
Graph Neural Networks for Automatic Addition
of Optimizing Components in Printed Circuit

Board Schematics

Pascal Plettenberg1 (�), André Alcalde2, Bernhard Sick1, and Josephine M.
Thomas1

1 Intelligent Embedded Systems, University of Kassel, 34121 Kassel, Germany
{plettenberg, bsick, josephine.thomas}@uni-kassel.de

2 CELUS GmbH, 80339 München, Germany andre.alcalde@celus.io

Abstract. The design and optimization of Printed Circuit Board (PCB)
schematics is crucial for the development of high-quality electronic de-
vices. Thereby, an important task is to optimize drafts by adding com-
ponents that improve the robustness and reliability of the circuit, e.g.,
pull-up resistors or decoupling capacitors. Since there is a shortage of
skilled engineers and manual optimizations are very time-consuming,
these best practices are often neglected. However, this typically leads
to higher costs for troubleshooting in later development stages as well as
shortened product life cycles, resulting in an increased amount of elec-
tronic waste that is difficult to recycle. Here, we present an approach
for automating the addition of new components into PCB schematics
by representing them as bipartite graphs and utilizing a node pair pre-
diction model based on Graph Neural Networks (GNNs). We apply our
approach to three highly relevant PCB design optimization tasks and
compare the performance of several popular GNN architectures on real-
world datasets labeled by human experts. We show that GNNs can solve
these problems with high accuracy and demonstrate that our approach
offers the potential to automate PCB design optimizations in a time-
and cost-efficient manner.

Keywords: Graph Neural Networks · Printed Circuit Boards · Elec-
tronic Design Automation.

1 Introduction

The development of high-quality electronic devices relies heavily on the design
of Printed Circuit Board (PCB) schematics, which define all required compo-
nents and their connections to each other. Usually, new PCB schematics un-
dergo several design iterations, and first functional drafts are optimized based
on experience according to some "best practices". Thereby, one important task
for engineers is to add components like pull-up resistors or decoupling capacitors
to the circuit, which reduce the failure risk and increase the robustness against
external disturbances.
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In most cases, these types of PCB design optimizations are implemented manu-
ally, which is time-consuming and error-prone. Since the additional components
are not needed for immediate functionality, they are often neglected. High time
pressure on engineers in the development process, and the shortage of skilled en-
gineers in the market contribute to that as well. Consequently, non-optimal PCB
schematics result in more frequent prototype iterations and higher troubleshoot-
ing costs in later development stages. Furthermore, they reduce the overall life-
time of the final product, resulting in an increased amount of electronic waste
that is difficult to recycle.
Electronic Design Automation (EDA) tools are essential for streamlining the
process of designing, testing, and verifying electronic designs. These tools have
become even more sophisticated since Machine Learning (ML) methods have
been integrated into EDA due to the increasing amount of available data [9].
While ML-based EDA tools have been mainly developed for integrated circuits
(ICs), the automation of PCB schematics, which include both analog and digital
components, is more difficult due to larger design spaces, and existing tools are
often limited to rule-based design verifications.
Electronic circuits can be naturally represented as graphs and Graph Neural
Networks (GNNs) have emerged as a powerful tool that extends the scope of
Deep Learning from Euclidean to graph-structured data. Therefore, GNNs offer
great potential for learning meaningful representations of PCB schematics that
can be used to automate optimization tasks. However, one big problem is the
translation of the huge variety of available information on the PCB components
(e.g., types and names) into standardized, numerical node features, especially
when dealing with real-world datasets. Furthermore, most GNN models from
the literature are either used for prediction tasks on the level of single nodes
[6] or edges [30], whereas adding a new component with exactly two terminals
requires the classification of node pairs.

Present work. In this work, we propose a GNN-based approach for automat-
ing the placement of optimizing components in PCB schematics. Thereby, we
represent PCB schematics as bipartite graphs (see Sec. 3) and predict the posi-
tions of new components with a node-pair-level classification model (see Sec. 4).
In Sec. 5, we evaluate our approach on large real-world datasets labeled by hu-
man experts, thereby focusing on three specific PCB design optimization tasks,
each involving the addition of a different optimizing component: (i) Pull-up
and pull-down resistors for ensuring a defined voltage level on floating nets.
(ii) RC filters on reset pins for preventing unintentional resets from voltage
glitches. (iii) Decoupling capacitors for reducing high-frequency noise in sup-
ply and ground nets. We train our model to perform these tasks using different
GNN architectures from the literature and compare their performances.
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Main Contributions

• We propose a bipartite graph representation for PCB schematics involving
a method for constructing node and edge attributes from non-standardized
component names in real-world data using a pre-trained language model.

• We propose a GNN-based node-pair-level prediction model for the placement
of additional optimizing components in PCB schematics.

• We perform extensive experiments on real-world datasets, demonstrating
that GNNs can predict the positions of new components with high accuracy.

The code for our model and example graph samples from our dataset are avail-
able at https://github.com/pasplett/pcb-node-pair-gnn.

2 Related Work

Machine Learning for Electronic Design Automation In the last years,
many studies have investigated the usage of ML methods for EDA [9]. These
studies mainly focused on digital circuit design, including several stages of the
design flow such as logic synthesis [29,7], placement [15], and routing [27,1]. In
analog design, however, ML-based automation is more difficult due to larger
design spaces and varying specifications [14]. Some notable approaches are rein-
forcement learning for circuit topology optimization [21] as well as ML-assisted
analog circuit sizing [3]. However, these approaches do not exploit the graph
structure of electronic circuits.

Graph Learning for Electronic Design Automation Since electronic cir-
cuits can be naturally represented as graphs, GNNs have recently become more
and more popular in the field of EDA [20]. Again, while the majority of stud-
ies focus on the digital EDA flow [4,16,23], there are also some GNN-based
approaches for analog EDA, such as ParaGraph [18] for the prediction of net
parasitic capacitances, GANA [12] for automated netlist annotation and Circuit
Designer [25] for transistor sizing. Most recently, CktGNN [5] was introduced
as a nested GNN framework with a pre-designed subgraph basis and has been
successfully applied for analog circuit topology design and device sizing. While
all of these approaches utilize the graph structure of electronic circuits, they
are tailored to different use cases and are not applicable to the specific PCB
optimizations that we focus on in our work.

Graph Neural Networks for Circuit Design Completion Closest to our
work is the study by Said et al. [19], which explores the usage of graph neural
networks for the design completion of partially designed analog circuits. Thereby,
the missing component is first identified using a graph classification, and the
placement of the new component within the circuit is then treated as a link
prediction problem. However, predicting the connectivity of a new component
using link prediction frameworks like GAE [10] or SEAL [30] is difficult because

https://github.com/pasplett/pcb-node-pair-gnn
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Fig. 1. An exemplary PCB circuit diagram and the corresponding bipartite graph
representation. Symbols (e.g., resistors or capacitors) are represented by red nodes, nets
(e.g., supply or ground nets) are represented by green nodes, and pins (e.g., component
terminals) are represented by edges.

it involves the prediction of links to isolated nodes and the individual links have
to be predicted independently. Here, we focus on adding new components for
specific PCB schematic optimization tasks with practical relevance. Thereby,
the number of connections for a new component is known in advance, so we can
treat the problem as a node-pair-level prediction task rather than a combination
of graph classification and link prediction.

3 Graph Representation of PCB Schematics

We represent PCB schematics as bipartite graphs with two distinct sets of nodes:
Nets and symbols. Thereby, net nodes (e.g., ground or supply nets) are always
connected to symbol nodes (e.g., components like resistors, capacitors, or ICs)
and vice versa, but no connections are allowed between nodes within the same
set. The edges of the graph represent the pins, i.e., the terminals or connection
points of the symbol nodes. Since a symbol may be connected to the same net
node via multiple pins, the resulting graphs can be multi-relational, i.e., allow
for multiple parallel edges. An example of the proposed graph representation of
PCB schematics is given in Fig. 1.

Node Attributes The node input features contain two types of information:
The type and the name of the node. The node type is a binary variable, which
takes the value 0 for a net node and the value 1 for a symbol node. The
node names are stored as strings within the raw schematics file, e.g. "GND"
or "C1_G$1". We use a pre-trained language model to convert the node names
into numerical embeddings. For this purpose, we utilize the model all-MiniLM-
L6-v2 from the SentenceTransformers Python package [17], which transforms
any input string into a numerical vector containing 384 values. The model is a
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Fig. 2. a Composition of the input node features from node type and node name
embedding. b Cosine similarity between sentence transformer embeddings of all symbol
and net node names in an example PCB circuit diagram. Thereby, embeddings of
similar node names exhibit higher cosine similarities.

distilled version of a large Transformer model, which was trained on a diverse
language dataset containing over 1 billion training pairs [26]. Note that such a
lightweight language model is sufficient for our purposes since the node names
in our dataset are rather short. However, other general-purpose language models
could be used as well. We leave the analysis of the influence of different language
models on the prediction accuracy for future work.
The resulting node name embedding is concatenated to the single node type value
resulting in the final 385-dimensional node input feature vector (see Fig. 2a).

Edge Attributes Similar to the node names, we also use the pre-trained sen-
tence transformer model to convert the pin names into 384-dimensional edge at-
tributes. Furthermore, since standard GNN architectures cannot properly handle
multi-relational graphs, we combine parallel edges into a single edge by summing
up the individual pin name embeddings and concatenating an additional edge
feature representing the number of parallel pins represented by the final edge.

Applicability to Real-World Data Our approach for representing PCB
schematics as graphs is very flexible and requires a minimum amount of pre-
processing, because the type of a PCB component, e.g., a resistor, capacitor,
or IC, is implicitly encoded in the node features via the name embeddings.
Therefore, identifying component types manually is not necessary, making the
approach especially suitable for real-world datasets with non-standardized com-
ponent names. Fig. 2b shows the cosine similarity between the name embed-
dings of all nodes in the example PCB circuit diagram from Fig. 1. Note that
small name variations (e.g., "C1", C17", "C18") result in similar sentence trans-
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former embeddings, whereas nodes with very different names (e.g., "+5V" and
"C17_G$1") exhibit a much lower cosine similarity. This analysis indicates that
the selected language model is sufficient for generating well-separated latent rep-
resentations of the node names.

4 Node Pair Prediction for PCB Component Addition

Our aim is to optimize the robustness and reliability of PCB designs by adding
new relevant components and predicting their position within the circuit. In
most cases, these new components are either resistors or capacitors, which is
why we assume that the new circuit component is a two-terminal component,
i.e., it is connected to exactly two net nodes. The task is to predict the pair of
net nodes between which the new component has to be inserted.

Node Pre-Filtering A straightforward approach would be to calculate node
representations using GNNs and then predict a probability score for each pos-
sible pair of net nodes. However, in large circuits with hundreds of nodes, this
approach may become computationally expensive because the number of possi-
ble node pairs increases quadratically. Furthermore, the approach could lead to
training instabilities since the dataset can be extremely imbalanced: Only a few
node pairs have a positive training label.
Therefore, we develop a strategy for reducing the number of node pairs that
need to be checked during the prediction. First, we can restrict the search to net
nodes because the inserted component is a symbol that cannot be directly con-
nected to other symbol nodes. Second, we can sort out net nodes that are very
unlikely to be connection points for the new circuit component. For example,
the resistor of an RC filter is never connected to a ground net. This pre-filtering
can be done with an MLP that predicts for each net node, whether it serves as a
connection point for a new component. The resulting probability scores assigned
by the pre-filter can be used to identify a set of unlikely candidates and exclude
them from the actual pairwise node prediction.

Model Architecture Our overall model is depicted in Fig. 3. The input to
the model is the graph representation of a PCB schematic, as described in the
previous section. It contains the input node features, a combination of the node
type and name, as well as edge attributes containing the pin name embeddings.
An arbitrary GNN can be used to process the graph and calculate hidden node
representations. The final node representations are passed to the pre-filtering
MLP, which assigns a probability score to each net node representation. All net
nodes with a probability score higher than a predefined threshold θ are passed to
the node pair prediction module. This module is another MLP that performs a
final prediction on the concatenation of two node representations. Thereby, this
prediction is only performed for all possible pairs of nodes that were not sorted
out by the pre-filtering MLP. Note that the threshold θ can be treated as an
additional hyperparameter.
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Fig. 3. Model architecture for the GNN-based node-pair-level prediction for PCB com-
ponent addition. The GNN output representations of the net nodes are passed to the
pre-filter MLP, which identifies individual net nodes with a high probability of serving
as a connection point to the new component. The filtered node representations are
concatenated pairwise and passed to a second MLP, which performs a task-specific
prediction on each of these node pairs. In this example, the node pair MLP performs
a multiclass classification to predict the new component’s position and type (R or C).

Task-Specific Model Output The final output of the node pair prediction
depends on the specific learning task. It could be a binary classification if the
type of the new component is known, and a multiclass classification if there are
multiple possible classes of components. Finally, it could also be a regression if
the task is to predict the number of parallel components to insert between a
specific pair of nodes.

5 Experiments

We validate our approach by performing experiments on three specific use cases,
each corresponding to the addition of a different component for the optimiza-
tion of the PCB design. These design optimizations increase the robustness of
the PCB and are usually performed manually by human engineers in a time-
consuming and error-prone process.
First, we perform a binary classification to predict the positions of additional
pull-up- and pull-down resistors. Second, we train a model on inserting RC filters
on digital reset pins, which corresponds to a multiclass classification since the
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Table 1. Dataset statistics. Percentages are calculated with respect to the average
number of nodes per graph.

Dataset Pull-Ups/-Downs RC-Filters Decoupling Caps.

No. of Graph Samples 2396 849 944
Avg. No. of Nodes 122.6 123.5 100.1
Min. No. of Nodes 7 7 6
Max. No. of Nodes 702 637 500
Avg. No. of Edges 174.4 175.7 139.0
Avg. No. of Added Nodes 2.8 (2.3%) 2.1 (1.7%) 1.4 (1.4%)

model has to distinguish also between resistor and capacitor. Finally, we inves-
tigate the addition of decoupling capacitors, which we treat both as a simplified
binary classification task ("Add at least one capacitor or not") and as a regres-
sion task ("How many parallel capacitors should be placed at this position?").

5.1 Datasets, Models, and Experimental Setting

Datasets We generated three large datasets of labeled PCB schematics, one for
each optimization task. The schematics were optimized and labeled manually
by human experts in electrical engineering. Thereby, each pair of net nodes in
each circuit of the dataset received a label ŷpair according to the specific task
(binary, multiclass, or regression). Additionally, we generated binary labels ŷnode
for each net node indicating whether it serves as a connection point for at least
one new component or not. These single-node labels are used to train the pre-
filter MLP. Statistics of the three resulting datasets can be found in Tab. 1. All
three datasets contain a large number of unique graphs of varying sizes ranging
from 6 nodes up to huge graphs with more than 700 nodes. On average, between
one and three new nodes are added per graph. This means that only a small
fraction of all possible net node pairs receive a positive label, resulting in a
strong class imbalance.

GNN Models In all experiments, we apply our node pair prediction model with
different GNN backbones. Thereby, we consider the baseline models GCN [11]
and GIN [28] as well as GINe [8], a modification of GIN that includes edge
attributes. Furthermore, we experiment with several widely used attention-based
GNN models: GAT [24], GATv2 [2], and GraphTransformer (GT) [22]. All three
models are taking edge attributes into account. As an additional baseline, we also
compare to an "MLP-only" version of our model, where the pre-filter MLP and
the node pair MLP are applied directly to the input node features without any
message-passing layers in between. In this way, we can specifically investigate
the influence of the graph structure on the model performance.



GNNs for Autom. Addition of Optimizing Components in PCB Schematics 9

Table 2. Overview of the hyperparameters used in the experiments.

Hyperparameter Values

Hid. Dimension 16, 32, 64
Num. of GNN Layers 1, 2, 3
Attention Heads 1, 4
Learning Rate 0.001, 0.0005, 0.0001
Threshold θ 0.0, 0.1, ..., 0.7

Experimental Setting We split each dataset into train, validation, and test
sets with ratios 80/10/10% and perform a 9-fold cross-validation. Additionally,
we perform a small grid search for hyperparameter optimization (see Tab. 2
for details). For each training run, we use the AdamW optimizer [13], a batch
size of 128, and perform early stopping with a patience of 20 epochs using the
task-specific evaluation metric. The loss function is composed of a binary cross-
entropy loss term BCE responsible for the training of the pre-filter MLP, and a
task-specific node pair term Ltask for the training of the node pair MLP:

L = BCE(ynode, ŷnode) + LTask(ypair, ŷpair). (1)

Note that both loss terms also contribute to training the GNN layers.

5.2 Optimization Task 1: Adding Pull-Up and Pull-Down Resistors

Technical Background Pull-up and pull-down resistors are two-terminal com-
ponents placed between one specific net on the design and, in the case of pull-ups,
a supply net, and in the case of pull-downs, a ground net. When placed, these
components help to ensure that the voltage on the selected design net is brought
to a defined known value in case the design net is left floating. There are many
possible reasons for the usage of pull-ups and pull-downs, including functional-
ity, reliability, and best practices. In a functional safety example, if a MOSFET
transistor is not being actively driven, a pull-down resistor can ensure that the
transistor is definitely turned off.

Task-Specific Model We approach this optimization task as a binary classifi-
cation on the node pair level, where a positive label corresponds to the placement
of a pull-up or pull-down resistor. We do not differentiate explicitly between pull-
up and pull-down resistors, since the component is the same in both cases and
the function of the resistor follows straight from its position within the circuit.
Thus, the node pair MLP has a single output node and for the loss term LTask,
we use another binary cross-entropy loss function:

LTask(ypair, ŷpair) = BCE(ypair, ŷpair). (2)
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Fig. 4. a Area under the precision-recall curve (AUPRC) on the test set for the best hy-
perparameter configuration of all model variants for the pull-ups/-downs insertion task.
b Sensitivity of the pull-ups/-downs insertion performance on the pre-filter threshold
θ for all model variants.

Due to the extreme class imbalance in the dataset, we use the Area Under the
Precision-Recall Curve (AUPRC) as our evaluation metric, which is a robust
metric for scenarios with an underrepresented positive class that focuses on the
trade-off between precision and recall. We calculate the AUPRC over the pre-
dictions for all possible pairs of net nodes in each graph. Thereby, all predictions
for node pairs that are not evaluated by the node pair MLP (because at least
one of the two nodes was sorted out by the pre-filter MLP) are set to negative
labels (no component insertion at this position). Therefore, the AUPRC metric
reflects both errors resulting from node pair misclassifications as well as errors
resulting from incorrect filtering by the pre-filter MLP.

Results Fig. 4a shows the AUPRC on the test set for all considered models.
Thereby, we only consider the best hyperparameter configurations, which are re-
ported in the Appendix (see Supplementary Material). First, it is noticeable that
the model variants MLP-only, GCN and GIN show a much lower performance
compared to all other models. These three models do not consider edge features,
which appear to be very important for this specific task. A possible reason for
this is that the names of the target connection points are sometimes chosen
generically (e.g., "N$2"), whereas the names of the connected pins, i.e., the edge
attributes, may reveal more information on their function. The more advanced
GNN variants GINe, GAT, GATv2, and GT all consider edge attributes and
exhibit a much higher AUPRC of more than 80 %. Among these models, GATv2
performs best with an AUPRC of 85.8 %.
The influence of the pre-filter threshold θ on the task performance is investigated
in Fig. 4b. For the models with an edge-feature dependency, the performance
drops when no pre-filter is used (θ = 0). This underlines the importance of the
pre-filter beyond computational efficiency: It also stabilizes the training process
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and increases the performance. The best performances are mostly achieved with
a small threshold between 0.1 and 0.3, whereas the AUPRC decreases steadily
for higher θ.
These results indicate that it is better to not sort out too many nodes in the
pre-filter step, since the node pair MLP is capable of correcting false positive
predictions by the pre-filter. However, if the pre-filter MLP has too many false
negatives (high θ), the associated node pairs are not evaluated by the node pair
MLP anymore and are instead automatically set to a negative label. Only the
GT model appears to be an exception here: The test set performance increases
for higher θ due to very accurate pre-filtering.
The models without edge-feature dependency (MLP-only, GCN, and GIN) of-
ten do not converge and show very low performance. In this case, the AUPRC
decreases even more when a pre-filter is used, because these models do not learn
sufficiently meaningful node representations. Thus, the pre-filter MLP predicts
too many false negatives that the node pair MLP cannot correct anymore.

5.3 Optimization Task 2: Adding RC Filters on Digital Reset Pins

Technical Background Circuit schematics containing digital logic, especially
programmable devices such as microprocessors and microcontrollers, require the
special handling of the reset signal pin to prevent unintentional reset events,
leading to functional issues in the final product. Commonly, reset pins are built
to be "active-low", meaning they should be tied to the supply voltage to stay
inactive. However, due to noise created by power supplies and the processor,
voltage glitches can be present in the supply line, creating these unintentional
reset events. Therefore, it is advisable to always have a simple RC filter between
the supply net and the reset pin, in order to smooth out the voltage level noise
and prevent issues. An RC filter is composed of a resistor connected between the
supply net and the reset net, and a capacitor connected between the reset net
and the ground net.

Task-Specific Model We treat the placement of the RC filters as a multiclass
classification task, where the node pair MLP has three output nodes, each cor-
responding to one of the three possible class labels: Resistor, capacitor, or none.
For the loss term Ltask, we use a cross-entropy loss function:

LTask(ypair, ŷpair) = CEL(ypair, ŷpair). (3)

As an evaluation metric, we utilize the AUPRC with macro-averaging, i.e., the
unweighted mean of the separate metrics for all three classes.

Results Fig. 5a shows the AUPRC on the test set for all considered models.
First, it is noticeable that the model variants MLP-only, GCN and GIN again
show a much lower performance compared to all other models, emphasizing the
importance of the edge attributes for the identification of reset pins. Overall, the
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Fig. 5. a Area under the precision-recall curve (AUPRC) with macro-averaging on the
test set for the best hyperparameter configuration of all model variants for the RC
filter insertion task. b Sensitivity of the RC filter insertion performance on the pre-
filter threshold θ for all model variants.

MLP-only variant shows the lowest performance of all models, which underlines
the importance of the graph structure for this learning task. The attention-based
GNN variants GAT, GATv2, and GT, as well as the GINe model, exhibit a very
similar performance of nearly 85 % AUPRC.
The influence of the pre-filter threshold θ on the task performance is investigated
in Fig. 5b. For all models, except the MLP-only variant, the performance drops
significantly when no pre-filter is used (θ = 0). Furthermore, the models with
edge-feature dependency exhibit a slow performance decrease for increasing θ.

5.4 Optimization Task 3: Adding Decoupling Capacitors to Supply

Technical Background Most electronic circuits have at least one supply net,
used to provide power to integrated circuits, and one ground net, which is the
current return net back to the supply. Both supply and ground nets are shared
among many components in an electronic design, and therefore it is important to
make sure the operation of one integrated circuit does not interfere with the oper-
ation of another one. To prevent these undesired interactions through the supply
net, decoupling capacitors are placed. They are connected as close as possible
between supply and ground nets, which can "short-circuit" high-frequency noise
created by digital integrated circuits and make sure both supply and ground nets
remain clean. This helps to contain this noise and avoid interferences, as well as
to reduce the levels of electromagnetic emission from the final device.

Task-Specific Model We approach this optimization task from two perspec-
tives simultaneously. First, we consider it as a binary classification task with the
goal of predicting whether at least one decoupling capacitor has to be inserted
between a pair of net nodes or not. For different reasons, however, engineers are
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Fig. 6. a Area under the precision-recall curve (AUPRC) on the test set for the best
hyperparameter configuration of all model variants for the decoupling capacitor inser-
tion task (treated as a binary classification). b Sensitivity of the decoupling capacitor
insertion performance on the pre-filter threshold θ for all model variants.

often placing multiple decoupling capacitors in parallel, e.g., to ensure stability
over a wider range of frequencies. Therefore, we also perform a regression and
predict the exact number of parallel capacitors that engineers would insert at a
certain position in the circuit.
We utilize two separate node pair MLPs for this task, one for the binary classi-
fication with outputs zpair and one for the regression with outputs ypair. For the
binary classification, we use the binary cross-entropy loss function and for the
regression, we utilize the mean-squared error. We further assign a weight α to
the regression loss term to control its influence on the training process:

LTask(zpair, ypair, ŷpair) = BCE(zpair, ẑpair) + α ·MSE(ypair, ŷpair). (4)

Thereby, the labels ẑpair are computed as

ẑpair =

{
1, ŷpair ≥ 1

0, otherwise.
(5)

Binary Classification Results For the evaluation of the binary classification,
we utilize the AUPRC metric again. Fig. 6a shows the AUPRC on the test
set for all considered models. Again, the MLP-only variant shows the lowest
performance among all models, although it performs much better than on the
other tasks. This indicates that the graph structure and local node neighborhood
are less relevant for the decoupling capacitor insertion task. Furthermore, GNNs
that include edge attributes (GINe, GAT, GATv2, and GT) only show a slightly
better performance compared to GCN and GIN. Therefore, we conclude that the
node features, i.e., node types and names, are the most important features for
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the prediction of decoupling capacitor additions. A possible reason for this is that
supply and ground nets, which are the relevant connection points for decoupling
capacitors, mostly have well-defined names, making them easily identifiable by
their node features alone.
Fig. 6b shows the sensitivity of the test set AUPRC on the pre-filter threshold
θ. Here, the performance drops drastically when no pre-filter is used (θ = 0)
and decreases slightly for increasing θ. Only the MLP-only variant shows an
acceptable performance without any pre-filter.

0 1 2 3 4 5 6 7 8 9 10
Absolute Prediction Error

0

20

40

60

80

100

C
um

ul
at

iv
e 

C
ou

nt
s (

%
)

AUC = 89.2 %

Regression 
(No. of Parallel Decoupling Cap.)

Fig. 7. Cumulative counts of absolute errors of the GATv2 model variant for the pre-
diction of the number of parallel decoupling capacitors to insert at a given position in
the circuit. In approx. 70% of the cases, the prediction deviates from the ground truth
by at most 1.

Regression Results For the evaluation of the regression, we first round the
outputs of the regression MLP to integers. Next, we calculate the absolute predic-
tion error for all non-zero labels. Fig. 7 shows the cumulative counts of absolute
prediction errors for the GATv2 model variant with α = 0.1. In approximately
70 % of the cases, the predicted number of parallel decoupling capacitors at a
given position deviates from the ground truth by at most 1. The overall area
under the curve is 89.2 %, indicating that the model can give a good estimation
of the number of parallel decoupling capacitors, despite lacking some informa-
tion that engineers would take into account when solving this problem, e.g.,
component values or market availability of certain capacitors.

6 Conclusion

In this paper, we presented a Graph Neural Network (GNN)-based approach for
automating the addition of new components in Printed Circuit Board (PCB)
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schematics to optimize their robustness and reliability. Thereby, we represented
PCB schematics as bipartite graphs and trained a node-pair-level classification
on three real-world PCB datasets manually labeled by human experts, each fo-
cusing on the addition of different optimizing components with high practical
relevance: Pull-up/-down resistors, RC filters, and decoupling capacitors.
Our results show that GNNs, especially architectures that consider edge at-
tributes, can learn meaningful representations of PCB schematics and provide a
significant performance gain on all optimization tasks compared to the usage of
pure multi-layer perceptrons. Furthermore, we found that pre-filtering promising
connection points for the new components using a separate multi-layer percep-
tron stabilizes the training process and increases the overall model performance.
In summary, the accuracy of our approach is high enough to increase the au-
tomation level of the PCB design optimization process and support engineers in
developing more durable electronic devices more efficiently, leading to consider-
able time and cost savings.
In the future, we want to further enhance the model performance by investigat-
ing the usage of other graph types for the representation of PCB schematics (e.g.,
hypergraphs) as well as more specialized GNN architectures such as heteroge-
neous GNNs. Furthermore, we want to consider additional information from the
PCB schematics that has not been exploited so far, e.g., component values like
resistances or capacities. Finally, we plan to extend the scope of our graph-based
approach to other PCB design optimization tasks involving not only the addition
of new components but also the merging, splitting, or removal of existing ones.
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