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Abstract. Out-of-Distribution (OoD) detectors based on AutoEncoder
(AE) rely on an underlying assumption that an AE network cannot
reconstruct OoD data as good as in-distribution (ID) data when it is
constructed based on ID data only. However, this assumption may be
violated in practice, resulting in a degradation in detection performance.
Therefore, alleviating the factors violating this assumption can poten-
tially improve the robustness of OoD performance. Our empirical studies
also show that image complexity can be another factor hindering detec-
tion performance for AE-based detectors. To cater for these issues, we
propose two OoD detectors LAMAE and LAMAE+. Both can be trained
without the availability of any OoD-related data. The key idea is to reg-
ularize the AE network architecture with a classifier and a label-assisted
memory to confine the reconstruction of OoD data while retaining the
reconstruction ability for ID data. We also adjust the reconstruction er-
ror by taking image complexity into consideration. Experimental studies
show that the proposed OoD detectors can perform well on a wider range
of OoD scenarios.

1 Introduction

Deep neural networks have been playing an increasingly important role in many
applications, such as autonomous driving [37] and surveillance tracking [38].
When deploying neural networks in real-world applications, there is often very
little control over the distribution of test data. The existence of test examples
belonging to a different distribution from the training one, also known as Out-
of-Distribution (OoD), may cause conventional classification models no longer
suitable to be used [10]. Therefore, it is of crucial importance to identify OoD
examples in order to maintain the reliance of classification models.
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Many OoD detectors have been developed lately [10, 17–19, 25]. But a large
body of them requires the availability of OoD data to tune the hyperparame-
ters of the deep networks, being less applicable as OoD data are not typically
accessible in reality. Generative models such as deep AutoEncoder (AE) [27] are
exempted from this problem when used for OoD detection since they rely on
the assumption that when trained with ID data only, an AE network produces
higher reconstruction error for unseen OoD data than ID data.

Many AE-based OoD detectors have been proposed based on this assumption
[9,33]. However, this assumption may be violated in some scenarios. Observations
have demonstrated that its validity depends on the specific characteristics of OoD
examples. Sometimes AE-based OoD detector can “generalize” so well that it can
also reconstruct OoD data with low reconstruction error, causing unsatisfactory
detection performance [7,9]. When the training dataset contains multiple classes
instead of only one, which is of more practical use in the real-world, empirical
studies of state-of-the-art (SOTA) AE-based OoD detectors reveal an even larger
deterioration of detection performance, showing a need for dealing with such
learning scenario.

In addition, there has been no systematic study characterizing different types
of OoD aiming for analysing the cause of performance degradation of AE-based
detectors. The only categorization of OoD is discussed in [11] based on the
semantics of ID and OoD examples. The study concluded that detection diffi-
culty would increase when OoD examples possess the same semantic meaning
as the ID examples, which coincides with our findings. Nonetheless, based on
our preliminary investigation on the detection performance of various types of
OoD examples, we noticed that inherent image complexity may be another fac-
tor causing OoD performance degradation. As an extreme example, a constant
image (i.e., with same-valued pixels) that is of low complexity can always be re-
constructed very well. We further noticed that most AE-based methods suffer in
such a scenario. Therefore, a more thorough OoD characterization is preferred,
which can not only allow us to scrutinize the reason behind the performance
variation, but also help researchers to provide more targeted solutions.

To address the above issues, we propose two OoD detectors, namely LAMAE
(Label-Assisted Memory AutoEncoder) and LAMAE+, as well as a new crite-
rion to characterize OoD scenarios. Both detectors can be trained without the
availability of any information from OoD data. The key idea is to leverage the
information of the class-labels of ID data so that the reconstruction of OoD
data is constrained while the reconstruction capability for ID data can be re-
tained. Hence, differentiation between ID and OoD examples can be promoted.
Furthermore, we provide a finer characterization based on image complexity to
investigate the reason for performance degradation of some particular types of
OoD. To mitigate the bias induced by inherent image complexity, we propose
an entropy-based metric, namely Complexity Normalizer (CN), to adjust the
reconstruction error, and incorporate CN metric in the OoD model, forming
LAMAE+.

The contributions of this paper are as follows:
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1. We propose a new unsupervised OoD detector (LAMAE) that does not re-
quire OoD examples for training, neither do we make any assumptions.

2. We provide a finer characterization of OoD scenarios and discuss their rela-
tionship to detection performance.

3. Based on the proposed OoD characterization, we further propose a new
metric to adjust the reconstruction error so that the refined OoD detector
(LAMAE+) performs well on a wider range of different OoD types.

The rest of this paper is organised as follows. Section 2 discusses related work
for OoD detection in the literature. Section 3 explains when and why existing
OoD detectors may fail, based on which we propose two detectors LAMAE
and LAMAE+. The effectiveness of the proposed OoD detectors are evaluated
experimentally in Section 4. The paper is concluded in Section 5.

2 Background

This paper considers detecting OoD samples in the context of image classifica-
tion. When training a classification model, we have a training dataset Din =
{(xi, yi)}Ti=1 where xi ∈ X = Rd is a d-dimensional feature vector representa-
tion of an image data and yi = 1, · · · , S is the class label. All training samples
are in-distributed as pin(x, y). The purpose of OoD detection is to identify input
examples x ∼ pout where pout 6= pin. According to [11], OoDs can be categorized
into two types: semantic and non-semantic. Semantic OoDs include data from a
distribution pout(x, y) with {y}∩{y} = ∅. Non-semantic OoDs include data from
pout(x, y), that is, data from the same object class but presented with different
styles. It was also concluded that OoD datasets with both types of distribution
shifts are the easiest to detect, followed by non-semantic OoD. Semantic OoD
turns out to be the hardest one to detect [11].

Many algorithms have been proposed to detect OoD examples [1, 10, 17–19,
21,25,29,36,39]. However, most of them require the aid of some kind of genuine
or synthetic OoD examples in the training stage. This is an unrealistic require-
ment since in reality, it is often hard, if not impossible, to gain any information
regarding OoD a priori. Therefore, we review only OoD detectors that do not
require OoD examples for training in this section.

2.1 AE-based Detectors

OoD detectors based on generative models such as AEs naturally possess a char-
acteristic of being able to detect OoD in an unsupervised manner [7]. There are
two ways of using AEs for OoD detection [28]. Firstly, an AE can be used to
learn a low-dimensional representation of the input data, then distance-based
metrics can be applied to assess the discrepancy between newly arrived test ex-
amples and the ID dataset [3, 28, 35, 40]. Secondly, the reconstruction error or
probability of the test example is calculated directly and used for detection. This
work follows the latter strategy.
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The reconstruction of AEs has been used extensively for OoD detection to
tackle various issues that may exist. For instance, Zhou et al. proposed a robust
AE that is capable of detecting anomalies when no clean, noise-free data is
available during training [39]. Chen et al. addresses the same issue with AE
ensemble by randomly varying the connectivity architecture of the base AE [6]. In
contrast, this work focuses on the setting where only clean ID data are available
for training.

Ana and Cho adopts a variational autoencoder (VAE) [14] as the base model
and utilizes reconstruction probability in a similar manner as reconstruction
error to detect OoD [2]. OoDs are expected to have low probability density.
SSVAE [4] is a more advanced VAE for semi-supervised learning. The authors
supplement the classification loss with the VAE loss so that the performance for
both classification and OoD detection can be improved. However, VAEs have
their own limitations such as the Gaussian prior assumption on the latent space.
Furthermore, many recent work challenge the use of reconstruction likelihood of
flow-based generative models such as VAE for OoD detection because extensive
experiments have shown that it is not a reliable metric as expected [12,23].

On the other hand, the reconstruction error of vanilla AEs is a more straight-
forward metric to use. However, there are also other issues with them. Denouden
et al. [7] noticed that AEs can sometimes reconstruct the semantic OoD exam-
ples with less error than ID examples. To solve this issue, they adjusted the
reconstruction-based detection criterion by adding the Mahalanobis distance be-
tween the test sample and the training set mean within the AE latent space.
MemAE [9] is another recently proposed method aiming to improve detection
for this type of OoD. It incorporates within the training stage a memory to
store prototypical elements of the ID data. Hence, the reconstruction of any test
examples will be forced to be more similar to the most representative ID ex-
amples. Thus, the reconstruction error will be strengthened for OoD examples.
This particular issue raised by the methods above is in accordance with the
findings in [11]. That is, semantic OoDs are more difficult to detect. The above-
mentioned attempts are only tested on one-class ID training data only. However,
the difficulty in identifying semantic OoD examples does not only exists in the
one-class setting. In fact, the challenge becomes more problematic when there
are multiple classes within the ID data, which is a more practical scenario. In
this case, characterizing OoD examples based on their semantic meaning may
be inadequate. This is explained in more detail in Section 3.2, where we also
provide a novel methodology to effectively solve this problem.

Our OoD detectors are built upon MemAE [9], which is explained in more
details as follows. MemAE endorses a memory component into the traditional
AE architecture as shown in Fig. 1. The encoder fe(·) maps an input image
x ∈ X to a latent space Z = RC via z = fe(x; θe), where θe represents the
encoder-specific model parameter. Before the latent vector z is forwarded to the
decoder, the memory module M ∈ RN×C containing N prototypical vectors mi,
each of dimension 1×C, is put in place, where N is a predefined parameter for
the memory size. M is designed to record the prototypical normal patterns of
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Fig. 1: Framework of MemAE [9]

ID data Din, which is updated at each epoch in the training phase. Once a new
training example is received, cosine similarity between the encoded vector z and

each memory item mi is calculated as d(z,mi) = zmi
T

||z||·||mi|| for ∀ i = {1, · · · , N}.
The weight vector w = [wi, · · · , wN ] is calculated via a softmax operation wi =

exp(d(z,mi))∑N

j=1
exp(d(z,mj))

with
∑N

i=1 wi = 1. To further limit the reconstruction ability

for OoD examples, MemAE applied a hard shrinkage technique on w, promoting
the sparsity of model parameters.

The latent representation fed to the decoder is then ẑ = wM =
∑N

i=1 wimi.
The reconstructed image is x̂ = fd(ẑ; θd) where θd represents the decoder-specific
model parameter. The MemAE loss function considers two terms: the reconstruc-
tion loss and an entropy for promoting the sparsity of w. The memory is fixed
after the training stage. In the testing phase, all examples are forced to be con-
structed with prototypical components of the ID data, resulting in significant
reconstruction errors for OoDs.

2.2 Non-AE-based Detectors

One-class classification are popularly used for OoD detection [24, 26]. Nonethe-
less, when the number of data dimensions is high, which is a typical issue of
image data, these approaches can suffer from the curse of dimensionality.

Other types of OoD detectors also exist. For instance, Shalev et al. [30] uti-
lize extra supervision by training networks to predict word embedding of class
labels. It needs to combine the outputs of several similar networks to detect
OoD examples. GODIN [11] is a very recently proposed OoD detector. It is
an improvement of one of the benchmark detectors, ODIN [19], which utilizes
class posterior probability produced by a softmax classifier for detection. Unlike
ODIN, it decomposes the class posterior probability using the rule of condi-
tional probability during training and uses only the numerator, i.e., the joint
class-domain probability for detection. GODIN frees the algorithm from explicit
parameter-tuning with respect to specific OoD datasets.

3 Label-Assisted Memory AutoEncoder

This section explains two OoD detectors, namely Label-Assisted Memory Au-
toEncoder (LAMAE) and LAMAE+ (a refined adaptation of LAMAE) in Sec-
tion 3.1 and Section 3.2, respectively. Source codes of our proposed algorithms
are available at https://github.com/fzjcdt/LAMAE.
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Fig. 2: Framework of our proposed LAMAE and LAMAE+. CLF denotes the clas-
sifier module (Section 3.1.1). LA-M denotes the label-assisted memory (Section
3.1.2). CN denotes a normalizer to refine the reconstruction (Section 3.2).

3.1 Label-Assisted Memory AutoEncoder (LAMAE)

As shown in Fig. 2, the network architecture of Label-Assisted Memory Au-
toEncoder (LAMAE) consists of four components: (a) an encoder (Encoder)
to compress the intrinsic data features, (b) a classifier (CLF) to regularize the
memory for a better targeted reconstruction, (c) a label-assisted memory (LA-M)
reserving class-conditional memory chunks and their associated weights, and (d)
a decoder (Decoder) to recreate the input based on the information stored in
(c). Components (a) and (d) have been explained in Section 2.1, so this section
focuses on the newly proposed components (b) and (c).

3.1.1 Classifier Module
Our preliminary experiment shows that when ID data consist of multiple

classes, the performance of existing AE-based detectors can deteriorate signifi-
cantly. Fig. 3 provides an illustrative example, where digit “7” is OoD and the
rest nine digits are ID. We can see that MemAE can reconstruct both ID and
OOD examples very well (Fig. 3), such that it would be difficult to identify the
OoD examples based on reconstruction error. Fig. 4(a) shows the histograms of
the reconstruction errors of ID and OoD data, further confirming the difficulty
of achieving good OoD performance by using MemAE under this circumstance.

A potential reason is that the latent space learned from the multi-class ID
dataset allows for a combination of features from various ID classes to recon-
struct unseen OoD examples. This combination may not have much effect on
the reconstruction of ID examples, but can be detrimental for OoD detection
since the reconstruction error is no longer distinguishable. To tackle this issue,
we propose to regulate the reconstruction of test images by exploiting their class
labels, which is implemented by placing a classifier (CLF) and a label-assisted
memory (LA-M) in the AE framework as shown in Fig. 2. The two modules are
explained in this section and Section 3.1.2, respectively.

A classifier fc(·) is incorporated into the MemAE architecture by connecting
the latent space Z and memory M as shown in Fig. 2. fc(·) can be a single-layered
or multi-layered network, depending on the complexity of the application. The
predicted label ŷ = fc(z; θc) of a training image x, where θc denotes the classifier
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Fig. 3: Original and reconstructed im-
ages of ID and OoD for MemAE and
LAMAE.

Fig. 4: Density of reconstruction er-
ror of ID and OoD for MemAE and
LAMAE.

parameter, can then be used to guide the learning of the label-assisted memory.
Given a test image, the latent representation induced by the encoder is forwarded
to the classifier for the predicted label. We can see from the dotted box in Fig. 3
that the classifier (trained purely on ID data) always assigns the OoD example
with one of the existing ID labels.

3.1.2 Label-Assisted Memory Module

The Label-Assisted Memory module (LA-M) aims to record the most repre-
sentative prototypical patterns for each individual class. Therefore, the whole
memory M of size N is divide into S mutually exclusive class-conditional mem-
ory chunks {Ms|s = 1, · · · , S} where S is the number of ID classes, i.e., M =
∪Ss=1M

s. We use Ns and ws to denote the size and associated weight vector of
Ms, respectively. This study assigns the same size for Ms, i.e., N1 = · · · = NS .

Similar to MemAE, cosine similarity is used to calculate the weights (see
Section 2.1). However, thanks to the information from fc(·), the latent feature

z is only compared with each memory item {mŷ
i ∈ Mŷ|i = 1, · · · , N ŷ}. The

associated weight wŷ is calculated based on the similarity of the memory items
and z. Only Mŷ and wŷ are used to formulate ẑ as

ẑ = 1s=ŷ

Ns∑
i=1

ws
i m

s
i . (1)

Note that weight vector w is rather sparse since ws = 0 ∀ s 6= ŷ, so we do not
need to apply the hard shrinkage technique as in MemAE.

In the testing phase, M is fixed. Given a test image, one employs the clas-
sifier to predict its label, so that only the predicted-class-conditional memory
chunk is referred to construct the latent feature according to Eqn. (1), which is
then decoded to obtain the reconstruction error. Modules (c) and (d) in Fig. 3
demonstrate this process.

LAMAE is expected to induce higher reconstruction error for OoD exam-
ples, as they are forced to be reconstructed with the prototypical features of a
mislabelled class. In contrast, the reconstruction performance for ID examples
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can be maintained, given the typically good performance of CLF. Fig. 4(b) also
demonstrates the effectiveness of LAMAE in separating ID and OoD data.

3.1.3 Training Objective
The loss function is formulated as the sum of reconstruction error and clas-

sification error on the training data as

L =
1

T

T∑
t=1

[R(xt, x̂t) + βL(yt, ŷt|xt)], (2)

where T is the training set size, β is a tuning parameter, R(xt, x̂t) = ||xt−x̂t||22 is

the mean-squared reconstruction error, and L(yt, ŷt|xt) = −
∑S

s=1 1ŷt=slog(p(yt =
s)) is cross entropy classification error. In this work, softmax activation is adopted
and β is set to 1 without tuning.

In the training process, ID examples, along with their true labels, are used to
minimize the overall loss during which the predictive performance of the classifier
module is also guaranteed.

3.2 LAMAE with Complexity Normalizer (LAMAE+)

Further exploration into our experiments shows that although LAMAE generally
achieves better performance than other AE-based methods, it may still fail on
some specific types of semantic OoDs. For instance, the detection performance
is 26% lower when digit “1” is taken as OoD compared with the case when
“0” or “2” is taken. In fact, almost all existing AE-based detectors suffer in
such a scenario. This section aims to investigate the reason why the detection of
some types of OoD is of greater difficulty. After that, we propose a new way to
categorize OoD examples. Finally, we design an image complexity-based metric
(module (e) in Fig. 2) to upgrade LAMAE, inducing LAMAE+.

3.2.1 Image Reconstruction and Complexity
According to the taxonomy in [11], our experimental setting based on hand-

written digits belongs to the semantic OoD scenario. Nevertheless, our exper-
imental results show that the detection performances can still vary by a large
extent when different digit is treated as OoD, suggesting that it is not adequate
to explain the performance variation purely from the perspective of semantics.

Based on this, we hypothesize that the inherent complexity of the image
is positively correlated to its reconstruction difficulty, which impacts detection
performance. To test this hypothesis, we train and test two AEs on two datasets
with very different complexities (handwritten digits with lower complexity and
natural images with higher complexity). We adopt Shannon entropy [31, 32],
which has a well-established information-theoretic basis, to measure the image
complexity as

H(S) = −
n−1∑
Si=0

p(Si)log(p(Si)), (3)
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where n is the number of grey levels, Si are the grey level pixel values contained
in image S and p(Si) is the probability of pixel having level Si. A Pearson
correlation of 0.7952 between image entropy and reconstruction error is derived
from a total of 20,000 test images (10,000 from each dataset), suggesting a strong
positive correlation. Our hypothesis has been verified.

3.2.2 A Characterization of OoD
Experimentally, we found that image complexity played an important role

in OoD detection. Hence, we propose to further characterize OoD according
to the complexity of OoD examples as compared to the ID ones. When OoD
examples have a lower image complexity, such as images with constant pixels, we
categorize them as “plain”. For OoD examples with a higher image complexity,
such as images with random pixels, we categorize them as “fancy”. Altogether,
OoDs can be categorized into six classes: S+P, S+F, NS+P, NS+F, NS+S+P,
and NS+S+F, where P, F, S, NS stand for plain, fancy, semantic and non-
semantic, respectively.

By nature, the reconstruction for plain images should be easier than that of
the fancy images, since fewer features are required for their description, leading
to lower errors. This property would probably mislead OoD detectors towards
classifying plain images as ID even when they are actually OoD. Therefore,
semantic-and-plain (S+P) OoD is the hardest to detect among all types of OoD
and image complexity should be catered for when making OoD detection based
on the criterion of reconstruction error.

3.2.3 Complexity-normalized Test Statistic
To tackle the challenge of detecting S+P OoDs, we propose a new metric

called Complexity Normalizer (CN) to adjust reconstruction error for detection.
Indeed, the mechanism of CN can be used in combination with any AEs. When
CN is equipped with LAMAE, we form LAMAE+.

To perform LAMAE+ for each test image, we calculate an entropy-based
normalizer CN = log(H(S) + 1) and re-scale the reconstruction error derived
from LAMAE as:

Êrr =
||xt − x̂t||22
CN + γ

, (4)

where γ > 0 is a tiny value to avoid the numerical problem of zero division
(fixed as 1e-9). Êrr is the correction of the reconstruction error, taking image
complexity under consideration for OoD detection.

4 Experimental Studies

This section carries out two sets of experiments. Experiment 1 validates the
proposed LAMAE+ by comparing with SOTA OoD detectors. Experiment 2 ex-
amines the effectiveness of each component in LAMAE+. Comparisons between
LAMAE and LAMAE+ can also be found in Experiment 2.
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4.1 Experimental Setup

Our experiments are based on the following benchmark datasets with each image
standardized to [0,1] channel-wise.

1. MNIST [16] contains gray-scale images of handwritten digits 0-9.

2. Fashion MNIST (FMNIST) [34] contains gray-scale images of Zalando’s
article images from 10 classes including sneakers, trousers, pullover, etc.

3. CIFAR10 [15] contains natural color images from 10 classes including air-
plane, ship, dog, cat, etc.

4. CelebA [20] contains face images of 10,177 celebrities.

5. notMNIST [5] contains gray-scale images of English letters from A to J.

6. Constant contains images of plain color. All pixels of an image has the same
value uniform-randomly drawn from the set {0, · · ·, 255}.
7. Noise contains images of uniform noise. Pixel values are independently drawn
from the uniform distribution on the set {0, · · ·, 255}.

To show the generality and applicability of the proposed detectors, we con-
duct experiments on three different settings. Setting 1 is built with MNIST
dataset. In each experiment, one class is used as the OoD class, and the rest
are seen as ID. The procedure is repeated for all classes. Within this setting,
S+P OoDs and S+F OoDs exist. In Setting 2 and 3, FMNIST and CIFAR10
are used as the ID dataset respectively. Various OoD datasets including CelebA,
notMNIST, FMNIST, Constant and Noise are adopted. Within this setting, both
NS+S+P and NS+S+F OoDs exist.

Due to page limit, we report the area under the receiver operating charac-
teristic curve (AUROC) which plots the true positive rate (TPR) of ID against
the false positive rate (FPR) of OoD data by a varying threshold. The average
detection performance and the standard deviation of 10 repetitive experiments
are reported. Performance measured by area under the precision-recall curve
(AUPRC) shows similar trends.

4.2 Experiment 1: Comparative Studies with SOTA Detectors

In this section we validate the proposed methods for the detection of various
types of OoD. We compare LAMAE+ with unsupervised detectors including tra-
ditional AE, VAE [2], SSVAE [4], MemAE [9] and the latest non-reconstruction-
based detector GODIN [11].

On MNIST and FMNIST, we implement the encoder using three convolution
layers as in MemAE [9]. For GODIN [11] where MNIST and FMNIST are not
used for training, we experimented with the same structure as the setting for
encoder-and-classifier component adopted for LAMAE+. On CIFAR10, with
higher data complexity, deeper encoder and decoder are constructed for MemAE
and LAMAE+. A skip connection from z to ẑ with dimension 16 is added to
further assist reconstruction. Except for the last layer, each layer is followed by
a batch normalization (BN) [13] and a Rectified Linear (ReLU) activation [22].
Batch size is set to 128 and we use an Adam optimization procedure.
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Table 1: AUROC detection performance for MNIST in Experiment 1. (Each time
the model is trained on 9 of the 10 classes and the left-out class is considered to
be the OoD class. Bold indicates the best scores.)

OoD Class AE VAE(e) VAE(p) SSVAE(p) MemAE GODIN LAMAE+

0 81.4±0.7 87.0±1.6 94.9±0.1 96.9±0.1 83.0±1.4 86.3±8.0 98.5±0.2

1 12.7±0.1 27.2±1.3 47.0±3.0 9.5±0.6 14.2±1.0 86.4±5.0 90.1±2.5

2 92.9±0.3 96.0±0.6 96.1±0.1 97.2±0.0 94.8±0.4 88.7±4.4 99.0±0.1

3 82.0±0.4 94.2±0.5 84.8±0.3 90.2±0.2 83.1±1.2 70.6±6.8 97.7±0.3

4 76.6±0.8 91.4±0.6 70.8±0.4 75.1±0.3 75.7±0.6 79.4±6.0 95.5±0.6

5 82.6±0.3 92.2±0.7 86.0±0.3 89.4±0.1 84.1±0.8 64.8±9.9 97.5±0.3

6 83.6±0.6 86.1±1.1 92.3±0.01 96.0±0.2 85.9±0.9 83.1±7.6 97.0±0.5

7 56.9±1.0 67.2±1.7 66.9±0.2 75.5±0.5 57.7±0.8 79.8±8.7 94.7±1.1

8 90.5±0.3 95.3±0.5 89.1±0.4 92.2±0.2 90.1±0.6 85.8±3.8 97.5±0.3

9 59.2±0.7 67.3±0.8 62.0±2.0 67.7±0.5 56.5±0.9 79.1±9.1 89.7±2.0

For AE-based detectors, the maximum number of training epochs is set to
200, 200 and 500 and the class-conditional memory size Ns in LAMAE and
LAMAE+ is set to 10, 10 and 50 for MNIST, FMNIST and CIFAR10 respec-
tively. Later we demonstrate experimentally that performance is insensitive to
the selection of memory size. An extra fully connected layer with softmax output
is taken as the classifier component. A 10% validation set is extracted from the
ID training dataset. Early stopping is adopted to choose the model that achieves
the lowest loss on the validation dataset. Note that this validation dataset is still
ID so the models are trained without access to any information about OoD.

4.2.1 Performance on Semantic OoD Only
Table 1 reports the results of MNIST. Results of VAE(p) and SSVAE(p)

based on reconstruction probability are taken from the original papers [2,4]. We
also report the results based on reconstruction error (VAE(e)).

We can see that LAMAE+ achieves the best AUROC in all 10 cases. The
improvement is especially substantial for digits “1”, “4” , “7” and “9”. De-
tailed explanations of how exactly each component in LAMAE contributed to
this outcome is presented later in Section 4.3. It is also worth noting that the
standard deviation of GODIN is much larger than that of AE reconstruction-
based approaches, signifying that this type of approaches are more stable than
softmax-based approaches.

4.2.2 Performance on Both Semantic and Non-semantic OoD
Table 2 reports the results of FMNIST and CIFAR10 where various OoD

datasets are selected. VAE and SSVAE based on reconstruction likelihood have
not been tested within these settings and the exact formulation of reconstruction
likelihood is not provided. Hence, we report only VAE(e) and SSVAE(e) based on
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Table 2: AUROC detection performance for FMNIST and CIFAR10 in Experi-
ment 1. (Bold indicates the best scores.)
ID OoD AE VAE(e) SSVAE(e) MemAE GODIN LAMAE+

FMNIST MNIST 96.2±0.2 99.0±0.1 98.9±0.1 97.1±0.1 79.0±4.3 99.9±0.0
notMNIST 99.6±0.0 99.8±0.0 99.9±0.0 99.8±0.0 64.0±5.8 99.9±0.0
Constant 68.1±2.2 63.2±1.7 82.0±7.0 72.3±1.1 84.4±9.6 100.0±0.0
Noise 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 86.5±6.3 99.9±0.0

CIFAR10 FMNIST 71.7±0.7 69.4±0.9 84.8±1.9 98.5±0.0 94.2±1.7 95.0±0.6
CelebA 55.0±0.5 58.2±0.3 60.0±1.2 70.0±0.0 75.7±2.2 59.5±1.0
Constant 0.0±0.0 0.0±0.0 0.0±0.0 51.2±0.0 92.7±2.0 100.0±0.0
Noise 100.0±0.0 100.0±0.0 100.0±0.0 79.6±0.0 91.0±8.8 100.0±0.0

Table 3: AUROC detection performance for MNIST in Experiment 2. The second
column lists the average image complexity of each OoD class on 1000 images
measured by Eqn. (3). Bold indicates the best scores among each subgroup.

Detector 1 2 3 4 5 6

OOD Class Complexity AE AE+ MemAE MemAE+ LAMAE LAMAE+

0 1.91 81.4±0.7 78.3±0.8 83.0±1.4 79.9±1.6 98.8±0.1 98.5±0.2

1 0.94 12.7±0.1 27.0±0.3 14.2±1.0 32.6±1.8 72.8±4.2 90.1±2.5
2 1.76 92.9±0.3 92.9±0.3 94.8±0.4 94.8±0.4 98.9±0.1 99.0±0.1
3 1.74 82.0±0.4 82.0±0.4 83.1±1.2 83.1±1.3 97.5±0.4 97.7±0.3
4 1.55 76.6±0.8 79.2±0.7 75.7±0.6 78.7±0.7 93.9±0.8 95.5±0.6
5 1.67 82.6±0.3 83.1±0.3 84.1±0.8 84.6±0.9 97.2±0.3 97.5±0.3
6 1.71 83.6±0.6 84.3±0.6 85.9±0.9 86.6±0.9 96.5±0.5 97.0±0.5
7 1.42 56.9±1.0 62.1±1.0 57.5±0.8 63.4±0.8 91.7±1.5 94.7±1.1
8 1.88 90.5±0.3 89.1±0.4 90.1±0.6 88.5±0.7 98.0±0.3 97.5±0.3

9 1.59 59.2±0.7 60.9±0.7 56.5±0.9 58.2±1.0 87.4±2.1 89.8±2.0

reconstruction error. We can see that LAMAE+ ranked the first in 5 out of the 8
cases. In particular, it is capable of detecting the OoD examples belonging to the
Constant dataset better than the other methods, demonstrating its effectiveness
in identifying the plain OoDs.

The performance is not as good when CIFAR10 is used as the training
dataset. This may be due to the fact that the network structure is not deep
enough to account for the complicated details within the CIFAR10 dataset. In
addition, a single classifier layer may also be inadequate for this dataset. For
instance, the backbone classifier used by GODIN is Resnet-34 [11]. Increasing
the complexity of network may lead to improvements in detection performance
at a cost of an increasing computational burden.

4.3 Experiment 2: Analysis of LAMAE+

In this section, we analyse the functionality of each component in LAMAE+.
We experimentally demonstrate that the combination of label-assisted memory
and CN-adjusted test statistic helps the detector to achieve better results on the
most difficult OoD type, i.e., S+P OoDs, with the MNIST dataset.
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4.3.1 Effect of the Classifier and the Label-Assisted Memory

To illustrate the effectiveness of the classifier and the label-assisted memory,
we compare the results for AE, MemAE and LAMAE on the MNIST dataset in
Table 3 (Detectors 1, 3 and 5).

We can see that our results for AE and MemAE confirmed the benefit of
establishing a memory component as discussed in MemAE [9], for which MemAE
achieved higher AUROC than AE in 7 out of the 10 cases. Furthermore, in all 10
cases, LAMAE achieved a significant improvement in AUROC when compared
with both MemAE and AE, demonstrating the dominant advantage of using a
classifier and a label-assisted memory for detecting semantic OoDs when the ID
dataset contains multiple classes. Moreover, for OoD digits “1”, “4”, “7” and
“9” whose image complexity measured with Shannon entropy (Eqn. 3) ranked
the lowest four, there is still a gap when compared with the rest cases. We will
address this issue with plain OoDs with the CN component in the following
section.

4.3.2 Effect of CN-Adjustment

This section demonstrates that the CN-adjustment can further improve the
detection performance, especially for the most difficult OoD type S+P. As dis-
cussed earlier, CN can be used with any AE reconstruction-based OoD detectors
and an improvement in detection performance can be anticipated. We verify this
conjecture experimentally by taking AE, MemAE and LAMAE as the base de-
tectors and modify only the reconstruction error-based test statistic. We rename
the CN-adjusted detectors by suffixing “+”. Results are presented in Table 3.

It can be noted that in 8 of the 10 cases, using a CN-adjusted test statistic
indeed leads to a significant improvement in detection performance for the digits
“1” , “4” , “7” and “9” , which are the hardest ones to detect among all digits [4]
and can be characterized as S+P by us. This is true for various types of AEs.
For digits “0” and “8” , CN caused a slight decrease in AUROC. This is due to
the fact that these two digits are already the most complex 2 with the highest
entropy values. Regarding this, we suggest that better complexity measurements
may be created in the future so that the detection performance on slightly more
complicated images can be maintained.

Examining the overall average performance, we conclude that the improve-
ment in detection performance is attributed to the combination of the classifier
component, the label-assisted memory and the complexity normalizer.

4.3.3 Sensitivity to Memory Size

This section provides a sensitivity analysis of the detection performance for
LAMAE. We present the performance under different memory size settings for
the MNIST experiment. Fig. 5 suggests that LAMAE is robust to different mem-
ory sizes and for simple datasets such as MNIST, even a small memory size can
achieve satisfactory performance.
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Fig. 5: Sensitivity of detection performance to class-conditional memory size on
MNIST when digit “0” is held as OoD. Similar trends can be observed for others.

5 Conclusion

We proposed LAMAE, a novel AE-based OoD detector with a label-assisted
memory. Specifically, we injected a classifier and a class-conditional memory into
the AE network architecture to avoid combination of features from different ID
classes and thus, constrain the reconstruction of OoD examples while retaining
the generalization on ID examples. The detection performance of semantic OoD
examples improved significantly. We also proposed a new way to characterize
OoD based on image complexity and a new metric, CN, to eliminates the bias
associated with the reconstruction error induced by inherent image complexity.
Thereby, the refined detector LAMAE+ is capable of detecting the most difficult
type of OoD that previous work cannot handle well. It is also worth pointing
out that both detectors are purely unsupervised.

In the current work, we only used the basic Shannon entropy to measure
image complexity. More suitable measures may also exist [8]. Besides, the per-
formance of the classifier component is of crucial importance to the results. Po-
tential improvements can be made to further improve the detection performance
on more complex datasets. Various sizes for each class-conditional memory can
also be considered.
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