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Abstract. The paper addresses simulating laser wakefield electron ac-
celeration experiments by using a novel training methodology for prob-
abilistic diffusion models with adherence to the foundational physical
principles. The methodology allows overcoming the inability of the com-
mon generative machine learning models to capture external data man-
ifold constraints due to the nature of training. Laser wakefield electron
acceleration is a highly complex non-linear phenomenon with a devel-
oped approximation theory, which, however, falls short in many extreme
cases. Applying a model trained with physical constraint loss to simulate
these experiments demonstrates strong performance and produces results
that are positively evaluated by experts in the field. Moreover, due to
the embedded physical information, it can extrapolate outside the range
of training input data, based on the known physics of the process. This
approach shows immense potential for using generative models in the
modeling of complex scientific experiments, which helps in efficient ex-
periment planning and optimization. We evaluate the generative models
using Wasserstein distance calculated between distributions of charge of
electrons at corresponding energies. This metric provides a robust quan-
tification of the similarity between the predicted and reference electron
energy spectra.

Keywords: Diffusion models · Laser wakefield electron acceleration ·
Physics-informed machine learning · Generative modeling

1 Introduction

Despite the overall success of probabilistic diffusion models in image genera-
tion [1], their application remains largely confined to entertainment and design,
possessing significant underrepresentation in the broader practical domain. The
limitations that hinder the application of probabilistic diffusion models in other
domains arise from learning solely from visual and textual representations that
often do not reflect in learning of an actual world model. One of such limitations
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is the use of physical constraints in generated data [2]. Physics-informed neural
networks [3, 4, 5] (PINNs) are a powerful tool for efficient learning the distri-
bution of data adherent to the foundational physical principles. PINNs help in
reducing the required amount of data by embedding physics as part of the loss
function. This helps achieve more scientifically reasonable results given fewer ex-
perimental observations, as we do not rely solely on passive information present
in the dataset. By incorporating physical constraints and specific we can en-
hance the model’s ability to generate data that adheres to real-world physical
phenomena.

One promising application of such physics-constrained diffusion models is in
the optimization of particle accelerators. These powerful scientific instruments
enable us to study the fundamental properties of matter and the universe [6].
One of the most significant discoveries made using particle accelerators is the
Higgs boson, a fundamental particle that gives other particles mass. The Large
Hadron Collider at CERN [7], the world’s largest and most powerful particle
accelerator, discovered the Higgs boson in 2012 [8], confirming a key predic-
tion of the Standard Model of particle physics [9]. However, the development of
laser-plasma accelerators has enabled significant miniaturization of particle ac-
celerators, making them indispensable in various scientific fields. These devices
are workhorses in myriad fields of science, blasting out fundamental particles
and generating intense beams of X-rays for studies of biomolecules and materi-
als. Using laser wakefield acceleration (LWFA) [10, 11], kilometers-long devices
[12] can be scaled down into a centimeters scale and, for example, the Large
Hadron Collider, the biggest and most powerful of them all, potentially could fit
in a classroom.

However, despite the main advantage - the compact size - laser wakefield
electron accelerators are characterized by a plethora of non-linearly dependent
parameters along with a high sensitivity to their changes [13]. Furthermore, these
experiments are influenced by stochastic-like influences from temperature, light-
ing conditions, material deterioration or even other unknown sources. This makes
the development and optimization of them a difficult task [14]. Therefore at the
moment obtaining high-quality laser-plasma accelerated electron beams poses a
significant challenge, given its crucial role in numerous applications of health-
care, notably in medical imaging [15, 16], radiation medicine [17, 18] and cancer
treatment [19]. Additionally, they are invaluable in future research domains that
would require accelerated particles, offering more compact and efficient alterna-
tives to traditional accelerators. This process requires the careful manipulation of
various interconnected physical phenomena, including plasma wave generation,
electron injection, betatron radiation, and beam phase space evolution. The sim-
ulation of these processes demands sophisticated numerical methods and high-
performance computational resources to solve the governing equations, namely
Maxwell’s and relativistic fluid equations. Conducting experiments to optimize
these beams is complex and costly due to the nonlinear, transient nature of laser-
plasma interactions and the plethora of instabilities that arise. Furthermore, the
experimental parameter space is extremely high-dimensional, encompassing nu-
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merous variables from both the laser system (such as pulse energy, duration,
and focusing conditions) and electron acceleration (including plasma density,
interaction length, and injection conditions). This multitude of interconnected
parameters creates a prohibitively large search space for optimizing experimental
outcomes.

To address these challenges, the adoption of artificial intelligence and gen-
erative deep learning models, such as Denoising Diffusion Probabilistic Models
(DDPM) or those based on Nonequilibrium Thermodynamics, can prove ben-
eficial. Diffusion models, which employ physics-inspired diffusion processes to
iteratively refine a random initial state into a sample from the target distribu-
tion, have gained significant recognition for their capability to model complex,
inherently probabilistic, high-dimensional distributions. In their comprehensive
review, Döpp et al. [20] provided a detailed analysis of machine learning applica-
tions in laser-plasma science, demonstrating how various data-driven techniques
have transformed experimental design, theoretical modeling, and diagnostic anal-
ysis

These models can be used to conditionally generate novel electron beam spec-
tra based on the input parameters, effectively augmenting the search space with-
out necessitating additional expensive and time-consuming experiments. This
approach allows for more efficient exploration of the parameter space and in-
creases the probability of identifying optimal conditions.

By integrating reinforcement learning agents [21] or other optimization al-
gorithms [22] with the diffusion model, the search process can be guided more
efficiently, learning the complex dependencies within the data. Feedback from
the experiments, based on the parameters suggested by the model, can be uti-
lized to further refine the model, thereby enhancing its predictive power and
the quality of the generated samples. Consequently, this approach establishes a
virtuous cycle of learning and optimization, demonstrating the potential of com-
bining physics and AI to tackle this complex challenge. Bayesian optimization
has already proven to be a viable tool for LWFA experimental parameter tuning
achieving an increase in both stability and electron energy [14, 13].

Therefore the present article is focused on developing a probabilistic diffu-
sion model that takes into account physical theory related to particle acceleration
induced by laser. Given the complexity of the data from the experiments and, of-
ten, the high cost of scientific trials, generative models based on physics-informed
probabilistic diffusion models for spectral generation can be extremely beneficial
for experimental design as they can support and accelerate scientific discovery
by augmenting a search space for the conducted experiments.

2 Laser-Plasma Accelerator Setup

The key apparatus in these experiments was the laser system, operating at a fre-
quency of 1 kHz and delivering high pulse energy at approximately 26 mJ. This
multi-cycle, 15 fs pulse laser, based on optical parametric chirped pulse amplifi-
cation (OPCPA) technology, was pivotal in enabling laser wakefield acceleration
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(LWFA). Unlike earlier systems requiring single-cycle pulses, the design proved
capable of achieving electron beam energies up to 50 MeV at a high repetition
rate, showcasing a 25% energy spread and 2 mrad beam divergence. [23]

The laser was directed toward a gas target, composed either of pure nitrogen
or a nitrogen-helium mixture of gases. Upon laser interaction, the gas undergoes
ionization, forming plasma. As the laser traverses the plasma, it generates a
wakefield in its trail. Electrons within the plasma are then drawn into this wake-
field and accelerated to high energies, essentially “surfing” [24] in a trajectory
parallel to the laser’s path. The accelerated electron beam is directed toward
a spectrometer equipped with a LANEX Fast Back scintillator screen. The in-
teraction of electrons with the screen results in luminescence at the points of
impact, enabling their detection and capture via a camera [25].

Another aspect of this setup is the incorporation of a 5mm aluminum slit and
a magnetic dipole positioned before the screen. The magnet’s role is to deflect
the electron beam, causing a displacement relative to the beam’s original path.
By analyzing this displacement and applying a deflection curve specific to the
experimental setup geometry, it is possible to measure the energy levels of the
electrons striking the screen. The slit is used to center the spectrometer on the
average electron beam pointing. A detailed illustration of the experimental setup
is depicted in Figure 1, providing a comprehensive visual overview of the entire
process and apparatus.

During the experiments, the electron beams were generated with energies
reaching up to 50 MeV, additionally characterized by a low energy spread. It
was observed that small changes in the laser and plasma parameters significantly
affected the energy distribution of accelerated electrons. [23]

3 Data Processing Pipeline

The dataset obtained from the scientific group exhibited a high level of noise,
resulting in grainy images. To mitigate this, the data was preprocessed using a
median filter with a kernel size of 5. A larger kernel did not appear to improve
noise removal significantly. Additionally, the images were taken by the camera
with a damaged sensor making parts of the images contain irrelevant outlying
values. These parts were manually set to 0 as is usually the background value.
Fortunately, these errors never appear near the electron beams and therefore
such treatment is sufficient.

The Lanex screen, which is hit by accelerated electrons, has black dots ar-
ranged in a cross shape to facilitate distance calculations. These dots obscured
the image and needed to be removed. This process was automated using a
dot-detection algorithm. The image is first converted to binary using adap-
tive thresholding. The main parameters are blockSize, which controls the size
of the neighborhood used to calculate the segmentation threshold, and C, a
constant subtracted from the mean of the neighborhood to obtain the final
threshold value. After experimentation, these parameters were set to 51 and
4 respectively. The dots were then detected using the circle Hough transform
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Fig. 1: From [23]: Experimental setup of the laser-plasma accelerator. (a) The
laser system. (b, c, e) Various laser-related diagnostics. (d) View of the focal
spot of the laser. (f) The gas-jet target of the laser. (g) Electron spectrometer.
(h) Electron-beam trace projected on the Lanex screen.

[26]. The OpenCV [27] implementation was used with the following parame-
ters: minDist=20, param1=50, param2=7, minRadius=0, maxRadius=10. This
resulted in more detected dark dots in the image than actually present, which is
preferable to the alternative. The black dots were then removed by interpolating
along the x axis, meaning that the “removal" of non-existent dots had minimal
effect on the resulting image given the gradient-like nature of the images.

In addition to the data with the magnet in the aperture, which is used to
measure the energy of the electrons, there are corresponding datasets without
the magnet used to acquire the position of the electron beam. This position
is then used as a reference point when calculating the energy of the accelerated
particles. The position of the electron beam was estimated by summing all images
of a given experiment and then searching for the position of the maximum in
the summed image. This point of highest intensity is taken as the center of the
electron beam.

The original images contained large areas either outside of the Lanex itself
or far from the electron beam pointing pixel, that did not contain any valuable
information. The images were cropped to a height of 256 pixels and width of 512
pixels, with the electron pointing pixel fixed at coordinates [128, 62] (vertical
and horizontal position). This position was selected because the vertical axis is
similarly important, and on the horizontal axis, the deflection by the magnet
occurs towards positive values of x. However, the image size was still excessive
to be used as an input for training a DDIM with many convolutional layers and
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would require more VRAM than was available for this project. Cropping the
images to a smaller size of 64 by 128 pixels resulted a significant information
loss as many training data contained only lower energy electrons which would be
deflected outside of the new horizontal image range. To overcome this issue, the
images were resized using bilinear interpolation to a final size of 64 by 128 pixels
before being used for training. At the end of the sampling process used for image
generation, the images were resized back to the original size. Due to the gradient-
like nature of most of the images, this process of repeating interpolation does not
result in much loss in the fine detail of the images. The preprocessing pipeline
demonstrated on one data sample can be seen in Figure 2. The preprocessed
dataset can be downloaded from this link.

The dataset consists of folders of images of electron spectra from 22 experi-
ments with varying values of the following parameters:

– E - energy of the laser (12–26 mJ)
– P - pressure of the gas jet (10–38Bar)
– gas - type of gas (Nitrogen or Helium/Nitrogen mixture)
– ms - acquisition time of the camera/opening time of the gas valve (10–40 ms)
– gain - gain setting on the camera

In the process of training the model, only a subset of the parameters, specifi-
cally E, P, and ms, were incorporated into the conditional vector. The rationale
behind this selection was based on the relevance and variability of these param-
eters in the context of the experiments.

The parameter gas, which denotes the type of gas used in the experiments,
was deliberately excluded from the conditional vector. This decision was driven
by the fact that only two experiments were conducted using a gas mixture, while
the rest employed Nitrogen. Consequently, the gas parameter exhibited very
little variation across the dataset, rendering it less informative for the purpose
of training the model.

Furthermore, both gain and ms are parameters that influence the bright-
ness of the captured images. However, the gain parameter was not included in
the conditional vector. The influence of the gain setting on the image bright-
ness is deterministic, meaning it follows a predictable and consistent pattern.
Therefore, its effect can be accounted for by subtracting it from the images dur-
ing the preprocessing stage. This allows the model to focus on learning from
the more variable and informative aspects of the data, potentially improving its
performance and generalization ability.

The data was collected using a Basler aca2040-25gm camera. According to
the official documentation [28], the formula for calculating gain is:

Gain = 20 ∗ log10(GainRaw/32) (1)

Here, GainRaw is the value set within the Basler Pylon Viewer through
which camera settings were adjusted during the experiment. After recalculating
the value of Gain from decibels (dB) to linear units, the gain value is used to
adjust the brightness of the image. However, it was experimentally found that

https://zenodo.org/records/11245954?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImVkZWFkZGFhLWM3YWUtNDEyMS1iNjMwLWM5ZDgzNGNlOWE4ZCIsImRhdGEiOnt9LCJyYW5kb20iOiI4ZTI0NDQ5ODY1ZTYwYjdkYmI3YTk0NjI3YWFiYjNlZSJ9.y2ZF4oDpl1mkAOzdJnqcUUCxVvh1DdX0lJdIBgMe2o6hFiLa7Koe6mPvymaWI4OHkV4Gybq5ISvkaeUVrzX2Hw
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subtracting the gain value from the dataset causes the network to perform poorly
during training. It is assumed to be caused by weak signal from dataset features.
Therefore, the gain value was left as is. This may result in some inaccuracies
when accessing the intensity of the generated samples which corresponds to the
total charge of the accelerated electrons. However, this inaccuracy was deemed
unsubstantial and a better alternative to poor training performance.

(a) Original image (b) Dots removal (c) Preprocessed image

Fig. 2: Data preprocessing pipeline

4 Methodology

The full implementation can be found in the github repository including training,
validation, sampling and all hyperparameters.

4.1 Denoising Diffusion Implicit Model

The proposed diffusion process adheres to the following distribution as intro-
duced by Song et al. [29]:

q(Xt−1|Xt,X0) = N (
√
αt−1X0 +

√
1− αt−1 − σ2

t

Xt −
√
αtX0√

1− αt
, σ2

t I) (2)

For the αt noising parameters the cosine schedule was chosen based on its
superior performance over a linear schedule [30].

The objective function for this model is most commonly defined as the MSE
between the removed noise, ϵ̃t and the actual noise ϵt, that was added during
step t in the forward diffusion process. This is calculated over a batch of size B,
as shown in the following equation:

MSE =
1

B

B∑
j=1

(ϵtj − ϵ̃tj )
2 (3)

https://github.com/Jechmate/diffAE-elibeams
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The input image is processed through a U-Net architecture [31], which is
composed of three downsampling and upsampling blocks. The initial process-
ing stage involves a double-convolution block, which applies a 2D convolutional
layer, group normalization, and a GELU activation function twice in succession.
Following this, the first downsampling block is applied, which consists of a 2D
maxpooling layer and two subsequent double-convolution blocks.

In addition to images, the network processes the settings vector and the
noising step number. The settings vector, denoted as y, is processed through a
block of layers, which includes batch normalization, a linear layer, and a SiLU
activation. The noising step number, denoted as t, is encoded using positional
encoding to provide the model with more nuanced information about the noise
step beyond a single integer value. The tensors y and t are combined and serve
as inputs to the network’s Down and Up blocks, where they undergo further
processing through a SiLU activation [32] and a linear layer before being added
to the tensors derived from the image data. This approach equips the model
with both conditional information and the remaining number of noise steps to
be eliminated.

At the network’s core, there are three double-convolution blocks, succeeded
by the upsampling phase. The Up block mirrors the structure of the Down
block, except for an upsampling layer replacing the maxpooling layer to enlarge
the tensor dimensions. Layers are concatenated with a skip connection, utilizing
the output from the corresponding Down block.

Each Down and Up block is followed by a SelfAttention [33] block. Initially,
the input is reshaped to conform to the data ordering expected by the Multihea-
dAttention layer and is then normalized using layer normalization. The output
is subsequently combined with the original input, followed by a sequence of layer
normalization, linear transformation, GELU activation [34], and another linear
transformation. Prior to reshaping the output to maintain consistency with the
network’s data ordering, the output of the MultiheadAttention layer is added
once more. Overall the architecture of the model was hand-tailored, however we
leveraged transfer learning [35] and used a subset of pre-trained convolutional
filters from previous implementation of a DDPM model [36]. A simplified scheme
of the architecture can be seen in Figure 3.

The enhanced DDIM sampling sequence, as described in [29], was imple-
mented utilizing the source code for the diffusion autoencoder [37]. This im-
plementation leverages the underlying DDPM noising schedule to derive a new
schedule with a reduced number of steps. Furthermore, it offers the flexibility
to distribute the new steps non-uniformly, enabling a more precise focus on spe-
cific segments of the denoising process. A sample Xt−1 can be generated from a
sample Xt using the following equation [29]:
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Fig. 3: A schematic of the model architecture. Black arrows show the flow of
data, red arrows signify skip connections.

Xt−1 =
√
αt−1

(
Xt −

√
1− αtϵ

(t)
θ (Xt)√

αt

)
︸ ︷︷ ︸

predicted X0

+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (Xt)︸ ︷︷ ︸

direction pointing to Xt

+ σtϵt︸︷︷︸
random noise

(4)
Upon completion of the sampling process, the output image is reshaped to the

desired dimensions. In the final implementation, this step is crucial for generating
the image in its original size, as the training dataset was previously rescaled to
minimize computational demands.

4.2 Physical constraint loss

The physical constrained loss is defined in two parts corresponding to different
aspects of the experiments. First, the ability of the model to precisely model the
energy and charge of electrons is tested. This loss function is further referred
to as Lphys1. Second, the model is penalized for generating electrons left of the
electron-pointing beam. Such particles would have beyond infinite energy as their
distance to the beam-pointing pixel relative to the magnet is negative. The loss
corresponding to this constraint is termed Lphys2.

Both Lphys1 and Lphys2 use a partially noised image. Lphys1 compares an im-
age partially altered by the noise distribution learned by the model and an image
noised by the forward diffusion process. Lphys2 uses an image partially denoised
by the model. Both Lphys1 and Lphys2 are controlled during training by a sched-
uled weight parameter. This weight is parameterized by the current denoising
step number t. During the first steps where t is high, the constraint losses are
virtually unused since the image is too noisy to discern any real features. For the
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schedule of the weight, a cosine schedule was chosen as it mirrors the approach
used in the forward diffusion process. The formula for the scheduling is defined
as:

weightphys(t) = 0.5×
(
1 + cos

(
t

1000
× π

))
(5)

Electron beam spectra simulation From each image of the accelerated elec-
trons the total charge of electrons at a certain energy level can be calculated.
This is based on the distance of the deflected electrons from the original position
of the electron beam. A training image, along with its calculated electron beam
spectrum, is visualized in Figure 4.

Fig. 4: An image from the training dataset with the 1D spectrum calculation. The
image is rendered in monochrome, with a colormap applied to enhance visual
clarity and facilitate easier interpretation.

This calculation is used for the first part of the physics constraint loss by
calculating it from an image noised by the forward diffusion process and an
image noised by the distribution learned by the model. This encourages the
model to learn the distribution of noise more precisely by ensuring the noising
process has little or no effect on the calculation of the spectra. The spectrum in
MeV is calculated by using the deflection curve of the magnet inserted into the
aperture. In the original script, this is done by interpolating between measured
points of the curve of the magnet. For ease of loss computation we use a double
exponential decay function:

f(d) = a1e
−λ1d + a2e

−λ2d (6)

fitted as:

f̂(d) ≈ 77.86e−0.47d + 19.91e−0.04d (7)

The spectrum is then calculated by taking the horizontal sum of the image
denoted as xsum into:
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S(j) =

{
xsum[j]

f̂(j − 1)− f̂(j)
| j ∈ Z, 62 ≤ i < len(X)

}
(8)

where 62 is the position of the electron pointing pixel (point of infinity) and
len(X) is the horizontal size of the image. The spectrum is then calibrated by
C = 3.706 which is a conversion value from pixel intensity to nA/MeV , the
acquisition time tacq and gain g by

SMeV(x) =
S(x) · C
tacq · g

(9)

for a final loss of:

Lphys1 = MSE
(
SMeV(Xt), SMeV(X̂t)

)
(10)

where X̂t is the image noised by the reverse process learned by the model.

Electron beam pointing pixel The second part of the loss uses the fact
that no electrons should appear left of the electron-pointing pixel as they would
have an impossible higher than infinite energy. It uses a transition smoothed by a
sigmoid function applied over the image. First, for defining the sigmoid transition
at the correct area we need to define a calculation of horizontal distance as:

dXi = {(i− 62) · 0.137 | i ∈ Z,−62 ≤ i < len(X)− 62} (11)

where 62 is the position of the electron beam, 0.137 is the ratio of pixels to
millimeters specific to the experimental camera setup, i is the horizontal index
of the pixel and len(X) is the horizontal size of the image. This is then used in
the final loss function as:

Lphys2 =
1

n

n∑
i=1

(
X

(
1− 1

e−2·dXi

))
(12)

This approach to penalization, which is informed by the physical properties
of the system under study, contributes to the robustness and accuracy of the
model’s performance. This enhances the model’s ability to generate meaningful
and reliable outputs. This condition could have been also fulfilled by a hard
constraint where this area would not be generated by the model. However, the
training data shows that some electrons do seldom appear in this region due to
specific interactions with the magnetic field and therefore their distribution is
also worthwhile to simulate.

5 Evaluation metrics

We implemented a targeted cross-validation approach to evaluate our models,
wherein each model underwent five training iterations. For each iteration, one
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experiment was withheld as a validation set. The five experiments were selected
to maximize diversity in both experimental parameters and electron spectra
distributions, ensuring robust evaluation across varied conditions.

Following the standard procedure for evaluating generative models we first
used the Fréchet Inception Distance (FID) [38] metrics. Nevertheless, we argue
that since the feature embeddings captured by the Inception model are designed
for natural images they are consequently not suitable for evaluation of the nu-
anced physical properties present in electron spectra data.

Therefore, to address this limitation, we propose a more dataset specific eval-
uation approach based on the Wasserstein distance [39], which enables direct
comparison of charge distributions across energy bins. For each validation ex-
periment and its generated counterpart, we compute the one-dimensional spectra
of charge versus electron energy according to Equations 8 and 9. Our methodol-
ogy then calculates the Wasserstein distance between real and generated charge
distributions for each energy bin, as formulated in Equation 13:

Ww(val, gen) =
1

N

N∑
i=1

wi ·W1(Pvali , Pgeni
) (13)

where Ww represents the weighted Wasserstein metric, N is the total number of
energy bins, wi is the weight assigned to the i-th energy bin, and W1(Pvali , Pgeni

)
is the Wasserstein distance between the probability distributions of charge in the
i-th energy bin for validation and generated samples, respectively.

This formulation offers significant flexibility for physics-specific evaluation.
By adjusting the weight vector {wi}Ni=1, researchers can emphasize particular
regions of interest in the energy spectrum. For instance, setting wi = 0 for low-
energy bins and wi = 1 for high-energy bins enables focused evaluation of peak
acceleration performance, which is often critical in electron acceleration experi-
ments. The validation metric for each experiment is computed as the weighted
mean across all bins, providing a comprehensive yet customizable assessment of
model performance.

6 Results

The evaluation process was performed for a vanilla DDIM training approach and
for the PCDDIM (physically constrained DDIM) introduced in this paper. The
only difference between these two models and their training and sampling regime
is the presence of the physical constraint loss in the PCDDIM. All of the training
and validation models can be accessed from this link. The results can be seen in
Table 1 over various classifier-free guidance [40] values. The results are averaged
across various step counts ranging from 10 to 30 totaling 10 different runs per
model and CFG value. The Wasserstein distance metric as described in Section
5 was used for energy bins corresponding to 30 MeV or higher, disregarding the
lower energy electrons and focusing more on peak energy. Across both models
and metrics we can see a decrease in sampling quality as CFG increases. This is
attributed to the recent findings in [41].

https://zenodo.org/records/11245954?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImVkZWFkZGFhLWM3YWUtNDEyMS1iNjMwLWM5ZDgzNGNlOWE4ZCIsImRhdGEiOnt9LCJyYW5kb20iOiI4ZTI0NDQ5ODY1ZTYwYjdkYmI3YTk0NjI3YWFiYjNlZSJ9.y2ZF4oDpl1mkAOzdJnqcUUCxVvh1DdX0lJdIBgMe2o6hFiLa7Koe6mPvymaWI4OHkV4Gybq5ISvkaeUVrzX2Hw
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Table 1: Comparison of Wasserstein distance and FID metrics for DDIM and
PCDDIM models across different CFG values.

Metric Model CFG Values
1 2 3 4 5 6 7 8

Wasserstein DDIM 5.43 9.56 13.95 16.34 19.33 21.46 22.13 23.47
PCDDIM 17.98 16.94 17.17 19.38 21.01 24.4 23.62 27.73

FID DDIM 107.11 111.56 111.74 114.20 115.75 116.03 118.41 121.11
PCDDIM 97.12 101.32 103.49 104.99 106.62 107.57 108.70 109.29

Furthermore, the increased accuracy of the PCDDIM can be seen in its ability
to produce samples outside of the training data parameters range. From Figure 5
it is apparent that the PCDDIM suggests electrons are being accelerated at laser
energies of 40 mJ and above which is well aligned with other LWFA experimental
data even though such experiments were not included in the training dataset.
The proposed method can be further tested and validated outside the scope of
available experimental data by using Particle-in-Cell (PIC) simulation data and
comparing them to the generated results. [42]

(a) DDIM (b) PCDDIM

Fig. 5: Comparison of average results between DDIM and PCDDIM when sam-
pling at higher laser energies.

7 Conclusion

This paper presents a novel methodology that integrates physical principles into
generative denoising diffusion models applied for the optimization of laser-plasma
accelerators. The approach demonstrates notable improvements in modeling
complex, high-dimensional distributions associated with laser wakefield electron
acceleration experiments. By embedding physical constraints into the model’s
training process, PCDDIM not only improves the FID metric but also offers ro-
bust extrapolation capabilities beyond the range of training data. Additionally,
due to the ability of the PCDDIM to operate outside of the training inputs,
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the outputs from the model were recognized by the experts in the field as more
credible overall.

The above-described approach can be used for the conditional generation of
multidimensional spectral data under physics constraints in various fields. This
approach is believed to accelerate scientific discoveries by augmenting the search
space of the experiments. Combination of PCDDIM with agent-based or other
type of optimization can be a step forward in the efficient experimental design.
The PCDDIM can be adapted to be used in other applications modeling highly
non-linear interactions and parameter dependencies. The physical constraints
need to be tailored specifically for each application and used within the proposed
training scheme.

A specific metric tailored for electron spectra simulation was developed by
comparing the distributions of charge over energy levels between generated and
real samples. This offers a flexible approach to evaluation as one can assign signif-
icance to parts of the spectra. This can be used in optimization tasks by utilizing
sampling settings which more closely model desirable parts of the spectrum.
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