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Abstract. Clean drinking water is essential for a sustainable society as
emphasized by UN’s sustainable developmental goal 6. Efficient man-
agement of water distribution systems (WDSs) is vital to ensure this
goal. Conventional approaches rely on computationally expensive hy-
draulic simulations. Instead, using a pre-trained physics-informed graph
neural network as a surrogate model, we solve such real-world problems
with gradient methods. This does not only enable end-to-end optimiza-
tion of WDS attributes but demonstrates the more general concept of
leveraging the differentiability of a deep surrogate model to solve down-
stream tasks related to the underlying complex system. In this work,
we demonstrate this novel principle by focusing on three tasks: First,
we estimate hydraulic states from sparse sensory information, achiev-
ing SOTA performance. Second, we use the surrogate model combined
with information theory to solve the task of optimal sensor placement.
We use the sparse-to-dense pressure estimation task to gauge the qual-
ity of our sensor placements, which itself is non-trivial. Finally, we plan
the rehabilitation of WDSs by optimizing pipe diameters in response to
changing demands. To the best of our knowledge, we are the first to use
the concept of end-to-end differentiability of complex systems via deep
surrogate models to solve real-world tasks in WDSs.

Keywords: Physics-informed Machine Learning · Graph neural net-
works · Surrogate models · Digital twins · Water distribution networks

1 Introduction

The increasing availability of physics-informed machine learning (ML) method-
ologies allows the development of efficient and reliable surrogate models, i.e.,
ML models that mimic the physics of the real world [16]. Integration of such
surrogate models into real-world scenarios makes them digital twins [13]. Crit-
ical infrastructure, such as energy and transportation systems as well as water
distribution systems (WDSs), is one example where these models are of high rel-
evance [4]. Here, important functionality ranges from reliable state estimation,
predictive control, up to improved resilience.
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Fig. 1: The main concept of leveraging gradients of a surrogate model M with
parameters Θ. Given a surrogate model (top) that predicts system states S from
system parameters X , its derivative can be used to solve real-world problems as
a digital twin (bottom) like sensitivity analysis, inferring the system state, or
optimizing system parameters x ∈ X given an objective f . This only requires
noisy/sparse state information.

We focus on one specific example, namely WDSs, where both data and models
are available. In this context, states such as demands, pressures and flows are
of high importance, but are also subject to high uncertainty. A state of the art
(SOTA) surrogate model for WDSs has been proposed recently in the form of a
physics-informed graph convolutional network (PI-GCN), which is trained based
on realistic demands and underlying hydraulic principles [2].

However, while surrogate models typically aim to learn a physically well-
defined dynamic directly, tasks in real-world settings often depend on partially
unknown quantities. This results in optimization targets that are ill-posed or re-
quire architectures which are narrowly tailored to the problem at hand. We want
to leverage the property of surrogate models to intrinsically represent the under-
lying physical structure. Figure 1 highlights our general idea that the backward
pass of surrogates can be used to align any combination of known and unknown
variables in a physically meaningful way and hence leverage this information to
an efficient solution of downstream tasks which occur in this context. Specifi-
cally, due to fast computation and the differentiability that comes with a deep
learning (DL) approach, such surrogate models enable us to solve important
water-related downstream tasks in an end-to-end manner.

In this work, we will formalize the general principle and demonstrate its
potential on three relevant tasks: Sparse-to-dense pressure estimation, sensor
placement, and network rehabilitation. Although applied in a domain-specific
context, this work targets a broader picture, as differentiability allows us to
optimize any variable associated with the system that is an input to the surrogate
model. This opens the floor to further downstream tasks in real-world scenarios,
yielding flexible digital twins based on the backward pass of the surrogate model.
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Contributions. Our contributions are threefold:

1. We model the general principle of using the backward pass of a physics-
informed surrogate model as a digital twin, which allows to efficiently solve
downstream tasks related to the underlying system.

2. We showcase the practicality of this concept in the context of WDSs:
(a) We propose a new approach for the sparse-to-dense pressure estimation

task with high generalizability. As this problem is ill-posed, our method
generates a distribution of physically plausible hydraulic states.

(b) We propose an improved approach to sensor placement by using the
gradients of a PI-GCN surrogate model as a measure of sensitivity in
combination with information theory.

(c) We propose a new approach for the network rehabilitation task by gradient-
based optimization of the diameters of the pipes that are inputs to the
PI-GCN surrogate model.

3. We compare all methods to the SOTA baselines and thoroughly justify our
evaluation methods.

Social and domain impact. Since WDSs belong to critical infrastructure, every
methodology that improves the SOTA, for example in terms of accuracy or com-
putational complexity, has a high social impact as it improves urban monitoring,
planning and rehabilitation. Our proposed methods do not only satisfy this cri-
terion but are also immediately applicable and extendable to other systems of
critical infrastructure, given the availability of a differentiable surrogate model
of the system.

2 Related Work

State estimation in WDSs. A WDS consists of nodes such as junctions, reser-
voirs, and tanks connected via links such as pipes, pumps, and valves. Its physical
states are characterized by pressure heads and demands at the nodes and flows
through links. State estimation describes the task of mapping nodal demands
and reservoir pressure heads to flows and pressure heads in the whole WDS.
This task can be solved with hydraulic simulators such as EPANET [17]. ML
surrogate models have been proposed to solve the state estimation task as a
replacement for EPANET [2,12,23]. The most recent SOTA in DL is a PI-GCN
[2]. This model is the only one that is regularized by the physical properties of
the underlying system; it is less prone to overfit the training distribution.

Sparse-to-dense pressure estimation. For downstream tasks, the pressure heads
at every node in a WDS are of interest. In the real world, however, pressure is
only known at locations where sensors are installed. Simulators such as EPANET
could be used to generate the dense pressure state from demands, but the de-
mands themselves are fully or partially unknown. Hence, simulators or surrogates
alone cannot solve this problem. Estimating the full state from sparse sensor
readings – sparse-to-dense state estimation – constitutes an ill-posed problem
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since multiple states can correspond to the same sensor readings; no analytic
solutions have been proposed for this task. Recent DL approaches tackle this
problem based on intrinsic regularization [1,10,20]. All of these works employ
different types of graph convolutional networks (GCNs) with good results, but
limited generalization to unseen WDS attributes.

Sensor placement. WDS operations depend on information from sensors. As
providing each node with a sensor is infeasible, sensor placement at selected
junctions is a well-known optimization task [5,9,11,14,18]. Some existing algo-
rithms come from the water domain directly [9,18]; recently, ML methods were
leveraged [5,14]. Our work combines and improves concepts from [9] and [18] to
solve the task of sensor placement. [9] solve a multi-objective optimization prob-
lem (OP) based on pressure sensitivity, estimated from hand-crafted gradients,
and entropy, derived from these gradients as a measure of network coverage.
We access the actual gradients of the differentiable PI-GCN surrogate model
instead and use mutual information that assures potential sensors with high
pressure sensitivity not to be redundant. [18] also use mutual information, but
depend on the downstream task of leakage detection.

Network rehabilitation. WDS planning and rehabilitation is a complicated and
multi-objective task [15,21]. Given constraints and uncertainties in the future,
planning and rehabilitation tasks are usually formulated as a multi-objective OP
[3,6]. In the water community, genetic algorithms such as NSGA-II [7] are used
to solve the latter, which are computationally expensive.

3 Background: Tasks in Water Distribution Systems

A WDS can be modeled as a graph, consisting of nodes V = {v1, . . . , vnn} (con-
sumer junctions, reservoirs and tanks) and edges E = {e1, . . . , ene} = {evu | ∀v ∈
V, u ∈ N (v)} (pipes, pumps and valves). Among all nodes, we consider the set of
reservoir nodes Vr, the consumer nodes Vc = V \Vr and the sensor nodes Vs ⊂ Vc,
which are equipped with a sensor that measures the pressure head hv ∈ R+ at
the corresponding node v ∈ Vs. The state of a WDS is characterized by pressure
heads h = (hv)v∈V ∈ Rnn

+ at every node and water demands d = (dv)v∈Vc ∈ Rnc
+

at every consumer node along with the water flows q = (qe)e∈E ∈ Rne through
every pipe. The relationships between these variables are governed by hydraulic
principles, summarized in appendix A.1. A triplet (h,d,q) that satisfies these
hydraulics is called physically correct.

State Estimation. An important task in WDS is to estimate physically correct
states (h,d,q) of a WDS given initial conditions, like pressure heads hVr :=
(hv)v∈Vr at the reservoirs and the demands d = (dv)v∈Vc at the consumer nodes.
We will stick to the convention of subscripting a set to a vector if the vector is
limited to that set. Especially, hV = h,dVc = d and qE = q holds. The first DL
approach [2] for state estimation based on reservoir heads and consumer demands
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only is fully differentiable, unlike the SOTA hydraulic simulator EPANET [17].
This enables us to propose novel solutions for typical challenges in WDSs, which
we present in the next subsections.

3.1 Sparse to Dense Pressure Estimation

Definition 1 (Sparse-to-dense pressure estimation). Given a set of reser-
voir and sensor nodes Vr and Vs in a WDS, and observed pressure heads hVr∪Vs ,
sparse-to-dense pressure estimation aims at estimating the pressure heads h in
the whole network.

Baselines. This task was first approached by [1,10]. [10] train a spectral GCN
that requires sparse heads hVr∪Vs as inputs to obtain the heads h as an output.
The more recent work of [1] presents an improved but less generalizable GCN
that also requires pipe attributes in addition to the sparse pressures hVr∪Vs .

3.2 Sensor Placement

Definition 2 (Sensor placement). Given a set of consumer nodes Vc ⊂ V in
a WDS and a budget ns ∈ N, sensor placement aims at finding an optimal subset
of sensors Vs ⊂ Vc of cardinality |Vs| = ns.

Optimality hereby depends on the task at hand and usually is related to the idea
of deriving the behavior of the unobserved nodes Vc\Vs from the observable heads
hVs at the sensor nodes. A common approach is to find the sensor nodes Vs ⊂ Vc
that optimize subsequent detection algorithms such as reducing the amount of
undetected leakages in a WDS [18]. However, a disadvantage of such supervised
modeling is the necessity of the labels, which might be difficult to observe, and
specificity to the task.

Baselines. As a remedy, [9] propose a sensor placement methodology that solely
relies on heads h based on different demands d. They use hand-crafted and dis-
cretized derivatives to estimate the sensitivity of a node v ∈ V , measured by its
change in head hv depending on the change in roughness and pipe burst, and
integrate it into an OP. They solve the latter by applying the popular multicri-
terial genetic algorithm NSGA-II [3,6,7]. In addition, we implement two other
baselines: For the first, we choose sensors randomly. The second is motivated by
the spatial structure: We apply spectral graph clustering [8] based on the WDS
structure and pipe attributes and choose one sensor node per cluster randomly.

3.3 Network Rehabilitation

In general, network rehabilitation aims at modifying an already existing WDS
as a consequence of changing demands in the future. In close cooperation with
water-domain experts, we define the task of adapting diameters to changing
demands. The expected new demands cannot be satisfied by the WDS due to
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too small pipe diameters. Therefore, some pipes need to be replaced by pipes
with larger diameters while minimizing the changes and thus the required costs.
Moreover, new diameters lead to new pressure heads that need to satisfy lower
and upper pressure bounds for operational reasons.

Definition 3 (Diameter rehabilitation). Given a set of consumer nodes
Vc ⊂ V in a WDS, expected new demands di for i = 1, ..., n, which are higher
than previous ones, current pipe diameters δ = (δe)e∈E ∈ Rne

+ , and lower and
upper pressure bounds h−

Vc
,h+

Vc
∈ Rnc

+ on consumer nodes; diameter rehabilita-
tion aims at finding new pipe diameters δ = (δe)e∈E ∈ Rne

+ that obey the new
demands and cause new pressure heads hi that obey the pressure bounds, i.e.,
h−
v ≤ hiv ≤ h+

v for all i = 1, ..., n and v ∈ Vc.

Baselines. Currently, stochastic optimization algorithms are used to solve net-
work rehabilitation tasks [15]. We will compare our approach with the popular
multi-objective optimization scheme NSGA-II [3,6,7] mentioned before.

4 Background: PI-GCN Surrogate Model

Our work builds upon [2] that introduces a PI-GCN that is able to estimate
physically correct states (h̃, q̃, d̃) of a WDS given its heads hVr at reservoir
nodes and its demands d = dVc at consumer nodes (cf. State Estimation in
section 3). It consists of a trainable part and an integrative part which corrects
predicted values to obey hydraulic principles. It is trained based on the objective
function LPI-GCN = L(d, d̂) + ρL(d, d̃) + δL(q̂, q̃), where (d̂, q̂) and (d̃, q̃) are
the intermediate outputs from the GCN and the final outputs of the PI-GCN
model, respectively. A detailed description is given in appendix A.2. Depending
on the task to be solved, the inputs to the model are given or will be estimated.

5 Methodology

The main concept of this work is to leverage physics-informed gradients ac-
cessible through a fully differentiable surrogate model. This allows solving the
downstream tasks introduced in section 3 by using gradient information (or more
general, Jacobians) with respect to different parameters of the WDS.

In this work, we use the state estimation surrogate from [2] introduced in
section 4. More precisely, after training the PI-GCN for its optimal parameters
Θopt. as in [2], we fix these parameters Θopt. and introduce a new objective
f : Rnin → Rnout , x 7→ f(x), which formalizes the downstream task. Con-
secutively, we use the differentiability of the function f , which is induced by
the differentiability of the PI-GCN, to optimize the task-dependent parame-
ter x ∈ Rnin . A summary of the task-dependent network parameter x and the
function f per task is displayed in table 1. Additionally, the general concept of
leveraging gradients independent of WDSs is displayed in figure 1.



Go with the Flow 7

Table 1: Choices for the parameter x ∈ Rnin and function f : Rnin → Rnout .
Task Task-dep. parameter Objective function
Sparse-to-dense pressure estimation d eq. (1)
Sensor placement d h̃ = h̃(d)
Network rehabilitation δ eq. (9)

5.1 Sparse to Dense Pressure Estimation

Given the assumptions from definition 1, we utilize the differentiability of a
trained PI-GCN [2] to estimate the pressure heads h in the whole network.

Required data. To leverage this model, we assume the availability of prior or
realistic consumer demands di for i = 1, ..., n. Since the reservoir heads are
given by definition of the sparse-to-dense pressure estimation task, we do not
require further data to leverage this model.

Objective function. For this task, we choose the input demands d ∈ Rnc
+ as the

task-dependent network parameter. In order to find optimized demands d that
produce outputs (h̃, q̃, d̃) such that the heads h̃ suit the sparse heads hVr∪Vs on
reservoir and sensor nodes, we choose f(x) = f(d) to be a suitable loss function
with respect to which the demands d are optimized:

f(x) = f(d) = LS2D(d) =
∑

v∈Vr∪Vs

|h̃v(d)− hv|2. (1)

Minimizing this loss through back-propagation yields WDS states d 7→ (h̃, q̃, d̃)
such that h̃Vr∪Vs ≈ hVr∪Vs holds. The model’s final output h̃ is the solution to
the sparse-to-dense pressure estimation task as defined in definition 1.

Remark 1 (Availability of realistic demands). Our methodology is of high signif-
icance for other domain-related tasks: It does not only yield h̃ as the solution to
the sparse-to-dense pressure estimation task, but the whole WDS states (h̃, q̃, d̃).
Especially, we also obtain realistic demands d̃ and flows q̃, which are required
for other downstream tasks, such as sensor placement (subsection 5.2).

Initial parameters. In order to optimize the loss LS2D(d) with respect to (w.r.t.)
the demands d via back-propagation, we need to initialize a starting point d0 and
choose a reservoir and sensor head observation hVr∪Vs for a fixed set of sensors
Vs. However, as the sparse-to-dense pressure estimation task is ill-posed, different
initializations d0 can lead to different solutions h̃ still satisfying h̃Vr∪Vs = hVr∪Vs .

Therefore, in order to obtain statistically significant results, we will consider
different statistics over multiple solutions h̃li via Monte Carlo sampling. The
multiple solutions are obtained by different initializations dli based on multiple
sensor readings hlVr∪Vs for l = 1, ..., n0 and a suitably chosen subset {di | i ∈ Il}
of the demands di for i = 1, ..., n (with Il a subset of {1, ..., n} such that |Il| =
n1 < n holds). We give detailed descriptions in appendix B.1.
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Evaluation. We evaluate the solutions h̃li of the sparse-to-dense pressure estima-
tion task for l = 1, ..., n0 and i ∈ Il by measuring the mean relative absolute error
(MRAE) between these solutions and the true heads hlVr∪Vs over the reservoir
and sensor nodes, i.e.,

MRAES2D1 =
1

n0n1(nr + ns)

n0∑
l=1

∑
i∈Il

∑
v∈Vr∪Vs

|h̃liv − hlv|
hlv

. (2)

Additionally, we compare our solutions h̃li over all nodes to the solutions ĥli of
EPANET, representing the ground truth since real-world data is not available.
We obtain the latter by inputting the demands d̃li for l = 1, ..., n0 and i ∈ Il that
are also output of the model of [2] to EPANET. We record the MRAE between
these two solutions:

MRAES2D2 =
1

n0n1nn

n0∑
l=1

∑
i∈Il

∑
v∈V

|h̃liv − ĥliv|
ĥliv

. (3)

5.2 Sensor Placement

Given the assumptions from definition 2, we leverage information from the gra-
dients of a trained PI-GCN of [2] together with information theory to find an
optimal subset of sensors Vs ⊂ Vc.

Required data. To leverage this model, we assume the availability of realistic
reservoir heads and consumer demands hiVr and di for i = 1, ..., n, respectively.

Gradients. Intuitively, as sensors at nodes measure the heads, sensors are needed
at places where heads are sensitive to a change in demands in the WDS. There-
fore, for the sensor placement task, we again choose the task-dependent net-
work parameter as the input demands d ∈ Rnc

+ . Choosing the function f(x) =

(fv(d))v∈Vc = h̃Vc ∈ Rnc
+ as the heads on consumer nodes outputted by the

PI-GCN, the sensor placement relates to the question for which node v ∈ Vc,
the function fv changes most w.r.t. any change of some demands d. This,
in turn, translates to the question which function fv has the largest gradient
∇dfv(d) = (Jdf(d))v· over all consumer nodes v ∈ Vc.

As PI-GCN is non-linear, the Jacobians Jdf(d) might differ for different
input demands d, we therefore seek the subset of sensor nodes Vs that optimizes
the mean gradient norm over samples di for i = 1, ..., n and sensor nodes v ∈ Vs:{

argmax
Vs⊂Vc,|Vs|=ns

1

nns

n∑
i=1

∑
v∈Vs

||∇dfv(di)||2. (4)

Limitations of plain gradients. OP (4) comes with two drawbacks: First, the
optimization over subsets Vs ⊂ Vc with budget ns requires

(
nc
ns

)
calls of the
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loss functions, which in most real-world scenarios makes it computationally ex-
pensive. Second, the head distributions of neighboring nodes or nodes in close
proximity are often highly correlated. Therefore, neighboring nodes v, u ∈ Vc
usually have similar gradients ∇dfv(di) and ∇dfu(di) for any i ∈ {1, ..., n}.
Due to their correlation, however, the information provided by the two nodes is
redundant. In other words, the two nodes have high mutual information.

Mutual information and its approximation. We solve the second problem by si-
multaneously decreasing the mutual information between the random variables
Hv and Hu that are distributed according to the pressure heads at correspond-
ing nodes v, u ∈ Vc. Since these heads are real-valued, the mutual information
is formally defined by their continuous densities φv, φu, φvu (definition 6 in ap-
pendix A.3). In practice, the densities φv, φu, φvu are unknown. We solve this
problem by approximating them by step functions. The approach is based on
the idea of using normalized histograms with nb ∈ N bins Aj := [aj , aj+1) for
j = 0, ..., nb − 2 and Anb−1 = [anb−1, anb ]. The histograms are created based on
the Monte Carlo samples f(di) = h̃iVc = (h̃iv)v∈Vc for i = 1, ..., n.

As the focus of this work is not on the approximation of mutual informa-
tion, the definition and a detailed derivation of the approximation of the mutual
information of two continuously distributed random variables based on the ap-
proximated densities are given in appendix A.3. The main result of appendix
A.3 is the following theorem, which we will make use of in the experiments.

Theorem 1 (Approximated mutual information). In the setting of def-
inition 5 and 7 (definition of density approximation and mutual information,
respectively),

Î(Hv,Hu) =

nb−1∑
j1=0

nb−1∑
j2=0

pj1,j2(v, u) · log
( pj1,j2(v, u)

pj1(v) · pj2(u)

)
with

pj1,j2(v, u) =
1

n

n∑
i=1

1Aj1
×Aj2

(h̃iv, h̃iu),

pj(v) =
1

n

n∑
i=1

1Aj (h̃iv) holds.

Theorem 1 states that the approximated mutual information Î(Hv,Hu) of two
real-valued random variables with unknown densities equals the mutual infor-
mation of the discrete probability distribution given by the relative amount of
sampled observations h̃iVc for i = 1, ..., n in the discretized bins Aj and Aj1×Aj2

for j, j1, j2 ∈ {0, ..., nb −1}. The graph of these discretized densities corresponds
to nothing more but the normalized histograms obtained by the Monte Carlo
samples h̃iVc . Visualizations of such approximated densities will be presented in
subsection 6.2.

By theorem 3 in appendix A.3, the approximated mutual information con-
verges towards the true mutual information when the number of observed sam-
ples are chosen as n ≥ nb

2 and the number of bins nb goes to infinity.
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Final algorithm. A natural step is to extend OP (4) by the mean mutual infor-
mation, i.e.,{

argmax
Vs⊂Vc,|Vs|=ns

1

nns

n∑
i=1

∑
v∈Vs

||∇dfv(di)||2 −
1

ns

∑
v,u∈Vs

Î(Hv,Hu) (5)

between each two sensor nodes v, u ∈ Vs. However, testing this for each possible
subset Vs ⊂ Vc would also be computationally expensive. We solve this problem
by using the algorithm of [18] in conjunction with our per-node objectives. More
precisely, we define our objectives (cf. eq. (5)) per node v ∈ Vc as

L1(v) =
1

n

n∑
i=1

||∇dh̃iv||2, L2(v) =
1

ns

∑
u∈Vs

Î(Hv,Hu) (6)

instead of considering objectives per subset Vs ⊂ V . Consequently, given a hyper-
parameter λ ∈ [0, 1], Algorithm 1 iteratively optimizes OPs consisting of these
two normalized losses to iteratively add a node to the sensor node set Vs.

Algorithm 1 Sensor placement algorithm
In: Consumer nodes Vc, budget ns, sampled heads h̃iVc , hyperparameter λ ∈ [0, 1].
1: Vs = ∅
2: Vs ←− argmax

v∈Vc

L1(v)

3: while |Vs| < ns do
4: for v ∈ Vc \ Vs do
5: Compute L1(v),L2(v)
6: end for
7: Vs ←− argmax

v∈Vc\Vs

λ
L1(v)−minL1

maxL1
−minL1

− (1− λ)
L2(v)−minL2

maxL2
−minL2

8: end while
Out: Sensor nodes Vs.

In short, our method combines the idea of using derivatives as a measure of
sensitivity per node and mutual information as a measure of redundancy between
sensor nodes. Unlike other approaches, we have direct access to the derivatives
and do not depend on any downstream task. The algorithm’s output Vs is the
solution to the sensor placement task as defined in definition 2.

Evaluation. The quality of sensor placement is usually evaluated based on dif-
ferent downstream tasks in the WDS, such as leakage detection [18]. However, as
elaborated above, a strength of our approach is the independence on downstream
tasks. This is relevant in cases where the labels of the corresponding downstream
tasks are not reliable and might not correspond to the ground truth.

At the same time, without the availability of a downstream task, this makes
the evaluation of sensor placement itself a non-trivial task. In general, we expect
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the sensors to observe as much information as possible within the system, or
equivalently, not observing redundant information. Therefore, we propose the
mean mutual information over sensor nodes

ÎSP =
1

ns(ns − 1)

∑
v∈Vs

∑
u∈Vs\{v}

Î(Hv,Hu) (7)

as a downstream-task-independent evaluation measure (cf. theorem 1).
For a downstream-task-dependent evaluation measure, we observe that the

task of sparse-to-dense pressure estimation is based on a fixed set of sensor nodes
Vs. Therefore, we can use the solutions h̃li from the sparse-to-dense pressure
estimation task for l = 1, ..., n0 and i ∈ Il (cf. subsection 5.1) to evaluate different
sensor placements. For a fixed observation of reservoir and sensor heads hlVr∪Vs

for l ∈ {1, ..., n0} and for a fixed node v ∈ V , a better set of sensors Vs will lead
to solutions (h̃liv)i∈Il more similar to each other, or in other words, to a less
surprising underlying distribution. In this case, we aim to minimize its entropy.
We compute the entropy similar to how we approximate the mutual information
in this subsection. For more details, we refer to appendix B.2. Up to a constant,
the discrete entropy is given by

Ê(Hlv) = −
nb−1∑
j=0

pj(v) · log (pj(v))

with pj(v) as defined in theorem 1 (or theorem 5 in appendix A.3), but using
the new heads h̃li for i ∈ Il ⊂ {1, ..., n} instead of the heads h̃i for i = 1, ..., n.

Finally, to summarize the entropy, we report the mean ÊSP1 and ÊSP2 over
all reservoir and sensor observations l = 1, ..., n0 as well as reservoir and sensor
nodes Vr ∪ Vs, and all nodes V , respectively:

ÊSP1 =
1

n0nr

n0∑
l=1

∑
v∈Vr∪Vs

Ê(Hlv), ÊSP2 =
1

n0nn

n0∑
l=1

∑
v∈V

Ê(Hlv). (8)

5.3 Network Rehabilitation

So far, we demonstrated how the gradients of a surrogate model can be used to
optimize nodal parameters. In the context of network rehabilitation, we want to
optimize diameters, i.e. edge parameters that we can optimize with our method
as well. Given the assumptions from definition 3, we utilize the differentiability
of a trained PI-GCN of [2] to find new pipe diameters δ.

Required data. To leverage this model, we assume the availability of realistic
reservoir heads hiVr for i = 1, ..., n. Since the demands are given per definition
of the network rehabilitation task, we do not require further data.
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Objective function. Using the future demands di as inputs to the model, we
obtain heads hi := h̃i for i = 1, ..., n which should obey the given pressure con-
straints. The network rehabilitation task can then be formulated as the following
OP:

min
δ=(δe)e∈E∈Rne

+

∑
e∈E

|δe − δe| s.t. h̃iv ≥ h−
v , h̃iv ≤ h+

v ∀v ∈ Vc, i = 1, ..., n.

This problem can be solved by the before-mentioned genetic algorithm NSGA-II
[3,6,7], which will serve as a baseline.

A computationally less costly alternative can be obtained using our gradient-
based concept: As the heads h̃i are an output of the model, they depend on
the WDS’s diameters δ which we want to optimize. Therefore, this time, we
can choose the task-dependent network parameter to be these pipe diameters
δ = (δe)e∈E ∈ Rne

+ . Consecutively, to make use of the differentiability of PI-
GCN, we transform the OP into a single, (almost-everywhere) differentiable loss
function which we optimize w.r.t. to the pipe diameters δ, where α, β, γ ∈ [0, 1]
are hyperparameters:

f(x) = f(δ) = LNR(δ) = α · LPI-GCN(δ) + β ·
∑
e∈E

|δe − δe|

− γ · 1
n

n∑
i=1

∑
v∈V

(max{h+
v − h̃iv(δ), 0}+max{h̃iv(δ)− h−

v , 0}).
(9)

Finally, after having trained the diameters δ, the optimized diameters correspond
to the solution of the network rehabilitation task, delivering optimal changes
required for each pipe in the WDS in order to satisfy future demands and pressure
constraints as defined in definition 3.

Initial parameters. In order to optimize the loss LNR(δ) w.r.t. the diameter δ
via back-propagation, we need to initialize a starting point δ0. In this case, we
simply choose the old diameters δ0 = δ. They will not satisfy the pressure head
constraints, leading to a large loss LNR(δ) that will be optimized iteratively.

Evaluation. We evaluate the solutions δ of the network rehabilitation task by
measuring the absolute cost (AC) and the mean absolute cost (MAC) between
these solutions and the initial diameters δ over the edges, approximated by

ACNR =
∑
e∈E

|δe − δe|, MACNR =
1

ne

∑
e∈E

|δe − δe|. (10)

6 Experiments

We conduct experiments on the same five WDS datasets as [2] do. Details of
those can be found in appendix C.1. As we solve all tasks from section 3 utilizing
trained models from [2], details on the training can be found in appendix C.2.
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Table 2: MRAES2D1 (cf. eq. (2)) and MRAES2D2 (cf. eq. (3)) of the sparse-to-
dense pressure estimation task on different WDSs.

Method Hanoi Fossolo Pescara Area-C Zhi Jiang
MRAES2D1

mGCN 10.82 ± 2.33 0.62 ± 0.06 3.61 ± 0.83 1.82 ± 0.41 13.64 ± 0.49
ChebNet 1.75 ± 0.89 0.05 ± 0.03 0.28 ± 0.33 0.10 ± 0.09 0.21 ± 0.30
Ours 0.10 ± 0.15 0.00 ± 0.00 0.16 ± 0.07 0.03 ± 0.04 0.17 ± 0.20

MRAES2D2

mGCN 7.68 ± 1.97 0.42 ± 0.02 2.63 ± 0.88 1.63 ± 0.41 12.08 ± 1.26
ChebNet 1.38 ± 0.73 0.02 ± 0.01 0.66 ± 0.23 0.09 ± 0.08 0.25 ± 0.35
Ours 0.14 ± 0.16 0.01 ± 0.00 0.23 ± 0.19 0.03 ± 0.04 0.17 ± 0.20

6.1 Sparse to Dense Pressure Estimation

Per WDS, we sample n0 · n1 = 100 · 48 = 480 initialized demands d0 according
to subsection 5.1. They correspond to n0 = 100 different demands per n1 = 48
different reservoir and sensor observations. Table 2 shows the MRAES2D1 (cf. eq.
(2)) and MRAES2D2 (cf. eq. (3)) for different WDSs. The mGCN baseline model
from [1] does not generalize well to unseen WDS attributes since it uses these
pipe features as input. The ChebNet GCN model from [10] only uses sparse
pressures as input and performs better than mGCN. We obtain significantly
better results as compared to the baseline methods on all networks and both in
comparison to the true sensor observations (MRAES2D1) and in comparison to
the results of EPANET (MRAES2D2).
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Fig. 2: Visualization of mean gradient norms in accordance with L1 and the
approximated densities of head distributions that serve as a basis for L2.
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6.2 Sensor Placement

We apply algorithm 1 to all five WDSs and for different configurations of the
hyperparameter λ ∈ [0, 1]. A large λ puts more emphasis on L1, i.e. the gradients
of the nodes, while a smaller λ puts more emphasis on L2, i.e., the mutual
information between sensor nodes (cf. eq. (6)). To get an intuition for the two
loss functions, figure 2 displays the mean gradient norms in accordance with L1

and the approximated densities of head distributions that serve as a basis for L2

(cf. paragraph Mutual information and its approximation in subsection 5.2) for
the Zhi Jiang and Pescara WDSs.

Consequently, figure 3 displays different sensor configurations based on dif-
ferent such hyperparameters in the WDS Zhi Jiang. As described in subsection
5.2, λ = 1 that results in focusing on the gradients only leads to a cluster of sen-
sors, located in an area where the largest gradients appear. In contrast, λ = 0
causes sensor placement according to their mutual information only (except for
the first sensor, which is picked according to its gradient, cf. algorithm 1), which
separates them all over the network. Typically, the mutual information between
nodes close to a reservoir and nodes that are not close is low, hence some sensor
nodes are placed close to a reservoir. Hyperparameters λ ∈ (0, 1) lead to a so-
lution that distributes the sensors according to their mutual information while
considering the gradient sizes.

Fig. 3: Visualization of different sensor configurations based on different hyper-
parameters in the WDS Zhi Jiang.
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Table 3: Mean mutual information ÎSP (cf. eq. (7)) for the sensor placement task
for different sensor configurations in dependence of different hyperparameter λ
and on different WDSs. Lowest values are highlighted in bold and second lowest
in gray.
Method Hanoi Fossolo Pescara Area-C Zhi Jiang
Random SP 1.99 ± 0.00 1.62 ± 0.00 1.64 ± 0.50 2.61 ± 0.10 2.76 ± 0.16
Clustering SP 2.59 ± 0.00 1.09 ± 0.00 1.73 ± 0.30 2.58 ± 0.10 2.74 ± 0.15
NSGA-II [9] 2.39 ± 0.00 1.97 ± 0.00 1.84 ± 0.24 2.56 ± 0.08 2.67 ± 0.10
Ours λ = 0.00 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.20 2.30 ± 0.12 2.61 ± 0.06
Ours λ = 0.125 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.20 2.36 ± 0.12 2.61 ± 0.06
Ours λ = 0.25 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.20 2.36 ± 0.12 2.64 ± 0.07
Ours λ = 0.50 2.54 ± 0.00 1.97 ± 0.00 0.85 ± 0.93 2.65 ± 0.09 2.68 ± 0.07
Ours λ = 0.75 2.54 ± 0.00 1.97 ± 0.00 2.79 ± 0.17 2.67 ± 0.08 2.73 ± 0.13
Ours λ = 1.00 2.54 ± 0.00 2.14 ± 0.00 2.91 ± 0.08 3.24 ± 0.00 3.25 ± 0.02

Table 3 shows the downstream task-independent mean mutual information ÎSP
(cf. eq. (7)) per WDS and hyperparameter λ. It can be seen that the sensor
configurations with a smaller λ cause smaller mutual information, meaning that
they observe more information from the network. For smaller λ, we also obtain
better results as compared to the baseline methods.

Additionally, table 10 in appendix C.3 shows the downstream task-dependent
mean entropy ÊSP1 and ÊSP2 (cf. eq. (8)) by WDS and per hyperparameter λ.
Similar to the mutual information, the entropy ÊSP1 on reservoir and sensor
nodes is lower for smaller λ as compared to larger λ, and smaller than the
baselines in four out of five cases. The method with the lowest entropy ÊSP2 on
all nodes differs among different WDSs and emphasizes that the evaluation of
sensor placement on only one downstream task is not enough. Instead, future
work should focus on the evaluation on several downstream tasks in order to
investigate the average performance of sensor placement over all these tasks.

6.3 Network Rehabilitation

For each WDS, we consider multiple future demand collections and report the
mean metrics as presented in subsection 5.3 over these collections. Table 4 shows
the (mean) absolute cost ACNR and MACNR (cf. eq. (10)) per WDS, which
demonstrates the potential benefits of our approach as compared to the baseline.

Additionally, figure 4 visualizes the percentage change of diameters in re-
sponse to a change in demands in the WDS Pescara. At nodes close to the
increased demands, the pipe diameters get increased the most, whereas the di-
ameters close to the leftmost reservoir remain mostly unchanged. From the per-
spective of construction cost this is generally beneficial, although actual cost
calculations include many more parameters and considerations. Extending our
loss function by such a term can be an interesting avenue for future research.
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Table 4: (Mean) absolute error ACNR and MACNR (cf. eq. 10) for the network
rehabilitation task on different WDSs.

Method Hanoi Fossolo Pescara Area-C Zhi Jiang
ACNR

NSGA-II (NR) 365.6 801.8 1,596.0 233.6 121.3
Ours 243.2 468.4 794.3 135.6 90.1

MACNR

NSGA-II (NR) 10.8 13.8 16.1 2.1 0.7
Ours 7.1 8.1 8.0 1.2 0.5

Fig. 4: Rehabilitation of the WDS Pescara. Black nodes experience a demand
increase that leads to pressure dropping below the minimum pressure constraint
(h−

v ). Our rehabilitation method increases the pipe diameters (colored lines) to
allow for the additional flow required to satisfy h−

v .

7 Conclusion and Future Work

In this work, we use the latest improvement in state estimation in WDSs us-
ing PI-GCN surrogate models as a starting point to solve several water-related
downstream tasks such as sparse-to-dense pressure estimation, sensor placement,
and network rehabilitation. This list is non-exhaustive and only demonstrates
the possibilities that come with the differentiable state estimator presented by
[2]. Moreover, this methodology extends to other differentiable surrogate models
and is flexible w.r.t. available state information, allowing the backward pass of
the surrogate model to be used as a digital twin. For example, sparse-to-dense
pressure estimation requires the knowledge of prior consumer demands, which
experts can usually provide. Meanwhile, sensor placement requires the knowl-
edge of realistic reservoir heads and consumer demands, which can be obtained
by the former method (cf. remark 1). Lastly, network rehabilitation requires
only knowledge of realistic reservoir heads, which is reasonable to assume for
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most situations. This allows immediate application of our solutions in practice,
emphasizing the significance of our work to the water domain.

Limitations of this work are tightly coupled to the limitations of the PI-GCNs
used for optimization. Scaling and the ability of our method to generalize are
upper-bounded by the scaling of the surrogate model. However, our methods
work with any differentiable physics-informed model and will benefit from fur-
ther development of such. Moreover, all of our proposed methods are adaptable
and can be improved given more information and data from the domain experts.
For example, evaluating our sensor placement method on real-world data and
different downstream tasks is an interesting avenue for future research. Incor-
porating an elaborate cost function into the task of network rehabilitation can
lead to more structured results, as required by water experts.
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