆ D.
Output: Node with followers or Leaf with a prediction score.

5 if all class labels y in S are equal then
6 return Leaf (y)

7 Φ∗ ← FindBestSplittingParameters(S;T,E)
8 if Φ∗ = ∅ then
9 return Leaf ( 1

|S|
∑
y∈S y)

10 Sleft ← {(B, y) ∈ S | NISRT(B;Φ∗) = left}
11 Sright ← S \ Sleft
12 if Sleft = ∅ or Sright = ∅ then
13 return Leaf ( 1

|S|
∑
y∈S y)

14 return Node (Φ∗, BuildTree(Sleft), BuildTree(Sright))

Function FindBestSplittingParameters(S;T,E)

Output: Triplet of splitting parameters Φ as defined in Equation 1.

15 Φ∗ ← ∅
16 s← zero-one vector of length d with

[√
d
]
ones at random positions

17 w← TrainSelector(S;λ = 1, E, s)
18 (X∗,y)← represent each pair (B, y) ∈ S with (argmaxx∈B〈w,x〉, y)

19 foreach feature f in
[√

d
]
randomly selected ones (without replacement)

having non-constant values in X (i.e. xmin
f 6= xmax

f ) do
20 foreach value v in T uniformly drawn values from [xmin

f , xmax
f ) do

21 Φ← (f, v,w)
22 update Φ∗ ← Φ if Score(Φ,X∗,y) is the best so far found score

23 return Φ∗
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Algorithm 3: ISRT’s prediction routine.

Function Predict(B; E)

Input : Bag to be classified B with ensemble of trees E .
Output: Bag score ŷ ∈ [−1, 1] and histogram of selected instances i.

1 ŷ ← 0
2 i← zero vector of length |B|
3 foreach Tree in E do
4 P← Tree // pointer to Node and Leaf structures

5 i′ ← zero vector of length |B|
6 while P is of type Node do
7 (b, ix∗)← NISRT(B;P.Φ∗) // ix∗ index of selected instance

8 i′[ix∗ ]← i′[ix∗ ] + 1
9 P← P.b // continue in left or right branch

10 ŷ ← ŷ + P.y
11 i← i⊕

(
i′/(
∑
i i
′[i])
)

// ⊕ element-wise addition

12 ŷ ← ŷ/|E|
13 i← i/|E|
14 return (ŷ, i)

methods build directly bag-level classifiers F(B) extracting information from
whole bags to make decisions about their class rather than aggregating indi-
vidual instance-level verdicts. Considering the global bag-level information is
necessary, e.g., in a case when the positive label is caused by a co-occurrence
of two specific types of instances. Since bags are non-vectorial objects, these
methods typically first transform bags into single fixed-size vectors and then
train an off-the-shelf classifier on top of them. Works of [13, 22] use Bag-of-
Words approach, where a vocabulary of prototype instances (i.e. words) is first
found by a clustering algorithm and then each bag is represented by a histogram
counting how many instances fall into each cluster. Work of [19] rather proposes
to use the Neural Network (NN) formalism with pooling layers (e.g. based on
max/mean aggregation) to achieve simultaneous optimization of the bag repre-
sentation (first layer(s) followed by a pooling layer) and the classifier (one or
more of subsequent layers) by means of back-propagation. The closest work to
this paper is on Bag-level Randomized Trees (BLRT) [14]. The main difference
to the ISRT is in the conditions evaluated inside the splitting nodes:

NBLRT(B; f, v, r︸ ︷︷ ︸
Φ

) =


left, if

[
1

|B|
∑
x∈B

1 [xf > v]

]
> r,

right, otherwise,

(4)

where the additional parameter r determines a percentage of instances that must
satisfy the inner condition xf > v to be the whole bag passed to the left branch.
Surprisingly, this method has been shown to be significantly better than any of
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the prior 28 MIL classifiers on 29 datasets [14], although it can not extract a
multivariate pattern from a single instance unless the bag contains only that one
instance. This can be illustrated, e.g., on an inability to separate these two bags:
{(0, 0), (1, 1)} and {(0, 1), (1, 0)}. From none of the above bag-level methods can
be trivially inferred which instances are responsible for positive bag predictions.

4 Experiments

In this section, we evaluate the proposed ISRT algorithm first on a private
dataset from the network security field (Section 4.1) and then on 12 publicly
available datasets from six other domains (Section 4.2). On both types of datasets,
the algorithm is compared with state-of-the-art approaches: BLRT3, NN4 and
MI-SVM5 briefly reviewed in the previous section.

4.1 Private Dataset

The network security dataset represents a real-world problem of classifying users
of computer networks as either infected or clean. The dataset contains meta-
data about network communications from more than 100 international corporate
networks of various types and sizes.

Users in the dataset are represented as bags of instances, where the individ-
ual instances correspond to the established communications between users and
hostnames within 24 hours. High-level statistics about each such communica-
tion are computed from URL strings of made HTTP requests within that time
window. The procedure is as follows. First, URL strings of all HTTP requests
originating from a given user and targeting to a particular hostname are col-
lected. Then, each URL string is converted into a feature vector by extracting a
well-known set of URL features. The used feature set has been already described
e.g. in works [16, 10, 15] that were primarily focused on detection of URLs gen-
erated by malicious applications. As such, the feature set incorporates a lot of
domain knowledge. Examples of the features are: the number of occurrences
of reserved URL characters (i.e. ’ ’,’-’,’?’,’ !’,’@’,’#’,’&’,’%’), the digit ratio, the
lower/upper case ratio, the vowel change ratio, the number of non-base64 char-
acters, the maximum length of lower/upper case stream, the maximum length
of consonant/vowel/digit stream, etc. In sum, there are 359 features. Finally, to
represent the communication with a single instance, the extracted URL feature
vectors are aggregated using a maximum as the aggregation function.

The dataset consists of three sets: training, validation and testing. Training
set is the largest one and was collected during the period of five working days
in January 2021. Validation and testing sets then cover the first and the last
Wednesday in February 2021, respectively. In total, there are 118,108 unique
users. On average, each has 24 instances. Detailed statistics about the dataset
along with the number of infected/clean users are given in Table 1.

3 We used implementation from https://github.com/komartom/BLRT.jl.
4 We used implementation from https://github.com/CTUAvastLab/Mill.jl.
5 MI-SVM is trained with Algorithm 1 for complete feature space (s is vector of ones).
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Dataset Training set Validation set Testing set

Date range 18-22 Jan 2021 3 Feb 2021 24 Feb 2021
URL strings 1,186,465,181 239,079,385 264,342,073
Communications 2,829,316 581,826 554,425

Infected users 1,830 430 380
Clean users 115,700 24,987 23,695

Table 1. Specification of the network security dataset. The aim is to train a user-level
model. Counts of URL strings and communications correspond to the sum over all
users and illustrate the potentially higher labeling requirements on these lower levels.

We trained the proposed ISRT algorithm with the following hyper-parameter
values: the number of trees to grow M = 100, the number of considered thresh-
old values T = 8 and the number of epochs for training selectors E = 10.
The computational time for training took 25 minutes on a single c4.8xlarge
AWS instance6. We also used the same hyper-parameter settings (i.e. M = 100
and T = 8) to train the prior art tree-based algorithm BLRT7. In the case
of MIL Neural Network (NN), we performed a grid search over the following
configurations: the instance layer size {10, 30, 60}, the aggregation layer type
{mean, max, mean-max} and the bag layer size {5, 10, 20}. We used rectified
linear units (ReLU), ADAM optimizer, mini-batch of size 32, and the maximum
number of epochs 1000. MI-SVM classifier was trained for regularization values
λ ∈ {10−5, 10−4, . . . , 1} and the number of epochs E = 100. The final configura-
tion, in both cases, was selected based on the highest achieved performance on
the validation set in terms of the area under the Precision-Recall curve.

Efficacy results of the above trained models on the validation and testing
set are shown in Figure 1 using the Precision-Recall and ROC curves. Different
points on the Precision-Recall curve correspond to different decision threshold
values of a particular model and indicate the percentage of alarms that are
actually correct (precision) subject to the percentage of detected infected users
in the whole dataset (recall / true positive rate). Perfect recall (score 1) means
that all infected users are detected, while perfect precision means that there
are no false alarms. ROC curve then provides information about the volume of
false alarms as the percentage of monitored healthy users (false positive rate)8.
Points on the ROC curve might also serve for calculating precision under different
imbalance ratios of infected to clean users [3].

6 36 virtual Intel Xeon CPUs @ 2.9GHz and 60Gb of memory.
7 It was shown in the work of BLRT [14], and we confirm that for ISRT in Section 4.2,

that tuning of these parameters usually does not bring any additional performance.
8 While precision answers to the question: “With how big percentage of false alarms

the network administrators will have to deal with?”, false positive rate gives answer
to: “How big percentage of clean users will be bothered?”.
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Fig. 1. Precision-Recall and ROC curves of individual models on the validation
(Feb 3, 2021) and testing (Feb 24, 2021) set of the private network security dataset.

As can be seen from Figure 1, the proposed ISRT algorithm has a clear
superior performance as it produces equal or less false alarms than any other
involved method at any arbitrary recall on both sets. The second best method
is the tree-based BLRT algorithm. It has a decent performance on the valida-
tion test (Feb 3, 2021), but on the testing set (Feb 24, 2021) the performance
drops notably. This decrease in model performance over time is known as an
aging effect — a model becomes obsolete as the distribution of incoming data
shifts. Resistance to that is an important model characteristic, from an applica-
tion point of view, albeit not always evaluated by researchers [17]. We attribute
this decay to the fact that the BLRT model can extract only global bag-level
univariate statistics computed across all instances within a bag. Because of this,
it might be difficult to effectively separate a multivariate malicious signal hid-
den in a single instance from an abundant user background, which can evolve
over time. On the other hand, the discriminative signal apparently does not lie
on the local instance-level completely as the instance-based classifier MI-SVM
performs poorly. Probably the ability to combine these two approaches, by se-
lecting and judging individual instances according to the need while collecting
global evidence, might be the reason why the ISTR model excels in this task.
Interestingly, the NN model is able to reliably detect only a very limited number



Explainable MIL with ISRT 11

of infections, although in the recent work [18] it has been shown to perform well
on a similar task. One reason might be that the NN model is sensitive to some
hyper-parameters, which we did not tune. Another one might be that there is a
substantial difference in the time window (5 minutes vs. 24 hours) per which the
users are classified. Shrinking the time window to five minutes on our data leads
to one instance (i.e. communication with a unique hostname) per bag on aver-
age, which would eliminate the need of MIL and its benefits (i.e. lower labeling
costs and richer contextual information).
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Fig. 2. Assessment of ISRT explanations as an information retrieval task.
AnyHit@TopK (on the left) shows the percentage of bags for which at least one relevant
(i.e. positively labeled) instance appeared among the top K instances. Since bags can
contain multiple relevant instances, Recall@TopK (on the right) shows how many of
them are among the top K instances. The perfect Recall@1 can not be achieved unless
all bags have only one relevant instance.

As announced in the introduction to this paper, the main benefit of the
newly proposed ISRT over the prior-art BLRT, besides higher performance on
some datasets, is the ability to explain the positive bag predictions. The provided
explanations are in the form of assigned scores to individual instances (according
to the number of times they have been selected during the bag class prediction),
upon which they can be sorted and presented to the end-user for judgment.
Analogically to the information retrieval task, the goal is to place the most
relevant instances at top positions. To assess this ability on the network security
dataset, we used our internal deny list of known malicious hostnames to label
instances9 (i.e. communications with hostnames) of bags that have been classified
as positive by the ISRT model on the testing set. On the first 20, 50 and 100
most positive bags (for which we had at least one positive instance-level label),
we calculated AnyHit@TopK and Recall@TopK metrics. Figure 2 presents the
results for the first top ten (TopK) instance positions.

It can be observed from the left subplot of Figure 2 (AnyHit@TopK) that
threat analysts investigating the first 20 most positive bags would encounter
the first piece of evidence for the infection (i.e. any malicious hostname) just

9 This way of identifying malicious communications is not so effective in production,
since new threats are not on the deny list yet and need to be first discovered.
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by analyzing the top two recommended instances from each bag. This ability
slightly decreases for the higher number of bags (i.e. 50 and 100), but it is still
very useful considering the fact that the largest bags have over 100 instances, and
on average only two are labeled as malicious — a needle in a haystack problem.
This can be also seen from the right subplot (Recall@TopK) showing that about
50% of all positive instances in bags can be discovered just by verifying the first
recommended instance (K = 1).

4.2 Public Datasets

To show that the use of ISRT is not limited to network security only, we evaluate
the algorithm on 12 other MIL datasets from six different domains10. Namely,
classification of molecules (Musk1-2), classification of images (Fox, Tiger, Ele-
phant), text categorization (Newsgroups1-3), protein binding site prediction
(Protein), breast cancer detection (BreastCancer) and drug activity prediction
(Mutagenesis1-2). Their basic meta-descriptions (i.e. counts of positive/negative
bags, average bag size and feature dimension) are given in Table 2. For more
details, we refer the reader to the survey of MIL datasets [7].

Dataset Bags +/- Inst. Feat. MI-SVM NN BLRT ISRT ours

Musk1 47/45 5 166 85.9 (1.9) 91.9 (1.5) 96.8 (1.6) 97.2 (1.3)
Musk2 39/63 65 166 86.9 (1.5) 90.3 (2.3) 91.2 (1.8) 92.3 (2.6)
Fox 100/100 7 230 55.2 (1.6) 65.9 (1.2) 73.3 (1.4) 74.0 (1.8)
Tiger 100/100 6 230 81.7 (2.7) 90.7 (1.7) 92.6 (1.0) 92.5 (0.8)
Elephant 100/100 7 230 84.5 (0.3) 93.9 (0.8) 95.8 (0.9) 95.0 (0.7)
Newsgroups1 50/50 54 200 82.4 (4.9) 77.0 (3.6) 78.8 (2.6) 55.4 (2.6)
Newsgroups2 50/50 31 200 70.2 (3.7) 63.3 (5.2) 63.0 (4.0) 63.8 (2.9)
Newsgroups3 50/50 52 200 54.5 (5.5) 63.9 (4.1) 76.3 (4.1) 65.0 (2.6)
Protein 25/168 138 9 81.2 (1.7) 75.2 (4.2) 74.9 (2.3) 85.8 (2.0)
BreastCancer 26/32 35 708 73.1 (2.6) 76.7 (8.1) 84.5 (2.5) 79.3 (1.9)
Mutagenesis1 125/63 56 7 53.4 (1.0) 90.2 (1.0) 92.1 (1.3) 88.6 (0.8)
Mutagenesis2 13/29 51 7 70.0 (8.2) 66.2 (2.6) 86.0 (3.5) 70.0 (6.6)

Table 2. Metadata about 12 public datasets. Including the number of positive/negative
bags, the average number of instances inside bags and the number of features. Plus
evaluation results, measured in AUC × 100, for individual models. Best results are
shown in bold face. Multiple models are highlighted if the difference is not statistically
significant (at α = 0.05) according to a paired t-test with Holm-Bonferroni correction
(for multiple comparisons) [8] computed on the five runs of 10-fold cross-validation.

Each dataset also contains a predefined list of splitting indices for 5-times
repeated 10-fold cross-validation. Therefore, we followed this evaluation protocol

10 Datasets are accessible at https://doi.org/10.6084/m9.figshare.6633983.v1.
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precisely, similarly, as did the prior works of BLRT [14] and NN [19]. Since the
protocol does not specify any approach for hyper-parameter optimization, we
used the default values that are known to work well. In particular, to train ISRT,
we set the ensemble size to M = 500, the number of considered threshold values
to T = 8 and the number of epochs for training selectors to E = 1. The same
setting of parameters (i.e. M = 500 and T = 8) is used for the BLRT model,
which corresponds to the setting applied in the original work of BLRT during
the evaluation. The NN architecture consists of a single instance layer of size 10
with rectified linear units (ReLU), followed by a mean-max aggregation layer,
a single bag layer of size 10 and two output units. The weights are regularized
with L1 regularization λ = 10−3 to decrease overfitting as suggested in [19]. The
training minimizes a cross-entropy loss function using ADAM optimizer, mini-
batch of size 8, and the maximum number of epochs 1000. Finally, the MI-SVM
model is trained with the regularization λ = 10−3 and 100 epochs.

Table 2 shows the performance of each model on each dataset in terms of the
average Area Under the ROC Curve (AUC)11 ± one standard deviation. It can
be seen that the proposed ISRT model significantly outperforms the other three
models only on Protein dataset, whereas the prior-art BLRT model significantly
wins on two datasets (Newsgroup3 and Mutagenesis2). The average ranks12 of
the models are: BLRT = 1.8, ISRT = 2.0, NN = 3.0 and MISVM = 3.2. Accord-
ing to the non-parametric Friedman-Nemenyi test [8] (comparing all classifiers
to each other based on the average ranks), there is no statistically significant
difference13 (at α = 0.05) among the models, except for the pair BLRT and
MI-SVM, where MI-SVM looses.

As the last experiment, we investigate the influence of individual model com-
ponents/parameters on the final performance. Figure 3 shows results from this
ablation study as a series of eight pair-wise comparisons. Each subplot compares
two different variants (horizontal and vertical axis) of the proposed ISRT algo-
rithm on the 12 datasets (dots on the scatter plot). X and Y coordinates of each
dot are determined by the achieved AUCs of the corresponding variants on that
particular dataset. Therefore, if a dot lies above the main diagonal, the variant
associated with the vertical axis outperforms the other one associated with the
horizontal axis and vice versa.

The first two Subplots (A-B) illustrate the effect of the ensemble size. While
it is almost always better to build 100 trees than 5, building 500 trees usually
does not bring any additional performance compared to 100. In Subplot (C),
we examine the model stability with respect to different random seeds (1234 vs.
42) and as can be seen, there is almost no difference. Subplot (D) shows a slight
improvement that can be achieved by considering more thresholds for splitting
(T = 8) than one as it is characteristic for Extremely Randomized Trees [11].

11 AUC is agnostic to class imbalance and classifier’s decision threshold value.
12 The best model is assigned the lowest rank (i.e. one).
13 The performance of any two classifiers is significantly different if the corresponding

average ranks differ by at least the critical difference, which is (for 12 datasets, four
methods and α = 0.05) approximately 1.35.
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It is also worth experimenting with the sparse vs. dense selectors because, as
can be observed from Subplot (E), this option has different effects on different
datasets. Subplot (F) then supports the idea that strongly randomized trees,
unlike Breiman’s Random Forests, do not have to be trained on the bootstrapped
datasets. In Subplot (G) we analyze whether the search of splitting parameters
Φ = (f, v,w) over multiple selectors with different regularization values λ ∈
{10−4, 10−3 . . . , 1} instead of one λ = 1 can help. Finally, the last Subplot (H)
indicates that there is no need to train selectors with a large number of epochs.
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Fig. 3. Ablation study assessing influence of individual model components/parameters.
It illustrates the effect of the ensemble size (A-B), the stability wrt. random seed (C),
the slight improvement caused by considering more thresholds for splitting (D), the
impact of sparse vs. dense selectors (E), the no need for using bagging (F), multiple
regularization values (G) nor a large number of epochs for training selectors (H).
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5 Conclusion

In this paper, we have proposed a new tree-based algorithm called Instance Selec-
tion Randomized Trees (ISRT)14 for solving binary classification MIL problems.
The algorithm naturally extends the traditional randomized trees, since bags of
size one are processed in the standard way by evaluating single feature value
conditions at each node. When bags contain multiple instances, every node se-
lects one instance from the bag, upon which the decision whether to send the bag
to the left or right branch is made. Making decisions upon deliberately selected
instances at each step is essential for the algorithm as it enables to extract (even
multivariate) discriminative information from both ends of the spectrum, the
local instance-level and the global bag-level.

We demonstrated on the task of detecting infected users in computer net-
works that this capability may not only lead to superior performance when com-
pared with three state-of-the-art methods, but it also may greatly help threat
analysts with the post-alert analysis. This is because the positive bag predic-
tions can be explained on the level of instances by their ranking according to
how many times have been selected. The model also achieved competitive results
on 12 publicly available datasets from six other domains. Finally, we conducted
ablation experiments to understand contributions of individual algorithm parts.
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