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Abstract. We demonstrate the construction of robust counterfactual
explanations for support vector machines (SVM), where the privacy
mechanism that publicly releases the classifier guarantees differential pri-
vacy. Privacy preservation is essential when dealing with sensitive data,
such as in applications within the health domain. In addition, providing
explanations for machine learning predictions is an important require-
ment within so-called high risk applications, as referred to in the EU
AT Act. Thus, the innovative aspects of this work correspond to study-
ing the interaction between three desired aspects: accuracy, privacy, and
explainability. The SVM classification accuracy is affected by the pri-
vacy mechanism through the introduced perturbations in the classifier
weights. Consequently, we need to consider a trade-off between accuracy
and privacy. In addition, counterfactual explanations, which quantify
the smallest changes to selected data instances in order to change their
classification, may become not credible when we have data privacy guar-
antees. Hence, robustness for counterfactual explanations is needed in
order to create confidence about the credibility of the explanations. Our
demonstrator provides an interactive environment to show the interplay
between the considered aspects of accuracy, privacy, and explainability.

Keywords: Counterfactual Explanations - Support Vector Machines -
Differential Privacy.

1 Motivation

Machine learning algorithms have proven to be powerful for learning from data
and making decisions with high accuracy. In particular, they are able to outper-
form humans on many specific tasks. However, such data-driven technologies are
seldom value-neutral to the extent that they include social and ethical values.

* Demonstrator video is available under:
https://rami-mochaourab.github.io/papers/2022-ECML/demo-video.mp4
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Fig. 1. The considered relationship between accuracy, privacy, and explainability.

Even when such values are integrated into the models they may be mandated by
regulatory frameworks, such as traditional laws or policy documents. The goal of
our work, reported in [3, 2], is to demonstrate in a technical context the link be-
tween three social and ethical values advocated by the General Data Protection
Regulation (GDPR), namely, ezplainability, privacy, and accuracy.

Fig. 1 gives an overview on how the three mentioned social values are related
within this work: Accuracy is targeted when learning an SVM classifier. Pri-
vacy is guaranteed using a differentially private mechanism for the classifier [4].
Afterwards, the private SVM version is made publicly available. Explainability
for private SVM is done by designing counterfactual explanations [5] which take
into account the characteristics of the classifier and privacy mechanism [3].

The innovative aspects of this work correspond to the simultaneous analysis
of these three desired aspects, namely, accuracy, privacy, and explainability. The
application domains of our work include those with sensitive data, such as within
health, as well as within high risk applications as referred to by the EU Al
Act, where explainability for data driven predictions is needed. To the best of
our knowledge, there does not exist other work that studies explainability for
privacy-preserving machine learning models.

The target users of our work are both machine learning researchers, working
on explainable Al, as well as Al regulatory bodies interested in understanding the
interplay between machine learning based decision-making, privacy guarantees,
and explainability of machine learning predictions.

2 Demonstrator

Our demonstrator provides an interactive environment to understand the effects
of privacy guarantees on the classification accuracy and counterfactual explana-
tions. We use two datasets for this purpose as is shown in the snapshots from
the demo in Fig. 2 and Fig. 3.

Fig. 2 shows the optimal linear SVM (solid line) and its private version
(dashed line). The first sliding bar corresponds to the differential privacy pa-
rameter [1] which affects the extent of privacy guarantees. A low value means
larger privacy. Consequently, larger perturbations on the classifier weights are
performed when constructing the private SVM. Counterfactual explanations are
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Fig. 2. Demo snapshot for explanability of linear SVM classifications on data generated
from two bivariate Guassian distributions.

the closest points to the selected instance (o) that lie on the decision bound-
aries. Non-robust explanation (¢) may have the same class as the instance with
respect to the optimal (unknown) SVM, as is shown the the screenshot. Hence,
non-robust explanations are not credible and therefore we construct robust ex-
planations (x) that provide confidence in explanation credibility.

The second sliding bar at the top corresponds to the confidence in the cred-
ibility of the counterfactual explanations. A large confidence means that we are
more certain that the explanation has a different classification compared to that
of the instance. However, a larger confidence level comes at a cost in terms of
a larger distance between the explanation and the instance we want to explain.
In other words, we have a tradeoff between the explanation credibility and the
smallest changes needed to alter the classifier decision from the instance.

Fig. 3 demonstrates similar functionality as above but on the publicly avail-
able UCI Breast Cancer Wisconsin (Diagnostic) dataset. Here, we use a feature
mapping generated using a Radial Basis Function (RBF) kernel approximation
(see details in [3]). Due to the high number of features, the demo allows to vi-
sualize in two dimensions by selecting pairs of features through a drop-down
menu. In order to identify the classifier errors, we mark the false positives and
false negatives for both optimal and private SVM. In this way, we can see the
extent of errors for different privacy parameter values. In addition, at the top-
right corner we show the classification of both the selected instance and the
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Fig. 3. Demo snapshot for explainability of kernel SVM classifications on the UCI
Breast Cancer Wisconsin (Diagnostic) dataset.

explanation. This, highlights the diverse miss-classification possibilities inherent
in the machine learning models.

The calculation of robust counterfactual explanations for kernel SVM is based
on the bisection method aided by prototypes, as is detailed in [3]. A prototype
for a specific data class is a typical case for that class known by the domain
expert. By increasing the explanation confidence level, we can visualize how the
explanations move towards the prototype at the center of the desired data class.
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