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Abstract. This study investigates rare event detection on tabular data
within binary classification. Standard techniques to handle class imbalance
include SMOTE, which generates synthetic samples from the minority
class. However, SMOTE is intrinsically designed for continuous input
variables. In fact, despite SMOTE-NC—its default extension to handle
mixed features (continuous and categorical variables)—very few works
propose procedures to synthesize mixed features. On the other hand, many
real-world classification tasks, such as in banking sector, deal with mixed
features, which have a significant impact on predictive performances. To
this purpose, we introduce MGS-GRF, an oversampling strategy designed
for mixed features. This method uses a kernel density estimator with
locally estimated full-rank covariances to generate continuous features,
while categorical ones are drawn from the original samples through a
generalized random forest. Empirically, contrary to SMOTE-NC, we show
that MGS-GRF exhibits two important properties: (i) the coherence i.e.
the ability to only generate combinations of categorical features that are
already present in the original dataset and (ii) association, i.e. the ability
to preserve the dependence between continuous and categorical features.
We also evaluate the predictive performances of LightGBM classifiers
trained on data sets, augmented with synthetic samples from various
strategies. Our comparison is performed on simulated and public real-
world data sets, as well as on a private data set from a leading financial
institution. We observe that synthetic procedures that have the properties
of coherence and association display better predictive performances in
terms of various predictive metrics (PR and ROC AUC...), with MGS-
GRF being the best one. Furthermore, our method exhibits promising
results for the private banking application, with development pipeline
being compliant with regulatory constraints.

Keywords: Imbalanced data · Classification · Mixed features · Tabular
data · Scoring · Banking.
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1 Introduction

Addressing class imbalance in binary classification presents a significant challenge
across various machine learning applications [30,27], such as medical diagnosis,
customer churn prediction or anomaly detection [14,23,30]. In particular, detecting
fraud is a prime issue in banking [11,19]: the vast majority of customers make
legitimate transactions, while the fraudulent ones represent only a minority but
have a significant operational, regulatory, and reputational impact.

Several seminal works have introduced rebalancing strategies in order to
improve the predictive performances of generic classifiers [5,22]. These strategies
can be divided into two categories [25]: model-level strategies, that aim at adapting
an existing algorithm, for example by weighting classes or minimizing a specific
loss function [4,20]; and data-level strategies, that act on the original data set by
oversampling or undersampling the observations, and are thus model agnostic.
A subclass of data-level strategies, named synthetic procedures, generates new
samples in the minority class, with many variants introduced in the literature
[5,12,10]. Data-level synthetic procedures handle class imbalance by generating
new informative samples. This contrasts with model-level approaches (which do
not add or lose information), data-level undersampling (which entails information
loss), and data-level oversampling via duplication (which does not introduce
novel information). One key characteristic of synthetic procedure is that most of
them are primarily designed to handle numerical features and thus do not handle
categorical features [7,27]. In practice, categorical features are very common in
tabular data (e.g. job category, country, gender), and can represent a relevant
signal for improving the predictive performances of the learning tasks, such as
those described in [9,8]. This highlights the importance of handling mixed features
when generating samples for imbalance data.

One practical benefit of data-level procedures is to enable practitioners to
change the final classifier of the learning task at no cost, i.e. without adapting its
loss function or other hyperparameter. This flexibility makes them valuable and
sometimes necessary in industrial modular pipelines with regular classification
model substitution. To satisfy this practical constraint, in this paper, we focus on
data-level strategies and, more specifically, synthetic oversampling strategies for
tabular data with mixed features. When handling both continuous and categorical
features, we emphasize that a major aspect is to ensure their intrinsic coherence
of categorical combinations and their association with continuous features. The
notion of coherence aims at expressing that a combination of categorical variables
can be judged as plausible by some business owner, such as a bank analyst. Indeed,
generating samples that do not seem credible may lead to a reluctance to apply
subsequent machine learning analyses, without mentioning the potential negative
impact on the predictive performances. On the other hand, the oversampling
strategy needs to preserve the dependence between continuous and categorical
features. In other terms, preserving such level of association ensures that the
distribution of categorical variables conditional on continuous variables remains
similar between original and synthetic data. We thus propose an oversampling
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strategy that generates synthetic samples that are coherent and preserve the
association level compared to the original data. Our main contributions are:

– We introduce MGS-GRF, a strategy for mixed features, with a kernel density
estimation for continuous ones and a generalized forest for categorical ones.

– We propose a formal definition for the notions of coherence and association
of an oversampling strategy, and show that they are positively correlated
with predictive performances. In particular, creating implausible samples not
only makes the models less trustworthy, but also reduces the performances.

– On simulated data, we prove that SMOTE-NC, probably the most widely
used synthetic rebalancing strategy, is not coherent and does not preserve
association, thus creating unplausible samples. On the contrary, our method
satisfies these properties, thus creating more realistic samples.

– We compare our proposed method with other rebalancing strategies on two
banking public data sets and one private data set from a major financial
institution. We show that our proposed strategy, MGS-GRF, which is both
coherent and preserves association, has the best predictive performances.

2 Related work

Notations We consider a data-set {(Xi, Y i)}Ni=1 constituted of N independent
pairs, each one distributed as the random variables (X,Y ). X takes values in
Rd×X p and Y in {0, 1}, where X is the space of categorical features, of finite size.
Here, without loss of generality, we assume that the first d features of X, denoted
X1:d, are continuous, while the p others, denoted Xd:, are categorical. Similarly,
we suppose that the n first samples are labeled Y = 1, denoted {Xi}ni=1, verifying
n << N − n since we work in an imbalanced data setting.

Algorithm 1 All rebalancing strategies in the literature are divided into two
parts, the first one handling the continuous features and the second one handling
the categorical ones. Accordingly, we encompass all oversampling strategies
in Algorithm 1, which describes the generation of a single synthetic example.
Algorithm 1 may be run as many times as necessary to obtain the desired number
of minority samples. The procedure starts by selecting uniformly at random
c ∈ {1, . . . , n} and the corresponding minority sample Xc. Let NNK,L(X

c) be
the set of the K ∈ N∗ nearest neighbors of Xc among minority samples w.r.t. to a
given norm L. Finally, ContinuousSampler and CategoricalSampler functions
are applied on these neighbors, when necessary. We present below the state-of-the
art procedures using Algorithm 1.

SMOTE [5] is the most common synthetic procedure for generating con-
tinuous new samples in the minority class. Thus, SMOTE does not have a
CategoricalSampler in Algorithm 1. To generate a new synthetic sample, an
observation Xk is drawn uniformly at random among the K nearest neighbors of
Xc w.r.t. the L2 norm. The synthetic sample generation is the following

ContinuousSampler (Xc
1:d,NNK,L2(X

c)) = Xc
1:d + wXk

1:d,
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Algorithm 1 OverSampler: One iteration for generating a new sample.

Require: X1, . . . , Xn, ContinuousSampler and CategoricalSampler, d, p.
Select uniformly Xc among X1, . . . , Xn.
Derive NNK,L(X

c) the set composed of the K nearest-neighbors of Xc.
if d > 0 : then

Z1:d ← ContinuousSampler (Xc
1:d,NNK,L(X

c)).
end if
if p > 0 : then

Zd: ← CategoricalSampler (NNK,L(X
c)).

end if
return Z = [Z1:d, Zd:], new minority class synthetic sample.

where w ∼ U([0, 1]) and with U the uniform distribution. Note that SMOTE has
several variants [10,12], but, to the best of our knowledge, these variants are also
originally designed for continuous input features only.

SMOTE-N is presented in the original paper introducing SMOTE [5]. This
methodology is designed only for categorical input. SMOTE-N uses a version of
the Value Difference Metric [28], denoted LVDM, as norm. More precisely, for two
categorical vectors u, v ∈ X p we have,

LVDM(uj , vj) =

p∑
j=1

δ(uj , vj),

where δ(uj , vj) = 2|pn(Y = 0|Xj = uj) − pn(Y = 0|Xj = vj)|. The value
pn(Y = 0|uj) is the empirical conditional probability that the output class is
Y = 0 given that the feature j has the value uj . Note that, in order to compute
LVDM, the majority class samples are necessary. To generate a new observation,
a sample is drawn uniformly among the minority samples. Then, its nearest
neighbors according to LVDM are computed. Finally, the new minority sample is
generated by a vote among the previous nearest neighbors along each variable.
With Algorithm 1 notations :

CategoricalSampler (NNK,LVDM(Xc)) = Vote (NNK,LVDM(Xc)) ,

where Vote (NNK,LVDM(Xc))j , is a vote among the nearest-neighbors for the
categorical feature j ∈ {1, . . . , p}.

SMOTE-NC is designed to handle data sets containing both continuous and
categorical features, and is also presented in the original SMOTE paper [5]. The
main idea is to define a distance metric, denoted LNC, that takes into account the
categorical features. To this aim, the median C ∈ R of standard deviations of all
continuous features for the minority class is computed. The LNC takes the form

LNC(X,X ′) =

√√√√ d∑
j=1

(
X ′

j −Xj

)2
+ C2

d+p∑
j=d+1

1Xj ̸=X′
j
.
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Then, continuous features are generated using SMOTE interpolation while cate-
gorical one are based on a nearest neighbors vote. For SMOTE-NC we have:

ContinuousSampler (Xc
1:d,NNK,LNC(X

c)) = Xc
1:d + wXkc

1:d,

CategoricalSampler (NNK,LNC(X
c)) = Vote (NNK,LNC(X

c)) ,

SMOTE-ENC [22] applies the same procedure as SMOTE-NC except that
LNC is replaced by

LENC(X,X ′) =

√√√√ d∑
j=1

(
X ′

j −Xj

)2
+

d+p∑
j=d+1

C2
j 1Xj ̸=X′

j
.

However, to the best of our knowledge, SMOTE-ENC has no implementation
agnostic to the data-set, and in the original repository the computation of Cj

differs for each data-set.
While we mainly focused above on the description of CategoricalSampler,

please note that they have been a large variety of ContinuousSampler introduced
in the literature [5,12,10], whose description is beyond the scope of this paper.
Recently, there has been some theoretical studies of ContinuousSampler. [25]
demonstrated that when used with default parameters on continuous features,
SMOTE tends to copy the original minority samples, and is unable to regenerate
the original distribution near the density support boundary. [29] showed that
several ContinuousSampler can be seen as a kernel density estimator, opening
thus to a wide range of methods. Similarly, some generative neural network
methods have been proposed as ContinuousSampler, such as CTGAN [32], a
GAN-based procedure, and TabDDPM [15], a diffusion-based approach. One prac-
tical aspect of such oversampling strategies is that they are computationally very
expensive, especially in real-world high-dimensional applications with millions
of rows. Besides, [15,25] showed that, empirically, SMOTE remains competitive
even compared to these recent models [15, see Table 4 and Table 5].

3 Our proposed algorithm: MGS-GRF

In this section, we describe our new algorithm to handle mixed data. It is organized
similarly to Algorithm 1, so that we first describe our procedure to generate
continuous features before detailing the categorical variables methodology.

3.1 Handling continuous features

Numerous studies have proposed Kernel Density Estimator (KDE) for generating
synthetic samples within the minority class for continuous input features. Actually,
SMOTE itself can be seen as a KDE with uniform kernel piece by piece [29].
For instance, [17,18] introduce an oversampling strategy that, based on original
samples, adds centered Gaussian noise with a unique diagonal scale matrix to
original samples to generate new observations. [21] develops ROSE, a KDE based
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oversampling strategy which is associated to a unique scale matrix for the whole
minority class. Later, [31] proposes a weighted sample KDE oversampling strategy
with fixed diagonal scale matrix, thus isotropic, of the form h × I with h ∈ R
and I the identity matrix. h is as in Adasyn [12]: higher weights are given to
original minority samples surrounded mostly by majority class samples.

Multivariate Gaussian SMOTE (MGS) is a synthetic procedure for continuous
features introduced by [25]. MGS is presented as a variant of SMOTE that
generate new samples from multivariate Gaussian distributions and no longer
with a linear interpolation. We analyzed the MGS procedure and reformulate it
as a Gaussian KDE from the sample smoothing estimator family [26], i.e. with
several different full-rank local scale matrices. Furthermore, MGS does not assume
the covariance matrix to be diagonal, thus not isotropic, which allows a better
adaptivity to the unknown minority class distribution. We choose to generate the
continuous features of synthetic samples, Z1:d ∈ Rd, according to the following
density f̂MGS(Z1:d) fitted on the original minority samples {Xi}i=1,...,n:

f̂MGS(Z1:d) =
1

n

n∑
i=1

1

(2π)d/2|Σ̂i|
exp

(
−1

2
(Z1:d − µ̂i)T (Σ̂i)−1(Z1:d − µ̂i)

)
, (1)

where |Σ̂i| denotes the determinant of Σ̂i and

µ̂i =
1

K

∑
X∈NNK,L2

(Xi)

X1:d, Σ̂i =
1

K

∑
X∈NNK,L2

(Xi)

(
X1:d − µ̂i

) (
X1:d − µ̂i

)T
are estimated for each minority class sample using its K nearest-neighbors from
the minority class, w.r.t. to L2 norm. We choose a value of K = d+ 1 in order
to possibly obtain full-rank covariance matrices. Besides, Σi can be estimated
using shrinkage [16,6] or simply the sample covariance matrix estimate [25], but
empirically we got better results with the latter one.

One notes that the underlying distribution of this sampling is a n Gaussian
mixture with equal weights. We also remark that ROSE [21] corresponds to the
special case where all Σi are equal.

3.2 Handling categorical data via Generalized Random Forests

Now, we introduce our selected procedure for generating synthetic categorical
features. A first remark when looking at Algorithm 1 is that multi-output
classifiers, such as nearest neighbors, can be used to generate the categorical
features. Indeed, such models can be trained using only minority samples, aiming
at predicting the categorical features {Xi

d:}ni=1 based on the continuous features
{Xi

1:d}ni=1. Denoting by ĝ such trained classifier, based on Algorithm 1, one can
repeatedly generate categorical samples as

CategoricalSampler(Z1:d) = ĝ(Z1:d).

Our selected methodology to generate categorical variables relies on Generalized
Random Forests (GRF) [1]. The main difference between a random forest [3] and
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Algorithm 2 Prediction procedure of GRF
Require: Forest composed of T trees T1, . . . , TT . A new unlabeled sample Z1:d.
∀k = 1..T, Lk(Z1:d)← set of training samples which end up in the same leaf as Z1:d

in the tree Tk
for i ∈ [1, . . . , n] do

w(Z1:d)(X
i)← 1

T

∑T
k=1

1{Xi∈Lk(Z1:d)}
|Lk(Z1:d)|

end for
Zd: ← Sample {X1

d:, . . . , X
n
d:} based on {w(Z1:d)(X

1
1:d), . . . , w(Z1:d)(X

n
1:d)}.

return Zd:

a GRF, is that, given the new point, GRF assigns a probability to each training
sample. These probabilities are derive from the frequency of the training samples
to fall in the same leaf as the predicted sample. Finally, GRF can be used to
estimate any quantity identified via local moment conditions.

We implemented our own version of GRF from the RandomForestClassifier
class of scikit-learn [24]. In our algorithm, the derivate probabilities are used
to draw predicted target from training target vectors (Y i). The predict pro-
cedure of our GRF is detailed in Algorithm 2. Besides, we try several default
hyperparameters for our GRF and finally we keep the default values from Ran-
domForestClassifier class of scikit-learn for the tree building. Furthermore, we
do not apply the principle of honesty [2], and neither scale the target variables.

3.3 MGS-GRF

Now we detail MGS-GRF, our new procedure that combines MGS and GRF which
are described in the previous sections. MGS-GRF follows the three following steps.
First, MGS is applied to generate the continuous features of the new synthetic
samples. Then, a Generalized Random Forest (GRF) denoted by ĝGRF is trained
on all the original minority samples with the continuous features {Xi

1:d}ni=1 as
inputs and the categorical features {Xi

d:}ni=1, as outputs. Finally, the trained GRF
is used to build the categorical features based on the continuous ones generated
in the first step. Using Algorithm 1 notations we have,

ContinuousSampler({Xi
1:d}ni=1) = Z1:d ∼ f̂MGS

CategoricalSampler(Zd:) = ĝGRF (Z1:d) .

Our proposed method enjoys the following properties: (i) GRF generates
combinations of categorical features that are all from the original minority class.
(ii) Due to tree building procedure, GRF may be able to use only the few
continuous variables that are relevant to generate the categorical variables, thus
ensuring a better correlation between continuous and categorical variables. (iii)
The categorical features are generated directly from the continuous ones of the
new sample. Thus, they are no longer based on the neighborhood of the central
point.
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4 Illustrations on simulated data

In the following, we describe our baselines before defining both coherence and
associations. We illustrate these notions through numerical simulations. 4

4.1 Baselines

Now, we introduce different strategies to preprocess the original imbalanced data
set. We denote by None strategy the procedure where no rebalancing strategy is
applied. CW is the class-weighting strategy while Random Oversampling strategy
(ROS) and Random Undersampling Strategy (RUS) are data-level approaches.
We also include the synthetic procedure SMOTE-NC, with the default number of
nearest neighbors equal to 5. There is no generic implementation of SMOTE-ENC,
thus we do not include this strategy (see Section 2).

Besides, we introduce 3 synthetic baselines for our comparison. MGS-NC
selects a central point Xc uniformly over minority samples. MGS distribution
is used (see Equation 1) with Σ̂i and µ̂i computed on the K nearest neighbors
NNLNC,K

(Xc) of Xc w.r.t. the LNC norm. Then, each categorical variable is
generated separately via a vote among the same neighbors. The second baseline,
MGS-5NN, applies MGS on the continuous features, and builds the categorical
ones using a k = 5 nearest neighbors w.r.t. L2 norm as multi-output classifier ĝ
(see Section 3.2). Similarly, MGS-1NN is the same procedure with k = 1.

All strategies (except None) resample or generate observations so that each
of the two classes contains the same number of observations (balanced data set).

4.2 Numerical illustrations of non-coherence notion

In our first experimental protocol, we want to analyze the distribution of cate-
gorical variables via the notion of coherence defined below.

Definition 1. We denote by C the set of combinations of categorical features in
the original data set. We denote by CY=1 the combination present in the original
minority class Y = 1. We say that a synthetic oversampling strategy is coherent,
with respect to the minority class, if all combinations of generated categorical
features belong to CY=1. Accordingly, we say that a minority sample is coherent
if its categorical vector belongs to CY=1.

Our main objectives are to detect non-coherent synthetic procedures and
assess whether incoherent samples harm predictive performances. We define
the coherence value, denoted Coh, by the proportion of coherent synthetic
observations generated by a strategy, over all the synthetic data. If we denote by
ng the number of generated samples Zℓ

d:, we have

Coh =
1

ng

ng∑
ℓ=1

1{Zℓ
d:∈CY =1}.

4 All our experiments are available at https://github.com/artefactory/mgs-grf.

https://github.com/artefactory/mgs-grf


Harnessing Mixed Features for Imbalance Data Oversampling 9

We note that strategies that generate categorical features one by one with
a vote are not coherent, as they can mix original combinations. This applies to
SMOTE-NC, MGS-NC and MGS-5NN. However, MGS-1NN copies the features
of the nearest neighbor from the minority class, thus leading the combination to
be originally present in the minority class. Similarly, GRF is coherent because it
draws randomly a combination of categorical features from the minority class.

Protocol We simulate a binary classification task data set such that class 0 is
overrepresented, with d = 9 continuous features and p = 2 categorical ones. We
denote by C = D×E the set of combinations of categorical features where D (resp.
E) is the set of possible modalities for the first (resp. second) categorical features.
Each categorical feature is composed of m modalities, i.e. |D| = |E| = m and
|C| = m2, and only m (out of m2) combinations of categorical features are present
in the minority class, written CY=1 = m. Only the 3 informative continuous
features and the categorical features are used for generating the target Y . Our
procedure consists of the following steps :

1. Draw 5000 samples composed of d continuous features as follows X1:d =
(X1, . . . , Xd) ∼ N (0, Id).

2. Draw Z ∈ C such that

P[Z = c|X1:d] =
exp(−θ⊤c X1:3)∑
ℓ∈C exp(−θ⊤ℓ X1:3)

,

with c ∈ C. The set of parameters Θ = {θc, c ∈ C}, verify, for all c ∈ C,
θc ∈ R3. X1:3 are the 3 informative components of X, while other Xj values
(j > 3) do not impact Z value.

3. Draw the target variable Y such that

Y |X1:d, Z=c ∼ B(σ(α⊤X1:3 + γc)),

where B is the Bernoulli distribution, σ is the logistic function and α ∈ R3.
The set of parameters Γ = {γc, c ∈ C} verify, for all c ∈ C, γc ∈ R. In order
to limit the number of coherent combinations present in the minority class,
we set high γc values only for m different combinations c ∈ C. Besides, we
choose α and all γc values such that the class Y = 1 is underrepresented.

4. Return [X1, . . . , Xd, Z1, Z2, Y ], where Z1 ∈ D, Z2 ∈ E satisfy Z = (Z1, Z2).

One combination of Θ,α, Γ We fix the values of Θ, α and Γ once and for all and
run the above protocol 50 times. Thus, we produce 50 data sets (with different
random seeds), that we split into train and test set. We preprocess the train set
with the different rebalancing strategies and train a LightGBM classifier on it.
Predictive performances on the test set are displayed in Table 1.

In Table 1, we see that MGS-GRF and MGS-1NN have a coherence value
Coh = 100%, which is expected for these two coherent strategies. On the con-
trary, the non-coherent strategies (SMOTE-NC, MGS-NC and MGS-5NN) have
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(b) MGS-5NN and MGS-1NN.

Fig. 1: PR AUC of coherence simulations. Points color reflect their Coh value.

coherence values lower than 100%, as they can generate minority samples whose
categorical vectors are not found in the original data set. We observe that strate-
gies with low Coh, i.e. creating non-coherent combinations of categorical features
deteriorate the predictive performances of the final classifier. This is particularly
visible for MGS-5NN and MGS-1NN, while being very similar models. In contrast,
MGS-GRF achieves the best predictive performances in terms of both PR AUC
and ROC AUC, with a computation time (for oversampling and LightGBM
training) only 50% longer than SMOTE-NC. Finally, we remark that MGS-NC
leads to better predictive performances than SMOTE-NC, indicating that MGS
seems to better regenerate the distributions of the minority class than SMOTE.

Different combination of Θ,α and Γ We run our protocol with 6 configuration
values for Θ,α, Γ . For each configuration, we apply the protocol above, so that
we obtain in total 300 datasets. The PR AUC of the LightGBM classifier for
each rebalancing strategy and for each data set is displayed in Figures 1a and 1b,
where each point corresponds to one of the 300 data sets. We display the PR AUC
of a given rebalancing strategy in y-axis and the PR AUC of the None strategy
in x-axis. Circles points are all associated to coherent strategies (MGS-1NN
and our proposed strategy MGS-GRF), while the squares ones are associated to

Table 1: LightGBM trained on simulated data from experimental protocol.
Strategy None CW ROS RUS SMOTE MGS MGS MGS MGS

-NC -NC -5NN -1NN -GRF

PR AUC 0.903 0.903 0.893 0.699 0.860 0.922 0.870 0.952 0.954
ROC AUC 0.975 0.977 0.975 0.935 0.962 0.984 0.970 0.993 0.993
Coh 100% 100% 100% 100% 90% 90% 83% 100% 100%
Time (s) 0.55 0.56 0.74 0.27 1.01 1.23 1.04 1.00 1.43
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non-coherent ones (SMOTE-NC, MGS-5NN). We plot linear fitting curves and
also add the first bisector in gray (line y = x).

In both figures, we remark that the points (both squares and circles) are
above the first bisector, thus the rebalancing strategies lead to improvement of
PR AUC. However, the average coherent strategies achieve higher PR AUC than
the non-coherent ones. This difference is the highest when the PR AUC of the
None strategy is the lowest (left side of the figures), which corresponds to more
complex classification settings. In such difficult scenarios, non-coherent strategies
have low Coh values, which may in turn explain their low PR AUC, close to
that of the None strategy. When the learning task is easier, all strategies have
similar performance (right side of the figures). All in all, this experiment shows
that coherent strategies should be preferred to non-coherent ones, especially in
more difficult classification problems.

4.3 Numerical illustrations of association notion

In the following, we define and present our numerical experiments on association.

Definition 2. The association level of a multi-output classifier is its predictive
performance when inferring categorical features with respect to continuous ones.
This performance is measured as the empirical excess risk w.r.t. Bayes error.

We choose to measure the association level of a classifier via its accuracy on a
leave-one-out validation on original minority samples. More precisely, if we write
Ẑℓ
d: the prediction for Xℓ

1:d of a given classifier trained on {Xi}i ̸=ℓ (leave-one-out
prediction), the association level Asso of this classifier is

Asso = 1−

(
1

n

n∑
ℓ=1

1{Xℓ
d: ̸=Ẑℓ

d:}
− 1

n

n∑
ℓ=1

1{Xℓ
d: ̸=h∗(Xi

1:d)}

)
,

where h∗ is the Bayes classifier whose predictions are defined by h∗(X1:d) =
argmaxc∈C P(Xd: = c|X1:d), with C the set of combination of categorical features.
In practice, we do not have access to the Bayes classifier, and thus to the
association level. In such situations, the association level can also be estimated
without the last term, that is with the classifier accuracy. Another point is
that we focus on original minority points for which we have a ground truth
Xi

d:. While measuring on generated continuous features would be ideal given
our oversampling objective (see Section 3.1), we do not have the ground truth
for the categorical values of those points, and all reference data for measuring
association are with the minority points.

In this second numerical experiments, we generate an imbalance binary
classification data based on four input variables: 3 of them are continuous and
the remaining one is categorical, with 3 modalities. We add d − 3 continuous
noise variables, which are independent of all previous variables. More precisely:

1. Draw 5000 samples as a mixture of 3 Gaussian in R3: (X1, X2, X3) ∼∑3
w=1 πwN (µw, Σw), with

∑3
w=1 πw = 1 and πw ≥ 0. Let W ∈ {1, 2, 3}

be the latent variable of the mixture s.t. (X1, X2, X3)|W ∼ N (µW , ΣW ).
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2. Draw d− 3 noise features: (X4, . . . , Xd) ∼ N (µ2, λId−3) with λ ∈ R∗.
3. Draw Z ∈ {“A”, “B”, “C”} such that,

P[Z = c|X1:d,W = w] =
exp(−ζ⊤c X1:3 + χw,c)∑
ℓ∈C exp(−ζ⊤ℓ X1:3 + χw,ℓ)

,

where ζc ∈ R3 and χw,c ∈ R. For each Gaussian, that is for each w ∈ {1, 2, 3},
we choose χw,c such that one modality is associated to the minority class. We
emphasize that the notion of association between categorical and continuous
features occurs at this step, where Z depends only on the 3 informative values
X1:3 (W is a confounding variable) while others Xj(j > 3) are pure noise.

4. Draw the target variable Y such that

Y |X1:d,W =w,Z=c ∼ B(σ(β⊤X1:3 + ηw + ϕc)),

where β ∈ R3, and ηw, ϕc ∈ R. One notes that Y depends on X1:3, while
other Xj (j > 3) are non-informative.

5. Return [X1, X2, X3, X4, . . . , Xd, Z, Y ].

Following this protocol, we generate 8 data sets with increasing number of
non-informative features d − 3. On each of these 8 data sets, we estimate the
association level of 3 multi-output classifiers: 1NN, 5NN and GRF. Since we are
in a simulation setting, we have access to the Bayes predictor (see Appendix A for
details), which allows us to compute the association level. We observe in Figure 2a,
that the association level of nearest neighbors (1NN and 5NN) decreases with
increasing dimension, contrary to that of GRF which remains constant, and
close to 1, this more accurately generating categorical features. As it is a known
behavior for supervised tasks with many noisy uninformative features, nearest
neighbors do not predict well the categorical feature.

We now study how the initial prediction task (predicting Y ∈ {0, 1} based on
continuous and categorical features) is impacted by the categorical feature gener-
ation. On each data set, we apply rebalancing strategies followed by LightGBM
(with default hyperparameters) and compute its PR AUC. Results are depicted
in Figure 2b. We observe that all methods have the same performance for low
dimensions. In this setting, the problem can be considered as easy (since the
None strategy has good performances) and all rebalancing strategies are roughly
equivalent, similarly to experiments implemented in Section 4.2.

As expected due to the curse of dimensionality, all performances degrade when
the dimension increases, with the notable exception of our proposed method
MGS-GRF, whose performances remain unaffected by the addition of noise
variables. In fact, we see that the use of GRF compared to nearest neighbors
(MGS-1NN or MGS-5NN) for generating categorical variables improves the final
predictive performances. This finds explanation in the splitting procedure at
work in GRF, which selects the variables that are the most predictive of the
output (here the categorical input vector). On the contrary, nearest neighbors
are unable to detect relevant variables for splitting, which explains their poor
performances in high-dimensional settings.
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Fig. 2: Association experiments in high dimensional setting with noisy features.

We also note that SMOTE-NC, probably the default synthetic rebalancing
strategy, is the worst in high dimensions, both in terms of mean value and
standard deviation. On the opposite, our proposed method MGS-GRF exhibits
the best performances with a small standard deviation. This seems to indicate
that a good generation of categorical features (via GRF) leads to good predictive
performance on the initial binary classification task.

5 Experiments on real-world data sets

In this section, we describe all our numerical experiments on real-world data sets.
We describe our protocol before commenting our results.

5.1 Data sets

We use two open source banking-related data sets, Bankmarketing [22] and
Bankchurners [33], described in Table 2, both about bank customer behavior
prediction. The first data set objective is to predict if a client subscribes to
a banking offer after a phone marketing campaign. The second data set aims
at predicting customer attrition from a financial institution. Both data set
covariates contain historical records of the customers. To be closer to the challenge
encountered in the private sector, we undersample the open source data set to
have an imbalance ratio of 1%.

Table 2: Data sets.
N samples n/N imbalance d continuous p categorical

Private ≃ 107 <1% >200 <10
BankMarketing 40325 1% 16 10
BankChurners 8585 1% 19 5
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We also have a private data set, from Société Générale, that contains clients
information from one country in Europe. The purpose is to predict if a customer
meets some criterion from historical records. The target criterion is beyond
the scope of this paper. Positive cases predicted by the model are pushed to
analysts, with corresponding explainability results, and the analysts have to make
a decision based on the model output. Furthermore, analysts give feedbacks on
the pertinence of pushed cases to the data science team, who retrain the model
several times per year. A version from the ML-based system has been deployed.
The data set contains millions of anonymized customers, and we recall that all
process is done in compliance with the country’s regulatory requirements.

5.2 Evaluation

We evaluate the public data sets with the following protocol. For an iteration, the
data set is evaluated through a 5-fold cross validation, with Z-score scaling of the
train set. We stress on the fact that each strategy is applied on the same training
set. We run this protocol 20 times and averaged the metrics from each run. The
private data set is evaluated through a temporal train/test split, with the test
set covering year 2023 and no overlap of clients between train and test sets.
Tree-based models produce state-of-the-art performances on tabular data sets [9]
and we choose LightGBM [13] as classifier due to its computational efficiency.

We introduce an evaluation metric, the precision at recall, denoted Pr-at-rec(x),
which equals the precision associated to a recall of at least x, for any x ∈ [0, 1].
This metric aims at representing an industrial or operational trade-off between
precision and recall. After discussions with the analyst, we choose a recall x = 0.2.
We also use two usual aggregated metrics, the ROC AUC and the PR AUC.
Results are displayed in Table 3.

5.3 Results

In Table 3, we first observe that oversampling strategies that preserve coherence
(MGS-1NN and MGS-GRF) leads to better predictive performances than the
non-coherent ones (SMOTE-NC, MGS-NC, MGS-5NN). Besides, we remark that
SMOTE-NC induces the greatest deterioration of predictive performances, for
example −28% of PR AUC on the private data set. Furthermore, MGS-NC strat-
egy leads to better predictive performances than SMOTE-NC for all three data
sets, reinforcing conclusions of [25]: the MGS KDE is better suited than SMOTE
linear interpolation for minority class continuous features regeneration. We also
see that our proposed method MGS-GRF has the best predictive performances
for BankChurners and BankMarketing in Table 3 for all metrics, with a running
time (for oversampling and LightGBM training) close to that of SMOTE-NC.

For the private data set, we observe that MGS-GRF and CW are the two best
strategies (in italics). Those are promising results for our method and validate
our findings of Section 4.2 and Section 4.3 on association and coherence. To take
advantage of both strategies, we built an ensemble learning model CW×MGS-
GRF combining the two LightGBM obtained after CW and MGS-GRF strategies.
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Table 3: BankChurners, BankMarketing and Private data sets. For confidentiality
motivations, private data set metrics are relative gains compared to None strategy
and no running time is provided. Standard deviations are available in Table 4.

Metric Data Strategy

None CW ROS RUS SMOTE MGS MGS MGS MGS CW×M

-NC -NC -5NN -1NN -GRF GS-GRF

Pr-at Churn 0.894 0.870 0.847 0.632 0.850 0.908 0.910 0.913 0.930 -
-rec Mark. 0.119 0.118 0.115 0.106 0.093 0.128 0.126 0.128 0.129 -
(0.2) Private Ref. 9% 2% 9% -34% 7% 9% 9 % 9% 13%

PR Churn 0.622 0.608 0.576 0.394 0.595 0.655 0.653 0.663 0.664 -

AUC Mark. 0.092 0.090 0.090 0.082 0.076 0.099 0.099 0.098 0.100 -
Private Ref. 11% 7% 10% -28% 8% 8% 10% 11% 15%

ROC Churn 0.977 0.971 0.963 0.941 0.975 0.983 0.983 0.984 0.984 -

AUC Mark. 0.890 0.882 0.878 0.881 0.861 0.899 0.899 0.899 0.898 -
Private Ref. 0% 0% 0% -2% 0% 0% 0% 0% 0%

Time Churn. 0.30 0.33 0.49 0.06 0.85 2.15 1.24 1.22 0.89 -
(s) Mark 1.29 1.34 1.91 0.29 4.21 16.27 8.05 7.77 5.87 -

This methodology obtains the best results by far, highlighting the fact that
samples generated via MGS-GRF procedure are informative for the learning task.

6 Conclusion and perspectives

In this paper, we propose an oversampling strategy, MGS-GRF which synthesizes
continuous features with a kernel density estimator and categorical ones by a
GRF. We show through our first experimental protocol with simulated data
(Section 4.2), that coherent strategies (MGS-1NN and MGS-GRF) lead to better
predictive performances in terms of PR AUC and ROC AUC. Then, in Section 4.3,
we show that nearest-neighbor based oversampling strategies are not well suited
to handle categorical variables, since they do not preserve the association of
generated samples in the presence of noisy features.

We performed numerical experiments on two real-world open source data sets
and an industrial private data set from a financial institution which is used in
production. Our results show that MGS-GRF is the most promising strategy
for real-world applications, achieving the best predictive performances. Thus,
we recommend designing strategies are coherent and preserve association and,
among those, we recommend the use of our proposed method MGS-GRF, which
achieves the best predictive performances on real-world data sets.
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A Details on protocols

For each configuration Θ,α, Γ , from the protocol of Section 4.2, 50 different
data sets (with different seeds) are generated. All in all, we obtain 300 datasets.
Finally, each data set is composed of 5000 samples with an imbalance ratio less
than 10%. For each data set, we apply different rebalancing strategies and apply
a LightGBM classifier on the rebalanced data set.

The protocol from Section 4.3 is executed with the following dimensions values
d : [5, 10, 20, 30, 50, 100, 150, 200]. All the dimensions share the same parameter
values. Each dimension simulation is executed 20 times in order to be able
to compute standard deviations. Regarding the generation of the samples, let
π1, π2, π3 be the proportions of these three Gaussians, we have π1 = π2 ≫ π3.

Details on Figure 2a The Bayes Classifier for the Asso of Figure 2a is derived
empirically from a LightGBM trained on continuous features to predict the
categorical feature. This latter model is trained on a different simulated data
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sets with millions of samples. We make this choice because we predict only one
categorical feature and because LightGBM is a consistent estimator.

B Supplementary materials

Table 4: Table 3 with standard deviations.

Metric Data Strategy

None CW ROS RUS SMOTE MGS MGS MGS MGS CW×M

-NC -NC -5NN -1NN -GRF GS-GRF

Pr-at Churn 0.894 0.870 0.847 0.632 0.850 0.908 0.910 0.913 0.930 -
-rec std ±0.051 ±0.056 ±0.061 ±0.123 ±0.053 ±0.057 ±0.048 ±0.050 ±0.052

(0.2) Mark. 0.119 0.118 0.115 0.106 0.093 0.128 0.126 0.128 0.129 -
std ±0.009 ±0.009 ±0.011 ±0.012 ±0.007 ±0.014 ±0.008 ±0.012 ±0.008

Private Ref. 9% 2% 9% -34% 7% 9% 9 % 9% 13%

PR Churn 0.622 0.608 0.576 0.394 0.595 0.655 0.653 0.663 0.664 -

AUC std ±0.024 ±0.026 ±0.024 ±0.043 ±0.021 ±0.026 ±0.024 ±0.022 ±0.025

Mark. 0.092 0.090 0.090 0.082 0.076 0.099 0.099 0.098 0.100 -
std ±0.008 ±0.005 ±0.006 ±0.006 ±0.004 ±0.005 ±0.005 ±0.006 ±0.006

Private Ref. 11% 7% 10% -28% 8% 8% 10% 11% 15%

ROC Churn 0.977 0.971 0.963 0.941 0.975 0.983 0.983 0.984 0.984 -

AUC std ±0.005 ±0.005 ±0.006 ±0.008 ±0.004 ±0.002 ±0.003 ±0.003 ±0.002

Mark. 0.890 0.882 0.878 0.881 0.861 0.899 0.899 0.899 0.898 -
std ±0.003 ±0.004 ±0.003 ±0.004 ±0.004 ±0.003 ±0.002 ±0.003 ±0.003

Private Ref. 0% 0% 0% -2% 0% 0% 0% 0% 0%

Time Churn. 0.30 0.33 0.49 0.06 0.85 2.15 1.24 1.22 0.89 -
std ±0.01 ±0.02 ±0.03 ±0.00 ±0.07 ±0.05 ±0.04 ±0.06 ±0.03

(s) Mark 1.29 1.34 1.91 0.29 4.21 16.27 8.05 7.77 5.87 -
std ±0.02 ±0.03 ±0.09 ±0.01 ±0.05 ±0.56 ±0.09 ±0.20 ±1.34
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