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Abstract. In Intensive Care Units (ICUs), excessive medical alarms can
cause alarm fatigue and desensitization, compromising patient safety.
Alarm management is typically based on manual threshold adjustments,
while advanced algorithmic solutions remain underused due to the com-
plexity of patient conditions, dynamic environments, and missing con-
textual data. Our goal is to investigate the diagnostic utility of combin-
ing multiple signals and alarms to enhance relevance and minimize false
alarms. A major challenge is integrating heterogeneous data sources, as
vital signs are continuously sampled while alarms are event-driven. To
bridge this gap, we encode the ICU data into a discretized symbolic repre-
sentation, reducing dimensionality and improving pattern discovery. We
propose a methodology for extracting sequential rules from multivari-
ate datasets, structuring data into a sequence database using a sliding
window transformation to capture temporal dependencies. To improve
robustness, we introduce a rule ensemble approach, integrating patterns
discovered across multiple representations. We applied our method to
ICU data from 604 patients, incorporating continuous vital signs and
alarm logs. Our findings reveal interpretable sequential rules, analyzed
with clinical experts, including patterns highly relevant to intubation
events. Our results highlight the potential of data-driven approaches to
refine alarm management and improve patient monitoring in critical care
settings.
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1 Introduction

An Intensive Care Unit (ICU) is a specialized hospital department dedicated
to providing intensive care and treatment to patients who are severely ill or
critically injured. ICUs are furnished with advanced medical equipment that
allows close monitoring of patients, provision of life support, and prompt in-
tervention to stabilize their condition and prevent further deterioration. Such
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medical devices produce alarms designed to alert caregivers to any change in
the condition of patients. This is particularly important in the ICU, as patients
are often physiologically unstable and their condition can change very suddenly,
requiring immediate action. However, with increasing patient parameters to be
monitored, concerns have been raised about excessive and inappropriate alarm
triggers. ICU alarms are a broad term that encompasses several types of alarm,
classified into three groups: clinical, technical, and caused by intervention. Clin-
ical alarms are the ones we are interested in and generally rely on a hard coded
threshold for each physiological parameter separately, e.g., a “low saturation"
alarm is triggered whenever the detected blood oxygen saturation (SpO2) falls
below 88%. Unfortunately, these fixed alarm settings may not be appropriate for
all ICU patients. For example, a patient with a respiratory condition may have
a completely different saturation level considered normal compared to a young
person admitted to the ICU for trauma. Technical alarms mostly refer to device
malfunction or low battery. Finally, alarms caused by intervention are clinical
alarms that are not triggered by actual changes in the patient state but rather
by external factors (e.g., the patient is being transported or changed position
in bed) [15,14]. It has been extensively shown that the proportion of actionable
alarms is extremely low ranging from 1% to 26% in adult ICU settings [23],
with an average of 771 alarms per bed per day [16], leading to alarm fatigue [5],
desensitization to alarms [10], and ultimately impacting the safety of patients [2].

Current literature on managing clinical alarms can be broadly classified into
two main strategies: customization of alarm settings and automated algorithms.
The former strategy involves tailoring alarm settings based on patient-specific
profiles, requiring nurses to manually adjust monitor settings according to the
patient’s current condition, and it is the most widely adopted in clinical practice.
The latter approaches operate on signal acquisition, alarm validation, and alarm
generation [13], in order to reduce false alarms. However, a limitation of both
these methodologies is their specificity toward a single type of alarm. Others
have studied the use of composite alarms, arguing that the correlation of mul-
tiple sensors provides a more accurate reflection of the state of a patient than
single threshold alarms [12,3]. Despite these advancements, most alarm systems
are designed to signal immediate concerns, overlooking longer-term alarm pat-
terns. Moreover, strategies applied in the ICU setting did not show sufficient
effectiveness in reducing the number of alarms [11].

Investigating sequential patterns of signals, alarms, and events may provide
valuable insights for improving clinical alarms and reducing alarm fatigue. Iden-
tifying patterns that occur in close temporal proximity can help assess the use-
fulness of existing threshold alarms, uncover non-trivial patterns that anticipate
meaningful changes in a patient’s status, and ultimately avail the introduction
of composite alarms that integrate multiple signals for a more accurate repre-
sentation of the patient’s condition. This approach could streamline alarm man-
agement, reduce the overall number of alarms, and enhance clinical efficiency.
This work retrospectively explores and quantifies sequential rules in vital signs
and alarms originating from ICU monitoring devices. Based on previous work,



Uncovering Sequential rules in ICU 3

we hypothesize that alarm patterns exist and can be used to reduce the number
of alarms [17]. We propose an approach that extracts non-redundant sequen-
tial rules from Mixed-Type Multivariate Time Series (MXT-MTS), consisting of
multiple vital signs and alarm logs [6]. Our method allows us to identify and
visualize such relationships for large volumes of signals and alarm data. We ap-
plied our method to previously collected data from the ICU of AZ Groeninge
Secondary Care Hospital in Belgium. Our dataset comprises raw physiological
signals and alarm logs generated from ICU monitors for hundreds of patients.

2 Sequential rule mining in MTS

2.1 MTS in medical time series

Figure 1 contextualizes the concept of MXT-MTS in the medical field and de-
picts a realistic scenario of a patient showing signs of respiratory failure. At time
T0, the patient is in a stable state. At time T1, SpO2 drops, triggering an alarm
for mild hypoxia (red band). In response, the body reacts by increasing cardiac
output through an increase in heart frequency (HF ) to compensate for reduced
oxygen availability, leading to a tachycardia alarm. If no action is taken, as the
cardiovascular system begins to struggle and it is impossible for the body to
further increase the cardiac output, at time T2, the mean arterial blood pressure
(ABPm) gradually decreases but remains within a range that does not yet trig-
ger an alarm (blue band). As stated previously, sequential rules could be used
to trigger early interventions before deterioration, and build clinically relevant
composite alarms based on multiple signals, potentially less sensitive to false
positives.

2.2 Sequential rule mining

Rule mining is a set of analytical techniques used in data mining to uncover
interesting patterns, associations, or relationships among a set of items in large

Time
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Fig. 1: Example of multivariate time series of a patient with alarms. SpO2 oxygen
saturation, HF heart frequency, ABPm arterial blood pressure.
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databases [1]. It finds application in several areas, including medicine, where
it was used, for example, to extract diagnosis patterns from medical health
records [18]. These rules can help identify common co-occurrences of symptoms,
laboratory results, or treatments that frequently appear together, aiding in clin-
ical decision-making. Sequential Rule Mining focuses on finding relationships
between sequences of events, where the order of occurrence matters. It aims to
predict subsequent events based on preceding events [9]. The problem of mining
sequential rules common to several sequences is defined as follows [8]. A sequence
database T consists of a set of sequences Q = {q1, q2, ..., qn} built from a set of
items I = {i1, i2, ..., im}, where ij is an atomic element such as an alarm or an
event. Each sequence q is an ordered list of itemsets q = ⟨I1, I2, ..., Ik⟩ such that
each itemset Ij is a subset of I, i.e., Ij ⊆ I. A sequential rule X → Y is defined
as a relationship between two itemsets X,Y ⊆ I such that X ∩ Y = ∅ and X,Y
are not empty. The interpretation of a rule X → Y is that if the items of X
occur in some itemsets of a sequence, the items in Y will occur in some item-
sets afterwards in the same sequence. Notably, there is no ordering restriction
between the items within X (or Y ).

2.3 MTS applications

The above definition usually refers to sequences of events of the same type (or of
a single time series). Despite its importance, few studies attempted to discover
rules in multivariate time series data. Nguyen et al. [22] approached the problem
by separately finding rules in each single time series, by using the Apriori algo-
rithm, and then scanning them to find inter-patterns. Park et al. [24] created
symbolic baskets from the MTS and then applied the Apriori algorithm to such
encoding. Karaca et al. [19] introduced temporal abstractions and applied a mod-
ified version of the Prefix-Span algorithm to mine frequent patterns. A prevalent
challenge in the applications mentioned above, as well as in mining patterns or
rules in MTS generally, is the issue of rule explosion. This phenomenon, where
conventional mining algorithms generate an excessive number of redundant rules,
complicates the process due to the overwhelming volume of data to analyze. In
this study, our focus shifts towards identifying non-redundant sequential rules
rather than merely frequent ones. In addition, we explore a methodology that
allows for the simultaneous analysis of multiple time series and alarm logs. The
usefulness of such approach can easily be motivated by considering the example
depicted in Figure 1 where the corresponding sequential rule might look like:

(SpO2 ↓, HF ↑) ⇒ (ABPm ↓)

where SpO2 ↓ is the mild hypoxia alarm, HF ↑ is the tachycardia alarm, and
ABPm ↓ indicates that the patient’s blood pressure is within a certain range,
considered low. A single signal or alarm is insufficient to accurately assess the
patient’s status. A fluctuation in a single parameter, or an alarm triggered by an
isolated change, could simply result from minor variations or patient movement
rather than a clinically significant event. In contrast, analyzing multiple signals
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together provides a more comprehensive view, enabling a deeper understanding
of the patient’s condition.

3 Our approach

We propose a novel approach for identifying sequential rules within MXT-MTS
derived from ICU data and alarm logs. Our approach is based on a representa-
tion that combines occurrences of discrete alarms with continuous vital signals
discretized in time and value. A discretized representation of time series is crucial
as it allows for dimensionality reduction and more efficient data manipulation.
Additionally, we need to consolidate different vital signs that are sampled at dif-
ferent fixed rates and alarm logs that are event-driven and recorded only when
predefined thresholds are exceeded. The steps of our approach are depicted in
Figure 2 and are explained in more detail in the next subsections. In the initial
phase, data preprocessing converts the raw multivariate time series data into
a symbolic representation in the form of letters, a format suitable for rule dis-
covery, using Symbolic Aggregate approXimation (SAX) [21]. Subsequently, the
encodings for each physiological variable and alarm are merged into a unified
tabular representation. The tabular representation is then transformed into a
sequence database using a sliding window transformation. Next, we use a state-
of-the-art method to efficiently extract the top-k non-redundant sequential rules
[9]. Our approach depends on several parameters, and we analyze their sensitiv-
ity. We propose an ensemble of rules discovered in multiple representations in
Section 4.

3.1 Time series representation

SAX is a data-adaptive technique that transforms a time series into a symbolic
sequence. It is used to effectively represent time series, as it allows dimensional-
ity reduction of data while maintaining their original characteristics. The SAX
procedure comprises three steps, depicted in Figure 2. The first step involves ap-
plying Piecewise Aggregate Approximation (PAA) [20] to the original time series.
PAA reduces the dimensionality of the time series by dividing it into segments
of a predefined length W and representing such segments with their average
value. Given the time series S = [s0, s1, ..., sN ], the resulting approximation is
S̄ = [s̄0, s̄1, ..., s̄N/W ], and the ith element s̄i of S̄ is obtained as follows:

s̄i =
1

W

(i+1)×W∑
j=i×W

sj . (1)

W , which in Figure 2 is 2 minutes, significantly affects the level of data com-
pression and fidelity. The second step is the discretization of the time series,
which consists of mapping the continuous values obtained from the PAA to an
alphabet A with a given set of discrete symbols. Each average value from the
PAA step is then assigned to a symbol based on its value. This mapping is
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Time (minutes)

1. PAA (W = 2 minutes)

1 3 5 7 9 11 13

2. Discretization (|A| = 3)
x1

x2 x2

x3
x3

3. Symbolic representation
[x3, x2, x3, x1, x2, x2]

x2

SAX

Variables
HR= [x3, x2, x3, x1, x2, x2]
SpO2= [y1, y1, y3, y2, y1, y2]

Alarms
High_HR= [1, 0, 1, 0, 0, 1]
Low_SpO2= [0, 0, 1, 1, 0, 1]

Segment x1 x2 x3 y1 y2 y3 High_HR Low_SpO2

st1 0 0 1 1 0 0 1 0

st2 0 1 0 1 0 0 0 0

st3 0 0 1 0 0 1 1 1

… … … … … … … … …

Sequence database (S = 2 segments–or 4 minutes)

Sequence itemset 1 itemset 2

se1 {x3, y1, High_HR} {x2, y1}

se2 {x3, y3, High_HR, Low_SpO2} {x1, y2, Low_SpO2}

se3 {x1, y1} {x2, y2, High_HR, Low_SpO2}

MTX-MTS representation

Sequential rules mining

ID Rule Sup Conf

r1 {x1} ⇒ {y2} 0.18 0.51

… … … …

Fig. 2: Overview of our approach. The first step is a modified version of SAX to
obtain a symbolic representation of each physiological time series. The second
step consists of creating a joined tabular representation of physiological variables
and alarms. The third steps consists of translating this representation into a
sequence database, the proper input for rule mining (fourth step). The final
result is a set of sequential rules. We vary the parameters for preprocessing, i.e.
the segment length (W ), alphabet size (|A|), and sequence length (S).

performed using breakpoints that divide the distribution of the data into inter-
vals, corresponding to each symbol in the alphabet. The canonical version of
SAX partitions data into bins based on the assumption of a normal distribution.
However, when data are not normally distributed, this can result in some value
ranges being assigned more symbols than others, distorting the data structure.
To avoid this, we used quantiles, ensuring that each interval contains the same
number of observations. In this way, all parts of the signal contribute equally
to the symbolic representation, preventing high-density regions from dominating
the encoding and low-density regions from being overlooked. The final step in the
SAX process involves converting the discretized values into a symbolic sequence.
Each segment’s symbol from the discretization step is concatenated to form a
symbolic representation of the original time series. The resulting approximation
is Ŝ = [ŝ0, ŝ1, ..., ŝN/W ]. The symbolic representation significantly reduces the
size and complexity of the data. Within the framework of encoding MTS, the
SAX technique is applied individually to each variable. However, the parame-
ters selected for the transformation are kept consistent across all variables. It is
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worth mentioning that we apply normalization across all patients rather than
per patient to ensure that SAX binning captures meaningful patterns at the
population level. This allows the sequential pattern mining algorithm to detect
trends that are globally relevant rather than patient-specific variations.

3.2 Alarm log representation

The encoding of the alarm logs follows a similar method, without the need for
SAX representation. Since alarms occur irregularly and can be triggered multiple
times in short intervals, the most reasonable way to reduce the dimensionality of
alarm logs is to divide them into segments of a predefined length W and represent
each segment using a binary indicator that denotes whether at least one alarm of
a given type occurred within that segment. Consider the original alarm logs for
a specific alarm type, represented by Z = [z0, z1, ..., zN ], where zt represents the
presence (1) or absence (0) of this alarm type at time t. For each time segment of
length W , we denote the presence/absence of alarms, regardless of the number of
identical alarm occurrences, obtaining the approximation Ẑ = [ẑ0, ẑ1, ..., ẑN/W ].

3.3 MXT-MTS representation

Given our objective to analyze sequential rules in both alarms and patterns
collectively, we need a unified encoding that represents all signals and alarms.
Upon deriving the SAX representation for each variable individually, we trans-
form the MTS into a unified representation. For each variable, a dummy ver-
sion of the SAX representation is generated as a matrix, with rows represent-
ing time segments and columns indicating symbols. This approach facilitates
the encoding of the presence (1) or absence (0) of symbols in each time seg-
ment, thereby enabling straightforward concatenation of multiple variables and
alarms into a symbolized MXT-MTS (sMXT-MTS). The resulting representa-
tion consists of N

W rows and |Mv| · |A| + |Ma| columns, where Mv is the set
of variables, A is the alphabet, and Ma is the set of alarm types. In Figure 2,
these sets are defined as Mv = {HF,SpO2}, A = {x1, x2, x3, y1, y2, y3}, and
Ma = {High_HF,Low_SpO2}. The notation | · | symbolizes the cardinality
of a set. This representation is an intermediate step to summarize the data in
intervals and reduce dimensionality. The following section illustrates the steps
to obtain the final data format.

3.4 Encoding MTS and alarm logs into a sequence database

Sequential rule mining algorithms require a sequence database for input. As such,
we need to convert the sMXT-MTS to a proper representation. The sequence
database is organized temporally, with each row corresponding to a sequence
of length S and containing itemsets representing subsequent segments of length
W . Each itemset contains symbols of the sMXT-MTS present in the time frame
of the corresponding segment. Within each itemset, symbols are treated as con-
current, lacking temporal precedence, yet the sequence of itemsets is crucial, as
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their order is instrumental in identifying sequential rules. Figure 2 shows the
resulting sequence database. In the example, S = 2 segments (or 4 minutes),
so we obtain sequences of two itemsets (representing 2 segments), where the
events of itemset 1 happen before those of itemset 2, and each itemset can con-
tain information about multiple signals (HF , SpO2) and alarms (High_HF ,
Low_SpO2). Intuitively, if the original data contain signals and events from
multiple individuals, the final sequence database contains multiple sequences for
each individual, where the number of sequences per individual depends on the
number of recorded time points and S.

3.5 Sequential rule mining

We use a sequential rule mining technique that focuses on mining the top-K most
frequent occurring non-redundant rules. This reduces the risk of rule explosion
and enables control of the number of generated sequential rules. First, we define
two representative measures to evaluate the candidate rules.

Definition 1. The support of a rule X → Y is the relative frequency of the co-
occurrence of X and Y , and is calculated by dividing the number of transactions
containing both X and Y by the total number of transactions |T |.

sup(X → Y ) =
|{q = [I1, I2, . . . , In] ∈ T | X ⊆ Ik1 ∧ Y ⊆ Ik2 ∧ k1 < k2}|

|T |
(2)

Definition 2. The confidence of a rule measures the likelihood of the occurrence
of the consequent event Y in all transactions that contain the antecedent event
X.

conf (X → Y ) =
sup(X ∪ Y )

sup(X)
. (3)

To discover sequential rules, we used TNS [9], an algorithm for discovering the
top-K non-redundant sequential rules appearing in a sequence database. The
problems of top-K sequential rule mining and redundancy are defined as follows.

Definition 3. A rule mining algorithm discovers a set L containing K rules in
transaction database D such that:

∀r ∈ L : conf (r) ≥ minconf

∀r ∈ L : ∄s ∈ L : conf (s) ≥ minconf ∧ sup(s) > sup(r).
(4)

This is in contrast to most rule mining algorithms that require that the user
set a minimum support threshold parameter that is hard to set, i.e., usually
users set it by trial and error. In addition, we avoid many redundant rules,
with potentially thousands of variations of rules having the same support and
confidence. The following definition eliminates redundancy in results by keeping
similar rules that have a smaller antecedent and a larger consequent.
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Definition 4. A rule ra : X → Y is redundant with respect to another rule
rb : X1 → Y1 if and only if conf (ra) = conf (rb) ∧ sup(ra) = sup(rb) ∧ X1 ⊆
X ∧ Y ⊆ Y1.

The TNS algorithm is based on a depth-first search procedure. TNS is an approx-
imate algorithm that generates non-redundant rules, which might not always be
the exact top-K non-redundant rules. TNS depends on a parameter δ, which
can be used to improve the chance that the result is exact (the higher the delta
value, the higher the chance that the result will be exact), i.e., it allows to make
a trade-off between accuracy and runtime performance. In our setting δ was left
to default, in all experiments approximate rule mining took less than 1 hour.

4 Case study: multivariate time series and alarm logs
form ICU

4.1 Data collection

We collected data from Philips hospital monitors installed in the Intensive Care
Unit (ICU) of AZ Groeninge Secondary Care Hospital in Kortrijk, Belgium, over
a seven month period in 2021, for more than 1000 patients. The hospital server
stored all monitor signals and alarm logs from bedside patient monitors with a
sampling rate of 0.2 Hz. These logs contained the timestamp, ID, alarm cate-
gory, and nature of the alarm. As for the monitoring signals, we focused on Heart
Frequency (HF ), Respiratory Frequency (RF ), systolic, diastolic, and mean Ar-
terial Blood Pressure (ABPs, ABPd, ABPm), end-tidal carbon dioxide (etCO2),
and oxygen saturation (SpO2). The alarm categories belong to physiological or
technical monitor alarms. Physiological alarms included mainly threshold alarms
such as High_HR or Low_SpO2. The physiological thresholds for generating
these alarms could be a standard set of values or modified by the medical team
based on the specific clinical profile of the patients, but this information was not
available to us. The medical data used in this study are confidential and cannot
be shared due to privacy regulations.

4.2 Data preprocessing

We sampled signals and alarm logs with a frequency of 2 measurements per
minute (0.033 Hz). Furthermore, we excluded patients with less than 6 hours of
recording, patients with less than 5 variables recorded among HF , RF , ABPs,
ABPd, ABPm, etCO2 and SpO2. Moreover, since we were specifically interested
in alarms, we excluded patients without alarms recorded, and included only time
frames within five minutes before and after the alarm. Finally, we excluded all
alarms that occurred in the same time frame as technical alarms to exclude
potential biases in the discovered rules. Since sequential rule mining techniques
naturally handle missing values, and all signals had a percentage of missing values
lower than 6% (except etCO2), we did not impute the data set. We decided to
binarize the variable etCO2 in present/absent as it is an indicator of intubation.
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The final cohort comprised 604 patients, 7 signals, and 31 alarm types, totaling
more than 3700 hours of recorded data, 16 million data points, and 3 million
alarms.

4.3 Discovering sequential rules

We applied our method to the preprocessed dataset. We run the experiments in
Python 3.10 on a laptop with a 2.60 GHz 6 cores CPU with 32 GB of memory.
The operating system used in this machine is Ubuntu 20.04.6 LTS. We used
the TNS Java implementation from the SPMF library [7]5, available through
a Python wrapper6. The code is available upon request to the corresponding
author.

Hyper-parameters Table 1 lists the parameters for preprocessing and sequen-
tial rule mining. We used all parameter combinations to perform a sensitivity
analysis and extract different rule variants. The size of the alphabet |A| deter-
mines the granularity of the representation of time series. The length of the
sequence S affects the capacity to capture long-term dependencies within the
data. Longer sequences work as upper bound for identifying patterns, allowing
us to identify both patterns close to each other and patterns that span in a longer
time period. The choice of segment length W is important to capture the trend
of the signal correctly. W is also relevant to the representation of alarm logs, as
often alarms of the same type occur in clusters, close to each other, and choosing
a small W would capture redundant patterns. For sequential rule mining we use
default values for min_conf and K.

Sensitivity analysis parameters There is an inherent trade-off between time-
liness and accuracy when selecting S. Although increasing S increases confidence,
it can reduce the clinical utility of the rules discovered. For example, an algo-
rithm might detect events that repeat in the same order over a 24-hour sequence,
5 http://www.philippe-fournier-viger/spmf/
6 https://pypi.org/project/spmf/

Table 1: Parameter ranges for pre-processing. For sequential rule mining we use
default values.
Parameter Description Value(s)

|A| Alphabet size for SAX [3, 5, 7]
W Segment length for SAX and alarm grouping (minutes) [1, 3, 5]
S Length sliding window (minutes) [20, 40, 60]

min_conf Minimum confidence threshold 0.5
K # of sequential rules 1000

http://www.philippe-fournier-viger/spmf/
https://pypi.org/project/spmf/
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but their apparent co-occurrence might be due to their high prevalence in the
dataset, rather than a true temporal relationship. As expected, the sensitivity
analysis revealed that the confidence was proportional to S and inversely pro-
portional to W . Furthermore, the effect of |A| is not negligible. With increasing
alphabet size, the number of observed patterns containing alarms increases and
confidence decreases.

4.4 Rule interpretation

We extracted 1000 rules for each combination of parameter values. To evaluate
the extracted rules, we selected the 50 rules with highest support and directly
inspected them. We report a selection of both trivial and interesting rules and
discuss their medical relevance in Table 2. First, we discuss our ensemble ap-
proach, since the reported rules are discovered using different representations
of the data, i.e. using a combination of values for preprocessing parameters as
shown in Table 1.

Ensemble of sequential rules We use multiple parameter values for pre-
processing, thereby reporting rules spanning both short and long periods and
considering different granularities of physiological variables. That is, we mined
sequential rules using all combinations of |A|, W and S, and aggregated the
resulting rules. It is important to note that multiple rules or similar variations
were found for different combinations of the parameters we tested. Intuitively, the
support and confidence changed slightly as the parameters affected the itemset
construction. We discuss the effect of each parameter independently:

– By varying S we discover sequential rules in a varying time horizon. Exist-
ing sequential rule mining algorithms enable a temporal constraint that is
enforced on the maximal duration of a rule [4]. In contrast, by varying S
we enable domain-experts to inspect both short-term and long-term rules
that are of interest. Moreover, we can filter redundant rules automatically,
i.e., rules discovered in a short window are also discovered using a longer
window, while the opposite is not true. In our case we discover rules where
the gap between the condition and consequent event is at most 60 minutes.

– The choice of binning strategy for continuous signals is determined by |A|
and has a direct impact on the extracted rules in two key ways. First, it
influenced the granularity and relevance of the rules: using a coarse binning
(e.g., 3 bins for heart frequency) captures broad trends but may miss finer
physiological variations, whereas a finer binning (e.g., 7 bins) allows for more
specific conditions but increases rule set complexity. Second, binning affected
support and confidence: rules derived from higher granularity bins tend to
be more specific and potentially more clinically meaningful, but they also
become rarer in the dataset, leading to lower support and confidence. These
rules may apply only to specific subgroups of patients or reflect less frequent
but highly relevant clinical conditions.
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– W determines the smoothing of continuous vital signs and has a similar
effect on granularity to |A| but in the time domain. With lower values of
W we detect peaks and sudden changes, while with higher values we focus
on increasing and decreasing trends. Using Wmin, i.e. 1 minute, we take the
average of 2 values, while using Wmax we take the average of 10 raw time
series measurements.

Table 2: Selection of trivial and rules of interest for the intubation alarm. We run
our method with different combinations of |A|, W , and S. Event codes are HF
(heart frequency), RF (respiratory frequency), and systolic, diastolic and mean
arterial blood pressure (ABPs, ABPd, ABPm). Conf. confidence, Sup. support.
ID Rule Conf. Sup.
(a) {HF_low} → {HF < 60} 0.62 0.11
(b) {ABPs < 100} → {ABPs_low} 0.61 0.30
(c) {SpO2 < 91} → {SpO2_low} 0.57 0.30
(d) {ABPm > 93, ABPs > 156} → {ABPs_high} 0.50 0.13

(e) {HF < 60, 28 < RF < 31} → {intubation} 0.55 0.02
(f) {74 < HF < 86,RF > 30} → {intubation} 0.53 0.03
(g) {ABPd < 47,RF > 30} → {intubation} 0.52 0.05
(h) {ABPd < 45, ABPm < 64,RF > 31} → {intubation} 0.51 0.02
(i) {intubation,ABPd < 45, 91 < SpO2 < 93} → {ABPm < 64} 0.51 0.02

We make a distinction between medically trivial and interesting rules, specific to
intubation, and provide the following interpretation explaining their prevalence
and medical significance.

Trivial rules Rules (b), (c), and (d) are trivial, as they reflect the standard
response to vital signs that cross a predefined threshold and are commonly em-
bedded in the ICU monitor, to alert physicians to possible clinical deterioration.
The low confidence can be explained by two main reasons: the possibility for
physicians to manually change the threshold to make it more suitable for spe-
cific patient profiles and the possibility to turn off an alarm if it is not needed.
Rule (a) depicts a scenario where the alarm goes off first and subsequently the
vital sign is still low. Rules such as this one were found relatively often, and
although they might appear counterintuitive, multiple reasons could contribute
to their presence with a relatively high confidence. First, the vital sign can still
vary after the alarm goes off, and even if doctors take action, it might take time
before the value returns to normal ranges. Moreover, the threshold can be set
differently after the alarm goes off or the alarm can be switched off.

Interesting rules In addition, we inspected patterns that include intubation
for mechanical ventilation, which was chosen as an event because it is one of
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the highest-risk procedures in the ICU and was straightforward to extrapolate
from the data. Intubation is an intervention performed when a patient cannot
maintain adequate gas exchange and it can be planned or unforeseen. In the
latter case, it can lead to negative consequences for the patient and ultimately
to increased mortality if not performed in a timely manner. Intubation is usually
required in cases of acute respiratory failure, shock, or neurological deterioration.
The scenarios that can lead to intubation can be, for example, severe hypoxia
(low SpO2) in patients with worsening oxygenation despite oxygen therapy; hy-
percapnic respiratory failure (elevated CO2 levels and high RF ) in conditions
such as COPD exacerbation; cardiogenic or septic shock, usually accompanied
by low ABP in addition to elevated HF as a compensatory response to hypoxia,
hypotension, or metabolic acidosis. Rules (e) to (i) were selected and assessed
to determine whether our method could extract clinically plausible patterns and
thus hold potential utility for future applications. Rule (e) associates intubation
with a combination of bradycardia and mild tachypnea, which could indicate
early respiratory failure. Rule (g) indicates hypotension in combination with
tachypnea, which could be related to shock or respiratory distress. Both rules
(e) and (g) could be improved in clinical relevance and usefulness if included
information regarding blood gases, which were not available in the dataset, or
oxygen saturation (SpO2). Rule (f) describes patients with normal HF and mod-
erate tachypnea and is too broad to be useful to predict intubation. Rule (h)
indicates more severe hypotension and tachypnea, which could be representative
of septic and cardiogenic shock with respiratory distress and is associated with a
higher likelihood of intubation. Finally, rule (i) suggests that intubated patients
have a low ABPm when they are still mildly hypoxic, but it is an observational
rule rather than a predictive rule. Surprisingly, patterns related to the event
of intubation lack oxygeneation in favor of HF , RF and ABP . Moreover, due
to limitations related to available data, we missed important markers such as
PaCO2, pH, and information about neurological condition such as the Glasgow
coma scale.

Sequential rule clusters Finally, we examined how frequently sequential rules
(without and with alarms) appeared within individual patients and across mul-
tiple patients. To achieve this, we first extracted the top-50 rules, obtained with
constant |A| = 7, while exploring all the possible combinations of parameter val-
ues for W and S. To simplify the calculation of rule occurrences per patient and
across patients, we focused on a single parameter configuration (W = 5, S = 60),
ensuring consistency in how the patients were encoded into a sequential database.
For each rule, we counted the number of patients where the rule appeared at
least once, and, for these patients only, also the average number of times the rule
appeared in each patient. Figure 3 shows the distribution of the rules in terms of
the number of patients and the average number of occurrences per patient. The
figure allows to distinguish “general" and “cluster-specific" rules, where the for-
mer apply to the majority of the population but are less specific, while the latter
apply to specific sub-populations. The presence of “cluster-specific" rules sug-
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gests that patients might be categorized into subgroups with different temporal
patterns, potentially relevant for clinical decision support. In our setting, rules
exclusively containing signals are more general, while rules containing alarms
tend to appear in fewer patients but with a higher number of occurrences per
patient, and might be of interest to personalize alarm settings to specific patient
profiles.
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Fig. 3: Each dot represents a rule. The x-axis represents the number of patients
for which the sequential rule holds, and the y-axis represents the average rule
occurrences within each of these patients.

5 Limitations

Despite the potential usefulness of our framework and the relevance of the ap-
plication, we must acknowledge multiple limitations of this work. First, ICU
monitors generate high-frequency data that are susceptible to sensor artifacts
and noise. Although the data were smoothed during preprocessing, this may
not have been sufficient to prevent outliers from affecting the extracted rules.
Moreover, although one of our core motivations was to address the problem of
false alarms, our dataset could not be linked to clinically verified alarm anno-
tations. Thus, we were unable to quantify false alarms directly. In addition, the
framework was applied to a retrospective single-center cohort of patients from a
Belgian hospital, limiting its generalizability to other ICU settings with different
monitoring systems, patient populations, and clinical protocols. Due to privacy
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constraints, we are currently unable to publicly release the dataset. While we
filtered rules using support and confidence thresholds, their interpretation still
relied on expert review. Furthermore, although our approach identifies frequent
and clinically plausible sequential rules, it does not establish causal relation-
ships between physiological signals and alarms or events. Finally, the nature
of the alarms based on thresholds that are predefined but easily changed by
clinicians to fit the patient profile, could introduce biases into the discovered
alarms. Future work should include the use of multiple cohorts of patients from
different hospitals. Efforts should also focus on linking signals and alarms with
clinically valid annotations to enable verification of false alarms and to quantify
the usefulness of the proposed rules. In addition, future studies should investi-
gate the use of additional interestingness metrics and domain-specific constraints
to automatically prioritize informative rules.

6 Conclusions

In this work, we introduce a novel framework for mining patterns in multivari-
ate ICU signals and alarms, providing a data-driven approach to understanding
alarm triggers and physiological trends. By applying the framework to a case
study from a Belgian hospital, we demonstrate its potential to extract clin-
ically meaningful patterns that may help reduce alarm fatigue, optimize the
early warning system, and support the decision-making process in the ICU. The
extracted patterns are consistent with clinical expectations, but also highlight
potential limitations of current ICU alarm systems, such as false positive alarms
and threshold-based dependencies. This work serves as a basis for further refine-
ment of ICU alarm systems by integrating multiple signals and creating alarms
that provide a meaningful indication of the overall state of the patient.

Acknowledgments M.V. and L.F. are funded through the Research Fund Flan-
ders (project G0A2120N and grant 12B0V24N, respectively). The authors also
acknowledge the Flemish Government (AI Research Program).

Declaration of competing interest The authors have no competing interests
to declare that are relevant to the content of this article.

References

1. Agrawal, R.: Fast algorithms for mining association rules. VLDB (1994)
2. Alsuyayfi, S., Alanazi, A.: Impact of clinical alarms on patient safety from nurses’

perspective. Informatics in Medicine Unlocked 32, 101047 (2022)
3. Bitan, Y., O’Connor, M.F.: Correlating data from different sensors to increase the

positive predictive value of alarms: an empiric assessment. F1000Research 1 (2012)
4. Cule, B., Feremans, L., Goethals, B.: Efficiently mining cohesion-based patterns

and rules in event sequences. Data Mining and Knowledge Discovery 33(4), 1125–
1182 (2019)



16 M. Venturini et al.

5. Cvach, M.: Monitor alarm fatigue: an integrative review. Biomedical instrumenta-
tion & technology 46(4), 268–277 (2012)

6. Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B.: Pattern-based
anomaly detection in mixed-type time series. In: Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg,
Germany, September 16–20, 2019, Proceedings, Part I. pp. 240–256. Springer
(2020)

7. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng,
Z., Lam, H.T.: The spmf open-source data mining library version 2. In: Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part III
16. pp. 36–40. Springer (2016)

8. Fournier-Viger, P., Nkambou, R., Tseng, V.S.M.: Rulegrowth: mining sequential
rules common to several sequences by pattern-growth. In: Proceedings of the 2011
ACM symposium on applied computing. pp. 956–961 (2011)

9. Fournier-Viger, P., Tseng, V.S.: Tns: mining top-k non-redundant sequential rules.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. pp.
164–166 (2013)

10. Frankenthal, H., Ben Shlomo, I., Kurzweil Segev, Y., Bubil, I., K, A., Orkin, D.,
Kobo Greenhut, A.: Perceived reliability of medical device alarms—a major deter-
minant of medical errors driven by frozen medical thinking. International Journal
for Quality in Health Care 34(1), mzac009 (2022)

11. Gul, G., Intepeler, S.S., Bektas, M.: The effect of interventions made in intensive
care units to reduce alarms: A systematic review and meta-analysis study. Intensive
and Critical Care Nursing 75, 103375 (2023)

12. Hever, G., Cohen, L., O’Connor, M.F., Matot, I., Lerner, B., Bitan, Y.: Machine
learning applied to multi-sensor information to reduce false alarm rate in the icu.
Journal of clinical monitoring and computing 34, 339–352 (2020)

13. Huo, J., Wung, S., Roveda, J., Li, A.: Reducing false alarms in intensive care units:
A scoping review. Exploratory Research and Hypothesis in Medicine 8(1), 57–64
(2023)

14. Imhoff, M., Kuhls, S.: Alarm algorithms in critical care monitoring. Anesthesia &
Analgesia 102(5), 1525–1537 (2006)

15. Imhoff, M., Kuhls, S., Gather, U., Fried, R.: Smart alarms from medical devices
in the or and icu. Best Practice & Research Clinical Anaesthesiology 23(1), 39–50
(2009)

16. Jones, K.: Alarm fatigue a top patient safety hazard (2014)
17. Joshi, R., van Pul, C., Atallah, L., Feijs, L., Van Huffel, S., Andriessen, P.: Pattern

discovery in critical alarms originating from neonates under intensive care. Physiol
Meas 37(4), 564–579 (Mar 2016)

18. Kang, S.M., Wagacha, P.W.: Extracting diagnosis patterns in electronic medical
records using association rule mining. International Journal of Computer Applica-
tions 108(15) (2014)

19. Karaca, M., Alvarado, M.M., Gahrooei, M.R., Bihorac, A., Pardalos, P.M.: Fre-
quent pattern mining from multivariate time series data. Expert Systems with
Applications 194, 116435 (2022)

20. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and information
Systems 3, 263–286 (2001)

21. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic repre-
sentation of time series. Data Mining and knowledge discovery 15, 107–144 (2007)



Uncovering Sequential rules in ICU 17

22. Nguyen, D.T., Khuat, B.D.L.: Discovery of temporal association rules in multi-
variate time series. International Journal of Applied Engineering Research 14(1),
79–84 (2019)

23. Paine, C.W., Goel, V.V., Ely, E., Stave, C.D., Stemler, S., Zander, M., Bonafide,
C.P.: Systematic review of physiologic monitor alarm characteristics and pragmatic
interventions to reduce alarm frequency. Journal of hospital medicine 11(2), 136–
144 (2016)

24. Park, H., Jung, J.Y.: Sax-arm: Deviant event pattern discovery from multivariate
time series using symbolic aggregate approximation and association rule mining.
Expert Systems with Applications 141, 112950 (2020)


	Sequential Rule Analysis of ICU Patient Vital Signals and Alarms

