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Abstract. Deep neural networks, particularly Transformers, have been widely
adopted for predicting the functional properties of proteins. In this work, we focus
on exploring whether Protein Transformers can capture biological intelligence
among protein sequences. To achieve our goal, we first introduce a protein func-
tion dataset, namely Protein-FN, providing over 9000 protein data with meaning-
ful labels. Second, we devise a new Transformer architecture, namely Sequence
Protein Transformers (SPT), for computationally efficient protein function pre-
dictions. Third, we develop a novel Explainable Artificial Intelligence (XAI)
technique called Sequence Score, which can efficiently interpret the decision-
making processes of protein models, thereby overcoming the difficulty of deci-
phering biological intelligence bided in Protein Transformers. Remarkably, even
our smallest SPT-Tiny model, which contains only 5.4M parameters, demon-
strates impressive predictive accuracy, achieving 94.3% on the Antibiotic Re-
sistance (AR) dataset and 99.6% on the Protein-FN dataset, all accomplished
by training from scratch. Besides, our Sequence Score technique helps reveal
that our SPT models can discover several meaningful patterns underlying the se-
quence structures of protein data, with these patterns aligning closely with the
domain knowledge in the biology community. We have officially released our
Protein-FN dataset on Hugging Face Datasets https://huggingface.co/
datasets/Protein-FN/Protein-FN. Our code is available at https:
//github.com/fudong03/BioIntelligence.

Keywords: Protein Transformers · Explainable AI · AI for Science.

1 Introduction

Proteins serve as the architects of life, orchestrating an extraordinary range of func-
tions that bring vitality and complexity to the biological world. Their roles encompass
everything from catalyzing critical biochemical reactions to facilitating precise cellu-
lar communication. Decoding the intricate relationship between a protein’s sequence,
structure, and functional properties holds the key to unraveling these life-sustaining
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mysteries. This endeavor is more than a scientific pursuit; it is a profound exploration
of the fundamental processes that define life itself.

Since the intricate patterns of protein sequences are analogous to the syntactic and
semantic structures found in human languages, existing state-of-the-art Protein Lan-
guage Models (PLMs) [55,59,52,56,38,24,6,49,32,34] harness the advanced language
models [67,20] to decipher how the intricate structures of protein sequences dictate
their functional properties. However, these methods require pre-training on millions or
even billions of protein sequences for satisfactory performance. The excessive compu-
tational demands of self-supervised pre-training render PLMs unattainable for resource-
constrained research groups.

In this work, we develop a computationally efficient Transformer architecture, namely
Sequence Protein Transformer (SPT), for unraveling the complex interplay between a
protein’s sequence and its functional property, by leveraging the Transformer architec-
tures in the vision domain [21,66,45,30]. Specifically, our work focuses on answering
the following research question: Can our Protein Transformers learn biological intelli-
gence underlined in protein sequences?

To help answer this question, we first introduce a new protein function dataset called
Protein-FN, offering over 9000 protein data, with each containing the protein’s 1D
amino acid sequences, 3D structures, as well as its functional properties annotated by bi-
ological experts of our team. Second, different from PLMs, where the protein sequence
is naturally encoded by the letter abbreviation of amino acids (e.g., with letter “A” for
representing the amino acid “Alanine”), how to encode the protein data for new Trans-
former architecture remains unexplored, making the applications of existing Vision
Transformers (ViT) variants [21,66,45,70,4,25,9,7,44,42,30,41,43,16] for protein func-
tion predictions technically infeasible. We develop the Sequence Protein Transformer
(SPT) model to address this issue. Featuring an innovative embedding mechanism tai-
lored for protein data, our SPT model excels in predicting the functional properties of
proteins. Remarkably, it can achieve a superior prediction performance without relying
on computationally extensive self-supervised pre-training. Third, Explainable Artifi-
cial Intelligence (XAI) techniques [61,28,27,63,8,36,23], especially those Transformer-
specific solutions [1,68,9,12,11,71], can offer insightful perspectives into the decision-
making mechanisms of deep neural networks (DNNs), making them suitable for deci-
phering biological intelligence resided in Protein Transformers. However, current XAI
approaches face significant challenges when handling protein sequences that vary in the
number of amino acids. They either fail to accommodate these variances or incur sub-
stantial computational burdens, e.g., O(L2 ·P 4) for Attention Flow [1], where L and P
represent the model depth and the protein sequence length, respectively. Consequently,
these methods prove impractical for analyzing the biological insight within protein se-
quences. In this study, we introduce the Sequence Score, a novel gradient-based XAI ap-
proach, tailored specifically to manage protein sequences of varying amino acid lengths.
It advances existing Transformer-specific XAI solutions through its computational effi-
ciency, which scales linearly with protein sequence length. This advancement facilitates
a more efficient and effective interpretation of the biological intelligence bided in Pro-
tein Transformers.
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Fig. 1: Illustration of two key conserved motifs, i.e., “His94-His96-His119” and “Ser29-
His107-Tyr194”, for the Carbonic Anhydrases, a vital enzyme class. Here, “His” (His-
tidine), “Ser” (Serine), and “Tyr” (Tyrosine) are the amino acids forming these motifs,
abbreviated as “H”, “S”, and “Y”, respectively. The residual numbers signify the posi-
tions of amino acids within the protein sequence. In the upper section, two figures, along
with a corresponding equation, utilize the protein “6QN0” as an example to visualize
the three-dimensional structures of the motifs and elucidate their roles in catalyzing the
reaction. A heatmap in the lower section displays the importance scores generated by
our approach, with the motifs “His94-His96-His119” and the “Ser29-His107-Tyr194”
distinctly marked with red triangles and orange stars, respectively.

Our Sequence Score technique has successfully identified several meaningful bi-
ological patterns, showcasing its prowess in revealing the biological intelligence in-
grained in Protein Transformers. For example, Carbonic Anhydrases (CAs) are a class
of enzymes vital to many biological processes, such as respiration and acid-base bal-
ance in organisms. Central to the functionality of these enzymes are two highly con-
served motifs: “His94-His96-His119” and “Ser29-His107-Tyr194”. The “His94-His96-
His119” pattern, known as the zinc-binding motif, plays a critical role in the catalytic
activity of CAs. These histidine residues coordinate with a zinc ion, which is essential
for the hydration of carbon dioxide, to realize a primary reaction catalyzed by CAs.
This interaction is fundamental to maintain the enzyme’s active site structure and its
catalytic efficiency. On the other hand, the “Ser29-His107-Tyr194” motif is crucial for
substrate specificity and the orientation of water molecules in the active site. This motif
contributes to the positioning and polarization of water molecules, facilitating the trans-
fer of protons and hence supporting the enzyme’s catalytic mechanism. By applying our
Sequence Score technique to interpret the prediction results of our SPT models, we dis-
cover that our models can capture the importance of the “His94-His96-His119” and the
“Ser29-His107-Tyr194” motifs for the functional properties of CAs. Figure 1 (see its
heatmap) shows the importance scores for the three proteins of the CA class, where our
Sequence Score technique assigns very high scores on both the “His94-His96-His119”
(marked by red triangles) and the “Ser29-His107-Tyr194” (marked by orange stars)
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patterns. This exhibits that our SPT models have captured biological intelligence un-
derlined in the protein sequence for predicting the functional properties of proteins.

2 Related Work

Protein Language Models. Protein Language Models (PLMs) have demonstrated re-
markable performance across a spectrum of biological tasks. AlphaFold [38] is a well-
known study in PLMs, and it uses multiple sequence alignment to predict the 3D struc-
ture of proteins. Recently, PLMs are also developed for predicting the functional prop-
erties of proteins, including single sequence-based methods, i.e., TAPE [55], ESM-
1b [59], and ESM-1v [52], multiple sequence alignment-based approaches, i.e., MSA
Transformer [56], and others [26,58,2,22,6,57,24,49,32,34]. Despite their effectiveness,
PLMs require extensive pre-training on millions of protein data for satisfactory perfor-
mance, making them computationally inaccessible for resource-limited groups. Dif-
ferent from prior studies, our SPT model can achieve superb performance in protein
function predictions by training from scratch. Therefore, it advances previous PLMs
by significantly reducing the computational overhead. We hope that the exceptionally
computational efficiency of our SPT model can shed light on future work in adopting
its model architecture for protein-relevant tasks.

XAI Techniques. Explainable Artificial Intelligence (XAI) methods provide valuable
insights into the decision-making processes of deep neural networks (DNNs), making
them well-suited for interpreting biological intelligence underlined in Protein Trans-
formers. The mainstream XAI techniques targeting DNNs can be roughly grouped into
two categories, i.e., XAI for CNNs and XAI for Transformers. The former category is
popularized by Grad-CAM [61], which weights the activation maps by global-average-
pooled gradients flowing into the last convolutional layer. Subsequently, saliency-based
[18,50,62], activation-based [73,39], perturbation-based [28,27,48,54,72], and gradient-
based [63,8,64,36,23,10,29,37,69,19,15] XAI techniques are developed for deciphering
the decision-making processes of CNNs. Despite their popularity, these methods face
challenges when applied to Protein Transformers due to the structural differences be-
tween Transformers [67] and CNNs. Recently, Attention Rollout and Attention Flow [1],
which map information flow using a Directed Acyclic Graph, has been proposed to in-
terpret the decision-making processes in Transformer architectures, with its success in-
spiring a volume of Transformer-specific XAI techniques [14,68,71,9,12,11,13]. How-
ever, existing XAI solutions for Protein Transformers typically involve substantial com-
putational demands, e.g., O(L2 · P 4) for Attention Flow, with L and P respectively
representing the depth of the model and the length of the protein sequence, making
them infeasible to decipher the biological insight underlined in long protein sequences.
This stems from their requirement to aggregate information from attention weights
throughout every layer of the Transformer Encoders. In sharp contrast, our Sequence
Score technique, while classified in the second category, revolutionizes the interpreta-
tion of decision-making processes in Transformers. This achievement stems from its
linear complexity with respect to the protein sequence length. Therefore, our solution
significantly advances previous Transformer-specific XAI techniques in computational
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Table 1: Overview of our Protein-FN dataset

Datasets Samples Classes

Protease Kinase Receptor Carbonic Anhydrase Phosphatase Isomerase

Training 7211 2439 2003 1172 972 343 282
Test 1803 628 499 265 234 89 88

Total 9014 3067 2502 1437 1206 431 371

efficiency, making it well-suited for interpreting the biological intelligence resided in
Protein Transformers.

3 The Protein-FN Dataset

We introduce our curated protein function dataset, namely Protein-FN, designed specif-
ically for such biological tasks as protein function prediction [59,52], motif identifica-
tion and discovery [40], etc. Table 1 presents the details of our ProFunc-9K dataset. This
dataset, sourced from the Protein Data Bank (PDB) [53], provides diverse 1D amino
acid sequences, 3D protein structures, functional properties of 9014 proteins (7211 and
1803 samples for the training and the test datasets, respectively). These proteins, af-
ter carefully examined by biological experts in our team, fall into six categories, i.e.,
protease, kinase, receptor, carbonic anhydrase, phosphatase, and isomerase. Notably,
kinases, phosphatases, proteases, and receptors play essential roles in signal transduc-
tion. Most drugs act on proteins involved in signal transduction. Isomerases and car-
bonic anhydrases are two enzymes that are not directly involved in signal transduction
pathways, but they catalyze critical reactions.

4 Our Approaches

To unveil the biological intelligence embedded within Protein Transformers, we have
developed two key innovations: i) the Sequence Protein Transformer (SPT), designed
for the efficient and effective prediction of protein functions, and ii) the Sequence Score,
aimed at efficiently interpreting the decision-making processes of Protein Transformers.

4.1 Problem Statement

Given a protein dataset consisting of N samples, denoted as X = {(xi, yi) | i ∈
1, 2, · · · , N}, each sample x ∈ RP×1 represents the primary structure (i.e., the se-
quence of amino acids) of the protein. Here, P denotes the sequence length, and y ∈ [C]
indicates the specific function of the protein, e.g., protease, kinase, receptor, etc. No-
tably, the length of the primary structure of proteins, i.e., the number of amino acids in
a polypeptide chain, can vary widely in the real scenario. In this work, our goals are
twofold. First, we aim to develop a simple, computation-efficient Protein Transformer
(PT) fθ : RP×1 → [C] for accurate protein function predictions, where θ denotes the
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Fig. 2: The architecture of our Sequence Protein Transformers (SPT) model.

PT’s hyperparameters. Second, we plan to propose a novel Explainable Artificial Intelli-
gence (XAI) technique, which can efficiently interpret long protein sequences. As such,
given a well-trained PT model fθ, the proposed XAI technique g : RP×1 → RP×1 can
decode its biological intelligence by deciphering its decision-making process.

4.2 Our Sequence Protein Transformer

To achieve our goal, we propose a simple, computation-efficient Transformer architec-
ture, namely Sequence Protein Transformer (SPT), for predicting the functional prop-
erties of proteins. It can achieve superb prediction performance without relying on
computation-intensive self-supervised pre-training.

Figure 2 shows an overview of our model architecture. We start by extracting the
primary structure x ∈ RP×1, i.e., a sequence of amino acids, from a protein (e.g.,
“1AU2”). Then, the one-hot encoding is utilized to encode the sequence of amino acids.
As such, each amino acid is represented by a binary vector of length d. Note that we
set d = 20 in this study as there are 20 types of amino acids. Next, a linear projection
layer Proj: RP×d → RP×D is used to project the low dimentional one-hot embedding
Eoh ∈ RP×d to the high dimentional amino acid embedding Eami ∈ RP×D, i.e.,

Eami = Proj (OH(x)) . (1)

Here, D is the hidden size of the Transformer Encoder, and OH represents one-hot en-
coding. Similar to prior Transformer variants [21,66,45], our model prepends a learn-
able classification token Ecls ∈ R1×D to the embedding sequence. As such, the input
sequence of the Transformer Encoder can be obtained by summing up the amino acid
embedding and the positional embedding Epos ∈ R(P+1)×D. Finally, the head of the
output sequence z ∈ R1×D, encoded by a stack of Transformer blocks, is fed to a linear
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classifier for protein function predictions, i.e., ŷ = W Tz + b, with W and b respec-
tively representing the weights and the bias of the classifier, and ŷ ∈ [C] indicating the
predicted protein function.

The rightmost chart of Figure 2 depicts the architecture of the Transformer En-
coder, where each Transformer block consists of a Multi-head Self-Attention (MSA)
block [67] and an MLP block. Each of the two blocks includes a Layer Normaliza-
tion [5] before the block and the residual connection [31] after the block. Similar to
previous studies [21,45,70,66], the MLP block is a two-layer neural network with a
GELU non-linearity. Mathematically, our Transformer Encoder can be expressed as be-
low,

E0 = [Ecls;E
1
ami;E

2
ami; · · · ;EP

ami] +Epos,

E′
ℓ = MSA (Norm(Eℓ−1)) +Eℓ−1,

Eℓ = MLP (Norm(E′
ℓ)) +E′

ℓ,

z = Norm(E0
L).

(2)

Here, ℓ = 1, 2, · · · , L indicates the ℓ-th block of Transformer Encoder. Different from
prior Transformer variants, our Transformer Encoder has a flexible number of posi-
tional embeddings, enabling the SPT to address the primary structure of proteins, whose
sequence lengths vary significantly. Inspired by the Multi-head Self-Attention (MSA)
mechnism [67], our MSA block here is devised to capture the global protein represen-
tation by learning the dependency among a sequence of amino acids, i.e.,

MSA(Q,K,V ) = Concat(head1, · · · , headh)W O,

headi = Softmax(QiK
T
i /

√
dk)Vi,

where Qi = QWQ
i , Ki = KWK

i , Vi = V W V
i .

(3)

Here, Concat indicates the operation of feature concatenation, h is the number of atten-
tion heads, and dk = D/h represents the dimension for queries, keys, and values of the
Attention mechanism. Like those in prior studies [67,21,60,41], WQ

i ∈ RD×dk ,WK
i ∈

RD×dk ,W V
i ∈ RD×dk , and WO ∈ RD×D are four learnable projection matrices.

4.3 Our Sequence Score

Interpreting the biological intelligence encoded in Protein Transformers (PT) demands
an XAI technique capable of handling long protein sequences composed of a substantial
number of amino acids. Previous Transformer-specific XAI methods [1,68,71,12,11]
have proven effective in elucidating the decision-making processes of various Trans-
former models [21,45]. However, their use is predominantly limited to analyzing shorter
token sequences, due to their substantial computational overhead involved in aggregat-
ing attention weights across all layers of Transformer Encoders. This limitation is par-
ticularly problematic for interpreting Protein Transformers (PTs), which analyze amino
acid sequences that often feature extensive lengths, thus obstructing their potential to
unlock the decision-making processes within PTs. To address this challenge, we intro-
duce the Sequence Score, an innovative XAI method characterized by its time com-
plexity growing linearly with the protein sequence. This feature renders it exception-
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ally suitable for decoding the biological intelligence usually embedded within protein
sequences.

Given a decision of interest (e.g., the protease class), our Sequence Score, with re-
spect to the gradients of a well-trained PT model, can generate a sequence of important
scores, based on the primary structure of proteins. Next, we introduce the details of
our Sequence Score technique. Consider a decision interest of class c ∈ [C], our Se-
quence Score technique first calculates the gradient of the logit for the class c, with
respect to feature maps A ∈ RP×D of any Transformer block (e.g., the last block of
Transformer Encoders), i.e., ∂yc

∂A . Here, the term “logit” refers to the classification score
before being passed through a sigmoid (or softmax) function to produce a probability
distribution over the classes. Then, the neuron importance weight wc ∈ RD, is obtained
by performing global average pooling over the sequence length (indexed by j), i.e.,

wc =
1

P

P∑
j=1

∂yc

∂Aj
. (4)

Next, we arrive at the importance score for the j-th amino acid Sc
j by summing up a

weighted combination of the feature map activations A, i.e.,

Sc
j =

D∑
k=1

wc
kA

k, j = 1, 2, · · · , P. (5)

Similar to prior XAI techniques [61,10], attention is paid solely to features that posi-
tively affect the prediction of interest. In other words, the negative importance scores
should be dropped. Meanwhile, our preliminary experimental results indicate that if the
primary structure of proteins is too long, the importance score for each amino acid will
be small (i.e., < 0.001). We develop a novel trick to address the two issues simultane-
ously, expressed as follows,

Sc
j =

max(0, Sc
j )

max(Sc)
, j = 1, 2, · · · , P. (6)

Here, the numerator and the denominator of Eq. (6) serve for dropping the negative
scores and normalizing the positive scores, respectively. As such, our Sequence Score
technique can interpret biological intelligence underlined in PT models by revealing
their decision-making processes when predicting the functional properties of proteins.
It is noteworthy that the computation of our Sequence Score technique achieves lin-
ear time complexity, denoted as O(D · P ), where D represents the hidden dimension
of the Transformer Encoders and P denotes the length of the protein sequences. This
efficiency underscores its suitability for analyzing the intricate biological intelligence
embedded in protein structures.

5 Experiments and Results

5.1 Experimental Settings

Datasets. We conduct experiments across three benchmarks: i) Protein-FN, having
9, 014 protein data with their 1D amino acid sequences, 3D protein structures, and func-
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Table 2: Model variants of our Sequence Protein Transformers (SPT), with their model
details listed below

Model Layers Hidden Size D Head MLP Size Parameters

SPT-Tiny 12 192 4 768 5.4M
SPT-Small 12 384 6 1536 21.5M
SPT-Base 12 768 12 3072 85.5M

tional properties; ii) Antibiotic Resistance (AR) [51], containing 3, 416 protein sam-
ples, each associated with its antibiotic type; and iii) Metal Ion Binding (MIB) [33],
offering 7, 332 single protein sequences, collected from PDB with annotation as metal
ion binding.
Model Variants. We set our Sequence Protein Transformers (SPT) configurations based
on the Transformer settings reported in previous studies [21,66]. Three model variants,
i.e., SPT-Tiny, SPT-Small, and SPT-Base, are developed, tailored for protein function
predictions across different scales of data. Table 2 presents the model details of those
SPT variants. Specifically, all SPT variants are composed of 12 layers of Transformer
blocks, with their hidden sizes set to 192, 384, and 768, and their numbers of heads set
to 4, 6, and 12, respectively for the SPT-Tiny, the SPT-Small, and the SPT-Base models.
The MLP sizes are fixed to four times of their corresponding hidden sizes.
Compared Approaches. As our SPT models belong to the single sequence-based Pro-
tein Transformers, we consider three prominent single sequence-based Protein Lan-
guage Models (PLMs), i.e., TAPE [55], ESM-1b [59], and ESM-1v [52], for baseline
comparison. The hyperparameters for PLM counterparts, if not specified, are set as re-
ported in their original literature.
Hyperparamters. In sharp contrast to prior PLMs [55,59,52], our SPT models do
not require computationally extensive self-supervised pre-training. Instead, they are
all trained from scratch by employing the AdamW [47] optimizer with β1 = 0.9,
β2 = 0.999, and a weight decay of 0.05. The training epochs for SPT variants are
set to 100, including 5 warmup epochs. We utilize the cosine decay learning rate sched-
ule [46], with a base learning rate of 1e− 3 and a layer-wise learning rate decay [17] of
0.75. Following [30], we also apply the label smoothing [65] and the path dropping [35],
with their values both set to 0.1. As such, our SPT models are superb computation-
efficient. All experiments were conducted on a lab computer with an RTX 4090 GPU,
having its memory usage consistently ≤ 9.6%.

5.2 Comparisons to Protein Language Models

Experiments on the Protein-FN Dataset. We conducted experiments on the Protein-
FN dataset to evaluate the performance of our SPT models. Three state-of-the-art PLMs
mentioned in Section 5.1 are taken into account as baselines for comparison. Table 3
presents experimental results, where two notations, i.e., “pre-trained” and “scratch”, re-
spectively indicate the counterparts with and without the self-supervised pre-training5.

5 ESM-1v (scratch) is the same as ESM-1b (scratch) as they use the same structure but are
pre-trained on different datasets.
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Table 3: Comparisons to state-of-the-art PLM counterparts on the Protein-FN dataset,
where the last two columns respectively report the error rates on the training and the
test sets, with the best results shown in bold

Methods Parameters GFLOPs Traning Error (%) Test Error (%)

TAPE (scratch) 92.4M 21.4 2.39 11.59
TAPE (pre-trained) 0.34 0.55

ESM-1b (scratch) 650M 160 1.11 11.73
ESM-1b (pre-trained) 1.33 1.86

ESM-1v (pre-trained) 650M 160 0.55 0.58

SPT-Tiny 5.4M 1.4 0.39 0.41
SPT-Small 21.5M 5.1 0.22 0.38
SPT-Base 85.5M 19.4 0.11 0.31

Here, we consider both computational complexity and model performance. The former
is measured by the number of parameters and GFLOPs6 calculated under a sequence of
amino acids, while the latter is characterized by the top-1 error rates on the training and
the test sets.

We have three observations. First, our SPT-Tiny model (containing only 5.4M pa-
rameters) achieves an exceptionally low test set error rate of 0.41%, outperforming all
competitors, in terms of both computational efficiency and prediction accuracy. More-
over, its impressive capabilities in protein function predictions are achieved with the
GFLOPs value of just 1.4. This represents a computational demand at least 15.2×
lower than that of its competitors, underscoring the model’s remarkable balance be-
tween efficiency and accuracy. Second, our SPT-Base model achieves the best error rate
of 0.11% and 0.31% respectively on the training and the test sets. This notable perfor-
mance underscores a key finding: scaling up our model’s size corresponds to a marked
enhancement in its capabilities. Third, training PLMs from scratch may lead to substan-
tial overfitting. This issue is evident in the significant discrepancies observed between
training and test set performance outcomes, e.g., the error rate of 2.39% v.s. 11.59% for
the TAPE (scratch) model and of 1.11% v.s. 11.73% for the ESM-1b (scratch) model. In
sharp contrast, our SPT models, despite trained from scratch, show excellent generaliza-
tion abilities. This can be attributed to our SPT’s design in the amino acid embedding,
which lifts the requirement of self-supervised pre-training to learn meaningful protein
representations.

Experiments on the AR and MIB Datasets. Here, we conducted experiments on the
two widely-used benchmarks, i.e., Antibiotic Resistance (AR) and Metal Ion Binding
(MIB), for further exhibiting the effectiveness of our SPT models for protein function
predictions. Table 4 presents experimental results. It is observed that our SPT-Base
model beats all PLM counterparts on both datasets, with the best test error rates of
4.3% and 32.1% on the AR and MIB datasets. In addition, our SPT models stand out
for their computational efficiency. Taking the the AR dataset for instance, our SPT-Tiny

6 GFLOPs, or Giga Floating Point Operations, is a metric that quantifies a model’s compu-
tational complexity. It indicates the number of billion floating-point operations needed by a
model per second.
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Table 4: Overall comparisons to PLMs on the AR and MIB datasets, with best results
shown in bold

Methods AR MIB

GFLOPs Test Error (%) GFLOPs Test Error (%)

TAPE (scratch) 106.3 11.8 65.7 39.8
TAPE (pre-trained) 7.3 34.2

ESM-1b (scratch) 172.1 11.1 79.1 40.1
ESM-1b (pre-trained) 8.6 35.9

ESM-1v (pre-trained) 172.1 9.8 79.1 33.3

SPT-Tiny 19.2 5.7 5.6 37.1
SPT-Small 31.2 4.5 18.5 32.7
SPT-Base 105.6 4.3 65.7 32.1

model not only achieves a low test error rate of 5.7% but did so with just 19.2 GFLOPs
of computational demand. This efficiency makes it at least 5.5 times faster than previous
PLMs, marking a significant advancement in processing speed and energy consumption.
Finally, without self-supervised pre-training, previous PLMs suffer from a significant
performance degradation (See 3rd v.s. 4th rows and 5th v.s. 6th rows). On the contrary,
our SPT models, though trained from scratch, achieves superb prediction performance
outcomes. This can be attributed to the effectiveness of our novel protein embedding
mechanism.

We’ve further evaluated our SPT models, comparing them with traditional bioinfor-
matics approaches and conducting detailed ablation studies, with corresponding exper-
imental results deferred to Appendices A.1 and A.2, respectively.

5.3 Evaluation on Our Sequence Score Technique

We consider two metrics proposed in the prior study [3], i.e., Faithfulness and Sta-
bility, to evaluate the efficacy of our Sequence Score technique for explaining Protein
Transformers. In this section, we present the experimental results regarding the faithful-
ness metric. The evaluation of the stability of our Sequence Score technique is detailed
in Appendix B.1 of the supplementary materials for conserving space. In particular,
faithfulness measures the degree to which the importance values which are attributed
to amino acids, are aligned with their actual impact on the final prediction, expecting
that amino acids with substantial effects will receive correspondingly high importance
scores.

Here, we adopt the deletion method [54] to evaluate the faithfulness of our Sequence
Score technique. Its key idea is to observe accuracy degradation incurred by masking
a certain ratio (or number) of amino acids, with masked amino acids chosen based on
their importance scores, i.e., those with the highest scores v.s. those with the lowest
scores. A larger drop in prediction accuracy, resulted from masking amino acids with
high importance scores than with low scores, indicates that the assigned scores are well
aligned with amino acids’ actual significance to the final predictions.

Figure 3a illustrates the results of our experiments that involve selectively masking
amino acids at various ratios. Our findings reveal a consistent pattern: masking amino



12 F. Lin, W. Du, et al.

2 4 6 8 10
Ratio (%)

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Lowest Score
Highest Score

(a) Ratio

5 10 15 20 25
Number of Amino Acids

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Lowest Score
Highest Score

(b) Number

Fig. 3: Comparisons of prediction performance by masking amino acids with the highest
and the lowest importance scores under (a) masking a certain ratio of amino acids and
(b) masking a specific number of amino acids.

acids identified as highly important invariably leads to a larger decline in prediction
performance, versus masking amino acids with lower importance scores. For example,
when the masking ratio is set to 10%, masking amino acids that have the highest impor-
tance scores results in performance degradation to be 22.41% greater than that resulted
from masking those with the lowest importance scores. Additionally, lifting the mask-
ing ratio from 2% to 10% yields a noticeably faster decline in prediction performance
when masking amino acids with the highest scores (see the blue line) than with the
lowest scores (see the green line). This demonstrates a direct relationship between the
importance scores assigned to the amino acids and their actual influence levels on the
predictive accuracy of the model.

Complementing these findings, Figure 3b illustrates similar trends under a different
experimental setting, where various numbers of amino acids are masked. As the number
of masked amino acids increases from 5 to 25, prediction performance is observed to
degrade significantly faster when masking amino acids with the highest scores than
with the lowest scores. Specifically, a masking number of 25 leads to a substantial
larger performance decline, i.e., by 58.16%, when masking amino acids with the highest
importance scores than with the lowest scores, i.e., only by 35.41%. These statistical
observations confirm that our Sequence Score technique adheres to the principle of
faithfulness when interpreting Protein Transformers.

We have also conducted experiments to assess the faithfulness of our Sequence
Score technique by simulating protein mutations, with their results deferred to Ap-
pendix B.2 of supplementary materials.

5.4 Discovery of Catalytic Triad in Serine Proteases

This section further interprets biological intelligence resided in Protein Transformers
by unveiling its discovery of the catalytic triad in serine proteases. Serine proteases, a
group of proteases, are crucial enzymes involved in a myriad of biological functions,
including digestion, immune response, and blood coagulation. At the heart of their cat-
alytic mechanism lies the catalytic triad, a set of three coordinated amino acids, usually
following the pattern of “His57-Asp102-Ser195”. This triad forms a potent synergis-
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Fig. 4: Illustration of the catalytic triad, i.e., “His57-Asp102-Ser195”, in the two pro-
teins of serine proteases. Here, “His”, “Asp”, and “Ser” are abbreviated as “H”, “D”
and “S”, respectively. The figure in the upper section utilizes the protein “1TX6” as an
example to show the 3D structure of the catalytic triad, while the heatmap in the lower
section visualizes the importance scores generated by our Sequence Score technique,
with amino acids corresponding to the catalytic triad distinctly marked by red triangles.

tic unit essential for the enzyme’s function. Figure 4 depicts importance scores for the
two proteins of serine proteases. It is obvious that our SPT models can identify the
significance of the catalytic triad (marked by red triangles) for serine proteases. These
results further confirm that our Protein Transformers can capture biological intelligence
inherent within protein sequences.

It is worth noticing that the catalytic triad’s importance extends beyond its biochem-
ical role; its evolutionary conservation across various serine proteases underscores a
fundamental mechanism critical to many physiological processes. Moreover, the de-
tailed understanding of this triad, including the specific residue numbers, has been in-
strumental in the design of targeted pharmaceutical inhibitors to modulate serine pro-
tease activity in treating various diseases, such as cancer, inflammatory disorders, and
coagulopathies. Hopefully, the capability of our SPT models to discover the catalytic
triad of serine proteases can shed light on future studies, aided by the Protein Transform-
ers for understanding the biochemical, physiological, and pharmaceutical processes.

6 Conclusion

This work has explored the capabilities of Protein Transformers in capturing biological
intelligence resided in protein sequences. To achieve our goal, we first introduced the
Protein-FN dataset, offering over 9000 protein sequence data as well as their functional
properties created laboriously by biological experts. Then, we developed the Sequence
Protein Transformers (SPT), a computationally efficient Transformer architecture, able
to precisely predict the functional properties of proteins by leveraging their primary
structures. Thanks to its novel protein embedding mechanism, our SPT models can
achieve superb prediction performance without the requirement of self-supervised pre-
training. Finally, we have developed the Sequence Score, a novel Explainable Artificial
Intelligence (XAI) technique that advances beyond current Transformer-specific XAI
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solutions in terms of computational efficiency. This efficiency increases linearly with
the length of protein sequences, making it well-suited for analyzing the complex biolog-
ical intelligence encoded within Protein Transformers. Extensive experimental results
exhibited that our SPT models are efficient and effective in predicting the functional
properties of proteins. Moreover, the devised Sequence Score technique helps reveal
that our SPT models can capture important patterns underlying protein sequences, with
these patterns aligning closely with the domain knowledge in the biology community.
This demonstrates the capabilities of our Protein Transformers in capturing biological
intelligence resided in protein sequences.
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