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Abstract. We present GenCAT Workbench, an end-to-end framework
with which users can generate synthetic attributed graphs with node
labels and evaluate their graph analytic methods, e.g., graph neural net-
works (GNNs), on the generated graphs. GenCAT Workbench supports
various types of graphs with controlled node attributes and graph topol-
ogy. We demonstrate the GenCAT Workbench and how it clarifies the
strong and weak points of GNN models. Our code base is available on
Github (https://github.com/seijimaekawa/GenCAT/tree/main/GenCAT_
Workbench).
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1 Introduction

Graph analytics methods, e.g., graph neural networks (GNNs), have attracted
attention from both academia and industry. To clarify their applicability or lim-
itations, many studies address benchmarking GNNs [2, 3]. Though repositories
[3] provide collections of real-world graphs with node labels, i.e., an assignment
of nodes to groups we call classes, the variety of available graphs is still limited.

Because of the large demands for various graphs, synthetic graphs are neces-
sary to mitigate the insufficiency of real-world graphs. Several studies developed
benchmarking frameworks with synthetic graphs for evaluating graph analytic
methods [2]. However, these frameworks suffer from two drawbacks. First, they
use graph generators that cannot generate realistic graphs such as SBM [1]. Sec-
ond, these frameworks require users to manually set an overwhelming number of
parameters of graph generators from scratch when users generate their desired
graphs. Hence, the requirements of benchmarking frameworks are 1) the flexi-
bility of controlling the characteristics of generated graphs and 2) the usability
for setting parameters of the graph generation.

We present GenCAT Workbench, a framework satisfying both of these desired
features. First, our framework allows users to flexibly control the characteristics
of generated graphs since we adopt GenCAT [5], an attributed graph genera-
tor which supports various characteristics of real-world graphs, such as node
degree distributions, attribute distribution, and class structure. The class struc-
ture indicates the interplay between classes, attributes and topology. Second, the
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Fig. 1: Overview of the GenCAT Workbench.

GenCAT Workbench can extract the parameters for its graph generation from
a given graph and then allows users to configure the parameters, which reduces
users’ effort compared to fully manual settings. In our demonstration?, we clarify
the pros/cons of each graph analytic method across various topology structures
and attribute values. Figure 1 gives an overview of our framework.

Related work. Many studies have addressed benchmarking graph analytic
methods [2, 3]. However, there are no frameworks which allow users to generate
various graphs and evaluate analytic methods by the graphs. For example, a
recent framework uses SBM which generates graphs that are not similar to real-
world graphs [2].

2 GenCAT Workbench

GenCAT 5] is the state-of-the-art attributed graph generator which allows users
to flexibly control the characteristics of generated graphs. Since it captures the
relationships between classes, attributes, and topology, the attributes and topol-
ogy in generated graphs share the class structure. More specifically, GenCAT
can flexibly generate graphs with controlled edge connection proportions be-
tween classes, called class preference mean. Given as inputs user specified fea-
tures such as node degrees, attribute distribution, and class features (e.g., class
preference mean and class size distribution), GenCAT generates graphs having
similar features to these inputs.

GenCAT is the only method satisfying our requirements; supporting various
class structures and extracting parameters from a given graph. Current state of
the art methods [1, 7] fail to support one or more features supported by GenCAT.
Moreover, it can simulate existing generators in terms of class structures and
node degrees. Please see more detailed and precise procedures in [5].

2.1 Features of the GenCAT Workbench

The workflow of the GenCAT Workbench is illustrated in Figure 1. We describe
the features of the GenCAT Workbench as follows.

Easy parameter setting. Users can extract statistics from a given graph,
and then configure the parameters to obtain their desired graphs. We present

3 Our demo video is available on https://www.youtube.com/watch?v=28xVOHRDpCE.
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Fig. 2: Demonstration.

examples of Cora, Citeseer, and Pubmed, which are commonly used citation net-
works [4], on the GenCAT Workbench. Also, users can add other new datasets.
Benchmarking graph analytic methods. Users can investigate how each
parameter (e.g., class preference mean or the number of edges) affects the per-
formance (e.g., accuracy and training time) of graph analytic methods, while
keeping the rest of the parameters the same. This investigation clarifies the ad-
vantages and drawbacks of methods on various settings.
End-to-end framework. The GenCAT Workbench provides all necessary
components for benchmarking, including parameter setting (i.e., extraction and
configuration), graph generation, execution of graph analytic methods, and result
viewer. This enables users to easily investigate their methods in various settings.
To enhance the extensibility of the GenCAT Workbench, we implement it on
Jupyter Notebook. This allows users to easily add new methods to our frame-
work. This implementation is rather simple yet suitable for GNNs that are chang-
ing rapidly.

3 Demonstration Plan

Graph generation usage. We demonstrate and explain how to generate
graphs by the GenCAT Workbench in Figure 2a. First, users can choose a dataset
from which they extract statistics (see the blue box). In this demonstration, we
extract parameters from Cora and configure the class preference mean. As an
example, we modify the diagonal elements of the class preference mean such that
classes have fewer intra-edges than the original graph, i.e., we simulate a graph
with the weaker homophily property than the original graph.
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Next, the GenCAT Workbench generates a graph by inputting class fea-
tures and node degree distribution (see the red box). The GenCAT Workbench
presents the heatmaps of class preference means of the original and the generated
graphs, which are shown in the bottom part of Figure 2a. Users can observe that
the generated graph actually has fewer intra-edges in classes than the original.
Demonstration use case. We demonstrate sample use cases for clarifying the
pros and cons of existing graph analytic methods. We pick up three represen-
tative GNNs, GCN [4], GAT [6], and H2GCN [8], since graph neural networks
are inarguably the hottest topic in graph-based deep learning [2]. The detailed
experimental setups are described in our codebase.

In Figure 2b, we demonstrate a sample use case investigating how much class
preference means affect the node classification accuracy of the models. First, the
GenCAT Workbench extracts parameters from Cora and configures the class
preference means to have few intra-edges (i.e., heterophily property) from many
intra-edges (i.e., homophily property). Second, the GenCAT Workbench gener-
ates graphs with the configured class preference means. Third, the framework
executes GNN models on the generated graphs. To compare the models with a
graph-agnostic classifier, we execute multi-layer perceptron (MLP).

Next, we discuss observations from this use case. First, GCN, GAT, and
H2GCN outperform MLP on graphs with the homophily property since MLP
does not use the topology information (see the bottom part in Figure 2b). Then,
H2GCN, which considers the heterophily property, performs well on graphs with
the heterophily property (the leftmost points). In contrast, GCN and GAT do
not perform well since they ignore the heterophily property.

In our demo video, we present two more use cases: 1) accuracy on graphs
with various attribute values, and 2) training time per epoch for various numbers
of edges. Through the demonstrations, we show how GenCAT Workbench can
support investigations of the pros/cons of graph analytics methods on generated
graphs with various class preference means, attributes, and graph sizes.
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