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Abstract. In used cars auction systems, users can buy vehicles through
fixed-price rounds or participate in auction rounds where they place bids,
with each item typically awarded to the highest bidder. This auction
setup presents a challenge for recommender systems, as it involves se-
quential recommendation of unique items, where each item is available
for sale only once in both fixed-price and auction rounds. Although this
scenario is highly relevant, it has received limited attention in existing
sequential recommendation research. Moreover, this challenge relates to
the cold start problem encountered by many recommendation models.
In this work, we aim to address the unique item sequential recommen-
dation problem by developing an attribute-aware model for next-item
prediction. Specifically, we introduce the Attribute-Aware Sequential
Recommendation Model (ASRM), which is designed to handle unique
item data and effectively leverage item attributes in the absence of item
IDs. To further enhance performance in this context, we propose an im-
proved version, ASRM++4. Our experiments, conducted on a dataset
from Volkswagen Financial Services’ used car center, demonstrate that
ASRM significantly outperforms existing state-of-the-art models for unique
item recommendation. Additionally, we present A /B test results from the
deployed ASRM model to validate its effectiveness.

Keywords: Attribute-aware recommendation - Auction systems - Se-
quential recommendation.

1 Introduction

Recommender systems have become essential for nearly all online platforms to-
day. Over the past decade, the number of recommender system models has grown
rapidly, including various types such as sequential recommendation [2]| [11] [12],
context-aware recommendation, and attribute-aware recommendation [7] [10].
Auction platforms raise unique challenges due to their specific characteristics.

* * All three authors contributed equally to this work.
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In business-to-business (B2B) used car auction systems, users can purchase ve-
hicles in two types of rounds: a fixed-price round or a bidding round, where users
place bids and the item is sold to the highest bidder. Once sold, an item is re-
moved from the platform, meaning each item is unique and becomes unavailable
after the sale in both fixed-price and bidding rounds. As a result, relying on item
IDs in such systems is not possible, as it is similar to the cold start problem with
constantly unseen items. In this context, item attributes are essential for learn-
ing user preferences, as each item must be represented by its attributes rather
than a persistent ID.

Sequential recommendation models have rapidly advanced due to their sig-
nificance. Early approaches relied on convolutional neural networks (Caser) [12]
and Gated Recurrent Units (GRU4Rec) [2]. A pivotal model, SASRec [4], uses a
transformer encoder to build a simple yet effective recommendation model that
is trained in an autoregressive manner. Several models have since built upon
SASRec, such as S3Rec [13], which incorporates pre-training to improve learn-
ing, and TiSASRec [5], which accounts for time intervals between interactions.
Other methods integrate item or user attributes, including NOVA [6] that en-
hances BERT4Rec [11] to leverage the side information in the data , CARCA
[7] which is an attribute and context-aware model that applies cross-attention
for item scoring and ProxyRCA [10] further refines CARCA by enhancing the
training protocol and introducing proxy-based item embeddings, allowing less
frequently observed items to benefit from the information of more frequent ones.

Although many sequential recommendation models have been developed, few
address the challenge of unique item settings. In this work, we aim to leverage
a sequential recommendation model that focuses on item attributes instead of
item IDs. Inspired by the CARCA model architecture, we propose an attribute-
aware sequential recommendation model specifically designed for car auction
systems, which can learn user preferences based on the features of historical
items. Additionally, our model integrates both sales and bid interactions within
a multi-task learning framework. The main contributions of the paper can be
summarized as follows:

— We introduce an attribute-aware sequential recommendation model (ASRM)
tailored for recommending unique items in auction systems. The model uti-
lizes both bids and sales interactions for training, where user bids serve as
an auxiliary task.

— We enhance several components of the proposed model and present an im-
proved version called ASRM-++.

— We demonstrate superior offline results compared to several state-of-the-
art models, highlighting the effectiveness of our approach in unique item
recommendation scenarios.

— We present online A /B test results, showcasing the real-world impact of our
approach when deployed for actual users.
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2 Related work

2.1 Attribute and Context-Aware Recommendation

Attribute and context-aware recommendations aim at enhancing the quality of
recommendations by leveraging both item features and contextual information,
moving beyond mere item IDs. This is especially crucial in certain domains where
all the item IDs are unique, such as in the cases of auctions. Early works intro-
duced Factorization Machines (FM) [9], which models contextual feature inter-
actions between every pair of variables in the dataset. Later, DeepFM [1] unified
FM with deep learning to enable higher-order feature interactions. Attention-
based methods, such as NOVA [6], proposed to incorporate item attributes and
interaction contexts in a non-invasive way, by separating the embeddings of the
item IDs and its contextual information, thus preserving the integrity of the orig-
inal item embeddings. S®Rec [13] captured the correlation between items and
their attributes more effectively by modeling these relationships during both the
pre-training and fine-tuning stages of its self-supervised learning protocol. Most
recently, CARCA [7] and ProxyRCA [10] achieved state-of-the-art performance
in recommendation tasks by adopting a holistic method that incorporate the
contextual and attribute-based information deeply within the collaborative fil-
tering process. ProxyRCA further addresses the cold start problem by allowing
the less frequent items to benefit from the well-trained proxy embeddings.

2.2 Sequential Recommendation

Sequential recommendation focuses on predicting the next item that the user is
supposed to interact with, given the sequence of his historical interactions. In
contrast to traditional collaborative filtering methods that do not consider the
order of interactions, sequential recommendation methods aim to model evolv-
ing user preferences over time. Earlier methods, such as FM [9], were based on
Markov Chains and modeled item-item transitions based on the last item inter-
action. The emergence of deep learning techniques has allowed more complex
user-item interactions to be modeled. Recurrent Neural Networks (RNNs) based
models, particularly Gated Recurrent Units (GRU) [2] [3], were used to cap-
ture longer-term dependencies of the user behavior. With the early success of
self-attention mechanisms and the transformer architecture in sequence encoder
tasks, such as machine translation, it has naturally been extended to sequential
recommendation tasks. SASRec [4] was one of such early examples and its ex-
tension SASRecp [13] that further incorporated the item attributes by fusing it
together with the item ID.

3 Attribute-Aware Unique-Item Recommendation
Problem Formulation

In this paper, we address the following problem: Given a set of items T =
{i1,... 47}, where each item i € T is represented by an attribute-vector v; € RA,
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Fig. 1: Illustration of the deployed Attribute-aware Model Architecture

and a set of users U = {uy, ..., Upy| }, where each user u € U has an feature-vector
fu € RE. Each user u has a sequence of sales interactions S* = (S¥,..., Sﬁgu‘)
and a sequence of bids interactions B* = (B}, ..., B|uBU|>' The objective is to
predict the likelihood scores for a set of target items 7° = {¢9,... ,t‘OTO‘} for each
user u. The model parameters are optimized by maximizing the log-likelihood
(or minimizing cross-entropy) of the observed target item over all users. The
bidding behavior serves as auxiliary information to help more accurately model
user actions over time. In the context of auction systems, our problem is distinct
from typical sequential recommendation scenarios in that each item in every
interaction is unique. Formally, for any two interactions S}* and S}*/, where u,u’ €

U and (u,i) # (v, j), we have S¥ # S}il.

4 ASRM: The Deployed Attribute-Aware Sequential
Model for Unique Item Recommendation

4.1 Input Encoding

To form the item latent representation, we first embed item attributes in the
input sequence using two fully connected layers to obtain the initial embeddings
as:

vy = (v;W+b) W' + 1/ (1)

where W € RA%? 1 € RY %4 are the weight matrices b € RY b € R? are the
bias vectors and d is the items embedding dimension.

For user features, we apply a fully connected layer to encode the user’s fea-
tures as:

fu=fuWys +0; (2)
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where Wy € RE*4 is a weight matrix, F' is the number of user features, and d
is the items embedding dimension and b¢ is the bias term. Notice that in this
case, user features are the same for all items in the input sequence.

Afterward, we concatenate items, and user embeddings to get the combined
item encoding r;. Then, feed it to another fully connected layer for a refined
representation:

r; = concatey (U}, I, g; =1;W, + b, (3)

where W, € R?4%4 is the weight matrix, d is the layer embedding dimension,
and b, is the bias term. For simplicity, we use the same dimension d for all
embedding layers. Finally, a learnable positional embedding p; € R? is added to
the final embedding to indicate the position in the input interactions sequence:

ej =g; + D, (4)

4.2 Multi-head Self-Attention Block

The ASRM model leverages a multi-head self-attention mechanism applied across
the latent embeddings of all items. Let &% := (e1,...,e;s¢)) € (RIS be
the encoded sequence. In the following, we interpret this sequence as a ma-
trix £ € RIS"I¥4, The first layer in the MHA block is a linear projection on
each of the Query, Keys, and Values as follows:

Q,K,V = LeakyReLU (W), LeakyRe LU (E* W),

5
LeakyReLU (E“Wy) (5)

where WQ7 WK7 WY e Rdxd represent the linear projection matrices. Then
each of the output embedding is split over the number of heads H to obtain Wg,
Wi W) e Rix i of the head at index h. A multi-head self-attention is applied
afterward to get the attention across all items in the sequence. This allows the
model to capture dependencies between different items in the sequence, resulting
in a latent representation for each item:

C" = SA(E") = concateo (Att(Qn, Kn, Vi) o1y (6)

Here, C* € RIS"I*? represents the column-wise concatenation of the attention
heads. Afterward, a multiplicative residual is applied between C'* and @, then
we apply a normalization layer to obtain the output C* as follows:

o = Normalize(C* x E") (7
Finally, we have the row-wise feed-forward layers to obtain the component’s
output representations Z* € RIS“I*? as follows. For all i € {1,...,]S"|} we
have:

Z* = FFN(C™)
"WZ o nZ\WZ 412 (®)
= LeakyReLU(C} W* +b7)W* +b
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where W2, W% € R%? are the weight matrices of the two feed-forward layers,

while bZ and b? € R? are their bias row-vectors. LeakyReLU is the activation
function applied after the first layer.

4.3 Next Item Prediction with ASRM

Given Z“, we predict for a given a set of target items represented by the
attribute-matrix 7 the likelihood via cross-attention.

Cross Attention To derive the latent embedding G° for the target items,
their attribute vectors are passed through the shared item encoding layers up
to Equation 3. However, the fully connected layer applied after concatenating
the user features is skipped on the target branch. For item ranking, we apply
cross-attention between Z* and G° as follows: We get a linear projection on each
of the Query, Keys and Values similar to the input MHA block, as follows:

Q, K,V = LeakyReLU(G°Wgq), LeakyRe LU (Z* W), (9)

LeakyReLU(Z“Wy)
where WP, WX WV € R¥*d represent the linear projection matrices. Then
each of the output embedding is split over the number of heads H to obtain Wg,
WhK , WX € R4 of the head at index h. A multi-head self-attention is applied
afterward to get the attention across all items in the sequence. This allows the
model to capture dependencies between different items in the sequence, resulting
in a latent representation for each item:

X? = CA(&E") = concateo; (Att(Qn, Kn, Vi) 1.y (10)

Here, X° € RI7°IX4 represents the column-wise concatenation of the attention
heads. Afterward, a multiplicative residual is applied between X° and @, then
we apply a normalization layer to obtain the output X° as follows:

xX° = Normalize(X° * G°) (11)

To reduce the output dimension, we apply a fully connected layer with out-
put dimension 1 followed by a sigmoid function to compute a probability score
between [0, 1]:

Ve = (X, W, + b,) (12)

for all k& € {1,...,|T°|}, where o is the sigmoid function, W, € R%*! is the
weight matrix of the output layer to reduce the output dimension to one value
and b € R is the bias term.

In the context of used-car recommendations, we have given a sequence of
used-cars bought by a dealer and the main task is to rank a sequence of used
cars based on their likelihood to be bought by this dealer.
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4.4 ASRM Model Optimization

Bids and sales as model targets Given a sequence of positive sales target
items from the user’s input and an equally long set of negative items sampled
from a pool excluding the user’s input sequence, we define the binary cross-
entropy objective as follows:

I7°]

Lsates =~ Y O [log(¥V ") + (log(1 — ¥ )] (13)

TeeS t=0

As previously discussed, positive target items can also be selected from the
user’s bid sequence, as these reflect additional items of interest. Thus, we define
the auxiliary loss for bids as follows:

|7

Lpias=— Y Y [og¥""") + (log(1 - V2" ))] (14)
TeeS t=0

where Yto(“ are the output scores for the positive samples (sales or bids) and
Yto(f) are the output scores for the negative samples, S is the set of all sequences,
and |7°] is the length of the target sequence.

The final model loss is computed as a weighted sum of the sales and bids losses:

L= aﬁSales + (1 - a)ﬂBids (15>

Training Protocol Following the CARCA [7] and SASRec [4] models train-
ing protocol, we define a fixed sequence length L in which we select the input
sequence as the most recent L items for each user, the sequence length can be
obtained by truncation or padding in some cases. The target positive items se-
quence has the same sequence length L and is formed once using the shifted
sequence of the sales items [vjsu|_r41,.-.,v|s¢|] and once using the most recent
L bidding items to have this multi-task learning paradigm between the sales and
the bids and positive target items. On the other hand, the negative sequence
is formed as random unseen items of sequence length L, thus the number of
negative samples Nyqin is L in this case.

5 Enhanced ASRM for Unique Item Recommendation
(ASRM++)

5.1 Input Encoding

To form the item latent representation, we first embed item attributes in the
input sequence using two fully connected layers and GeLU activation to obtain
the initial embeddings as:

v; = GeLU (v;W + )W +b (16)
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where W € RA*4 W' € R %4 are the weight matrices b € R% |b € R are the
bias vectors and d is the items embedding dimension.
Then, feed it to another two fully connected layers for a deeper representa-
tion:
g; = Uij' + bv/ (17)

where W, € R is the weight matrix, d is the layer embedding dimension,
and b,/ is the bias term. For simplicity, we use the same dimension d for all
embedding layers.

Multi-head Self-Attention Similar to the ASRM model a multi-head self-
attention is applied across the latent embeddings of all items. Let G* := (g1, ..., g|su|) €
(Rdﬂsu‘ be the encoded sequence. In the following, we interpret this sequence as

a matrix G* € RIS"IX4 A normalization layer is applied on G* before it is fed

into the multi-head self-attention as follows:

G = Normalize(G") (18)

We utilize multi-head self-attention to apply attention across all items in the
sequence. This allows the model to capture dependencies between different items
in the sequence, resulting in a latent representation for each item.:

O = SA(G*') = concat e (Att(Gu’W§ LG WE Gu’WX)) WP

h=1: (19)

where Wg, WhK, W,‘f € Rdx%,WP € R¥*? represent the linear projection

matrices of the head at index h, and H is the number of heads. Here, C" €
RIS“I%d represents the column-wise concatenation of the attention heads.

Then additive residual is applied between C* and @ to obtain the output

o'
v =Cr 4G (20)
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Lastly, we have the row-wise feed-forward layers to obtain the component’s
output representations Z* € RIS"1*4 as follows. For all i € {1,...,]S*|} we have:

Z* = FFN(C"))
, b (21)
= GeLU(C",WZ + bV/YWZ +b?

where W%, W#% < R¥? are the weight matrices of the two feed-forward lay-

ers, while b% and b? € R? are their bias row-vectors. GeLU is the activation
function applied after the first layer.

5.2 Next Item Prediction with ASRM-+-+

Given Z", and the latent embedding G° of the target item attribute vector. We
predict the likelihood via cross-attention.

Cross Attention Simply here the item scoring is calculated similarly to the
original ASRM model, where we apply cross attention between the input se-
quence and target items. Finally, the output layer is a fully connected layer of
output 1 followed by a Sigmoid function to limit the output scores between
[0, 1], as in Equation 12. However, in this case the scores are of size (Niqin + 1)
as we have one positive item and Ny.qin negative items, which is explained in
detail in the next section.

5.3 ASRM-++ Model Optimization

Unlike the original ASRM, we removed the multi-task learning part that was
previously employed. As it is shown in later sections, we show that employing
the different training protocol was more effective in learning the model and
outperformed the added benefit cause by using the bids information. Thus in this
enhanced version we eliminated that part. The binary cross-entropy objective
can be defined as follows:

Nirain

L= Tog¥*")+ Y (log(t — ¥ )] (22)
TeeS t=0

where Y° are the output scores for the positive sale sample and Yto(f) are the
output scores for the negative samples Ni.qin in our case we set Nypqin to 100.
S is the set of all sequences.

Enhanced Training Protocol There exist multiple ways to conduct training
protocols in recommendation systems. Specifically, the original ASRM followed
a shifted sequence training protocol (as shown in Figure 3). In this approach,
during training the training sequence [v|gu|_L, . .,v|gu|—1] is shifted to form the
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target sequence [v| SU|—L41s- -7 S’t“\]- This technique has also been implemented
in previous works [4, 13|, with the main difference being that the ASRM model
uses cross-attention and does not enforce a causality constraint during both the
training and inference phases, allowing bidirectionality in both cases. Despite
not leveraging autoregressive tasks due to leakage, the ASRM training protocol
has significantly outperformed the training protocol that uses only the last item
in the sequence as the target, as well as the case where causality is enforced
during the training phase. A newly introduced training protocol, as proposed by
[10], addresses the discrepancies between training and inference by using only
the final item of a randomly cut sequence as the target. We chose this approach
to further increase the variety of target items that appear during training, which
has shown to be particularly advantageous for long interaction sequences in the
VWES dataset.

Hard Negative Training Sampling To ensure a realistic assessment of model
performance at deployment, during evaluation we would sample 2,000 negative
samples that occurred close in time to the test item. This approach mirrors
the scenario in auction datasets with unique items, where only unsold items
still available for bidding are considered for recommendation during deployment.
The original ASRM, however, employed a standard random negative sampling
protocol during training, which led to a mismatch between the training and
evaluation phases. To address this, one of the key improvements introduced was
to apply the same time-aware hard negative sampling protocol during training to
align it with the test phase. Specifically, during the training phase the negative
items are being chosen to be the ones sold within the same month as the target
item.

6 Deployment Infrastructure

To deploy the ASRM model in production, we utilized the AWS step functions
to build our training and inference pipelines. Those pipelines are called every
weekend to train and deploy a new model using the recent sales and bids data.
We also cache the recommendation scores for all expected dealers-vehicle pairs
for faster retrieval during the following weekdays.

6.1 Online Training Pipeline

In the training pipeline shown in Figure 4, we first retrieve the latest sales,
bids, and dealer data from AWS-Athena. Afterward, we feed this data to a
SageMaker pre-processing job that filters and converts the vehicle raw features,
sales, and bids data to interaction tuples, and numerical features. Once the data
is pre-processed we spawn a SageMaker training job that trains the model on
the pre-processed data using the best-found hyperparameters at that time and
it saves the model artifact in AWS S3. Once the model is trained we initiate
the inference step function which pre-computes and caches the recommendation
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scores for all expected dealer-vehicle pairs of the upcoming week. It is worth
noting that we employ multiple intermediary validation steps in our training
pipeline that check the correctness of the generated preprocessed data, whether
the model performance is above a predefined accuracy threshold, and whether
the inference job finished successfully or not.

(a) (b)

Start Start Inference

Gather Model Parameters Gather Pipeline Parameters
Forward Data to API
[SS— S|
Query Athena Query Athena
..... vi sl vi
Bids Sales Dealers Get Available Vehicles
F v skopa
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Inference Job

CreateTrainingJob List S3 Files
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nnnnnnnnnn
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Create Model

i

PR bbLEBE
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End End

Fig.4: AWS Training (a) and Inference Pipeline (b)

6.2 Online Inference Pipeline

In our setup, the vehicles that we expect to show on our website are known at
least one month beforehand. This allows our inference pipeline shown in Figure
4 to retrieve, preprocess, and utilize the AWS SageMaker batch inference to pre-
compute all the possible dealer-vehicle pairs that can exist in the next upcoming
week. These scores are stored as a per-dealer binary file on S3 that contains
vehicle scores. This file is then retrieved by our API gateway once it receives a
recommendation request from the frontend for a specific dealer.

7 Experiments

7.1 Experimental Settings

Dataset The dataset captures a B2B setting where vehicles are sold to dealers.
Collected between January 1, 2016, and December 31, 2023, it includes data
from 5,916 users/dealers and records 1,224,364 interactions, each corresponding
to a unique vehicle. Each vehicle is described by 109 distinct features, including
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Method Components HR@10 NDCG@10
Multi-task Random-cut Cross-Att.
MultiRec [8] v X X 0.1329 + 2.3c-3  0.0917 4 4c-4
SASRec [4] X X X 0.1556 4+ 6e—4  0.0740 =+ se-2
CARCA [7] X X v 0.1808 £ 7e—4  0.0966 £ 1.1c-3
ProxyRCA [10] X v v 0.2135 & 9.2¢—3 0.1168 £ 2.8¢—3
ASRM (deployed) v X v 0.2027 £ s5.4e-3  0.1052 £ 5e-2
ASRM++ (ours) v v v 0.2321 + 3.6e-3 0.1289 =+ 6e—4
Improv.(%) 8.71% 10.36%
HR@25 NDCG@25 HR@50 NDCG@50

0.2153+ 2.7e—3  0.0917 & se—a  0.2941 & 4.3c-3 0.1068 £ 1.4e—3

0.2751 & 1.5¢-3  0.1031 £ 4e—4  0.3750 £ 1.3¢—3  0.1223 &£ 1e-4

0.2892 4 s.4c-3  0.1229 + ac—a  0.3742 + 620-5  0.1393 % 504

0.3396 + se—a  0.1475 4 6c-a  0.4477 4 29.-5  0.1683 & 103

0.3185 & 3.9¢-3 0.1332 & 6e—4  0.4221 &£ 1.3e—2 0.1532 + 2.4¢-3

0.3581 *+ 3e-3  0.1595 + 1.4e-3 0.4605 4 1.1e-3  0.1792 + 1c-3

5.45% 8.14% 2.86% 6.48%

Table 1: Model performance and comparison against baselines on VWFS dataset.
Where ASRM is the deployed model which we later illustrate A/B test results,
and ASRM -+ is the improved version of the model. The best results are re-

ported in red and the second best in blue.

model, brand, color, and gear type. Additionally, the dataset includes 11,573,971
bid interactions, which provide supplementary information for each user. It is
essential to note that all user/dealer data is anonymized, with confidentiality
ensured in compliance with GDPR requirements.

Implementation Details The ASRM and ASRM++ models were optimized
using binary cross-entropy loss through AdamW, and with the weight decay
tuned between the range of 0.0 and 1.0. The learning rate was tuned within the
range of le-6 and 0.1, dropout rate between 0.0 and 0.5 and the random cut
probability between 0.0 and 1.0. The number of heads was searched among the
set of {2, 4, 8}, hidden dimension {64, 128, 256} and the batch size was kept at
128. The tuning job was performed with the AWS SageMaker Hyperparameter-
Tuner using Bayesian optimization. The implementation is publicly available in
our code repository* * *.

7.2 Evaluation Protocol

We use a leave-one-out mechanism, training and validating the model with the
entire sequence except the last interaction, which is used for testing. We sample
2000 negative items Ni.s; within the same month of the corresponding positive
item date and assess model performance with Hit Ratio (HR@N) and Normalized
Discounted Cumulative Gain (NDCG@N). Higher HR and NDCG values indi-
cate better performance. We report the mean and standard deviation of results
from three separate runs to ensure statistical robustness.

*** https://github.com/sonngocl22/ASRM-improved /
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Baselines We compare our proposed method against various attribute-aware
sequential recommendation methods, that can rely only on items attributes and
remove the items ids.

— MultiRec [8]: A multi-relational model built for unique item recommenda-
tion in auction systems, that can leverage items attributes and bids interac-
tions.

— SASRec [4]: A model that applies multi-head self-attention to capture the
sequential pattern in the users’ history, then applies dot product for calcu-
lating the items scores. In this case we replace the items ids in the original
model to be only items attributes to be applicable in unique item setting.

— CARCA [7]: A context-aware sequential recommendation approach employ-
ing cross-attention between user profiles and items for score prediction. For
this experiment we removed the items ids part from the model.

— ProxyRCA [10]: A state-of-the-art attribute-aware model that introduced
using proxy-based embedding to allow less frequent items to benefit from
more-frequent ones. For this experiment we removed the items ids part from
the model.

8 Offline Results

8.1 Model performance against baselines

The experimental results in Table 1 demonstrate that the ASRM model, specif-
ically designed for the unique item recommendation task, surpasses the original
CARCA [7], as well as SASRec [4] and MultiRec [8]. Furthermore, the results
indicate that the improved model ASRM-++ achieves state-of-the-art perfor-
mance, outperforming the second-best model ProxyRCA [10] by up to 10%, and
significantly improves upon the currently deployed ASRM model by more than
20%. This shows the effectiveness of the applied methods in the ASRM model
within auction systems, as well as the substantial performance gains achieved
by ASRM++ following the applied enhancements.

Table 2: The table illustrates the effect of different model components

Model HR@10|NDCG@10 Model HRQ10|NDCG@10
w/o Random cut | 0.1581 | 0.0854 ASRM w/ bids |0.2027| 0.1052
w/o Round type |0.1995 0.1096 ASRM w/o bids |0.1750 | 0.0916
w/o Hard sampling| 0.2194 | 0.1206 ASRM++ w/ bids | 0.2172| 0.1206
ASRM++ 0.2321| 0.1289 ASRM++ w/o Bids|0.2321| 0.1289

8.2 Ablation studies

Effect of negative sampling (having negative items in the same month)
The first ablation experiment was to test the effect of hard negative sampling
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during training. This approach involves using negative items from the same
month as the target item during the training phase, which better aligns with
the real workings of the auction bidding system. As demonstrated in Table 2,
there is a notable performance improvement of approximately 7%, with HR@10
increasing from 0.2194 to 0.2321 when hard sampling is incorporated into the
implementation.

Effect of different training protocols (random cut training protocol)
This study aims to examine the impact of the random cut training protocol.
When the random cut method is removed, in this case it means only a single
target item—the last item in the sequence is considered during training. As
shown in Table 2, this has a substantial effect on the performance of the model,
changing the HR@10 from 0.2321 to 0.1581.

A useful comparison is shown in the main results in Table 1, highlighting
a key difference between ASRM and ASRM-++. Specifically, ASRM adopts the
training protocol used in SASRec [4] and CARCA [7], which sets the target
sequence as a shifted sequence of the input sequence, while ASRM+-+ adopts the
random-cut protocol. Results indicate that by sampling multiple cuts throughout
the entire user sequence, the model learns more effectively than when trained
solely on the most recent items.

Effects of adding sales round type As previously mentioned, the auction
system consists of two different sales round types: the fixed-price round and the
bidding round. Although this distinction was known, the deployed version of
ASRM did not utilize this information during training. By incorporating the
sales round type as a feature both during training and evaluation phases, we
were expecting a performance boost. The results of the ablation study, shown in
Table 2, confirm that by including the round type information into the model
we can significantly increase the model performance. It is important to note that
the sales round type will be known during deployment, aligning with whether
the user is in a fixed-price or bidding round.

Effect of adding bids as auxiliary behavior on the target side In our
approach, we included bids in the target set during training, allowing them to
serve as potential targets for users. As shown in Table 2, for the ASRM model
this strategy increased the HR@10 from 0.195 to 0.205, reflecting a 5% improve-
ment and demonstrating the effectiveness of this multi-task learning approach in
leveraging auxiliary information. However, for the case of ASRM-++ including
the bids as targets hurt the performance. This could be due to the fact that
the inclusion of random cut in ASRM++ helped expose the model to a broader
coverage of unique items, compensating for the effects of using bids as targets
in the original ASRM.

Impact of random cut frequency on performance The experimental re-
sults and ablation study clearly demonstrate the significant impact of the ran-
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dom cut training protocol. This effect is attributed to the broader coverage of
the unique items in the input sequences and target items. However, because
some users have very long interaction histories and only recent interactions have
a strong impact on the final prediction, the frequency of using uniformly ran-
domly chosen items as training targets may affect the final outcomes. To ex-
amine this hypothesis, we conducted experiments across varying probabilities
that a sequence is cut during training. The results, shown in Figure 5, con-
firm our hypothesis, with overall performance steadily increasing and peaking
at a cut probability of 0.8, while cutting sequences 100% of the time led to a
slight decrease in the performance. Further experiments with different sequence
lengths and the optimal random cut probability revealed that, given adequate
item coverage, sequence length has a minimal effect on model performance.

- Helo = H@10
NDCG@10 NDCG@10

020 /_—/§< 020

Performance

02 04 06 08 10 50 75 100 125 150 175 200 225 250
Random Cut Probability Sequence Length

Fig. 5: Performance evaluation across different random cut probabilities and se-
quence lengths

9 Online A/B Test Results

KPI Mean Median P-Value
Group B Group A improv. | Group B Group A improv.
CTR 0.7780 0.7600  2.36% | 0.7500  0.7450  0.67% | 0.6560
CTR on top 25 vehicles 0.0960 0.0688  39.53% | 0.0320  0.0240 33.33% | 0.0007
Bid-TR 0.0079 0.0063  25.39% 0.0 0.0 - 0.1629
Bid-TR on top 25 vehicles | 0.0046 0.0007 557% 0.0 0.0 - 0.3580
Buy-TR 0.0005 0.0003  66.67% 0.0 0.0 - 0.9890
Buy-TR on top 25 vehicles | 4.071e-6 3.162e-6  28.75% 0.0 0.0 - 0.8229
Adjusted Bid-Buy actions
Bid-TR on top 25 vehicles | 0.0159 0.0098  62.24% 0.0 0.0 - 0.0352
Buy-TR on top 25 vehicles | 0.0005 0.0001 400% 0.0 0.0 - 0.0195

Table 3: AB Test statistics

We evaluated our ASRM model using an online ab test that ran between
26.6.2023 and 17.10.2023. We employed our recommendation model as a new
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option for sorting the main vehicles list on our website stock list page and we
compared that behavior against the default behavior of sorting by date. We split
the dealers into two groups randomly and tracked the sample mismatch ratio
during the test. We tracked multiple KPIs such as clicks, bids, and buy-through
rates. Although dealers can directly bid or buy a vehicle from the main list
without clicking on the vehicle record to view its detailed information, this is
usually rare and dealers prefer to buy or bid on the vehicle after they open its
details page. To measure the bid and buy-through rates in such scenarios we
included adjusted bid and buy metrics that also track actions on the vehicles
pages and link them to their corresponding main list view. Additionally, we
measured the differences between the two groups and the statistical significances
were computed using Mann-Whitney-U-Tests as most metrics had non-normal
distributions. Results in Table 3, show that in general, the treatment group B’s
KPIs have higher metric values but the effect is statistically significant if we
focus on actions on the top 25 records of the main list.
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