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Abstract. Synthetic Electronic Health Records (EHRs) provide a vi-
able means of accessing EHR data while addressing the privacy con-
cerns related to the use of EHRs. A key characteristic of EHRs is the
irregular timing of clinical events, admissions, and associated temporal
trends. Many existing models for generating synthetic EHRs overlook
these temporal irregularities, often assuming uniform intervals between
clinical events for each patient and neglecting the time component, which
hinders the representation of true temporal dynamics. To address these
limitations, we propose TempEHR, a framework designed to synthesise
EHRs, emphasising temporal awareness. We employ a time-aware Vari-
ational Autoencoder (VAE), specifically a Maximum Mean Discrepancy
VAE (MMD-VAE), leveraging Time-aware Long Short-Term Memory
(T-LSTM) layers to generate temporal synthetic EHRs along with time
information. Simultaneously, we enhance the temporal awareness of our
proposed model with a novel network we refer to as a TrendFinder.
TrendFinder leverages a moving average to extract the temporal pat-
terns inherent in irregular longitudinal EHR data. This approach seeks
to enhance the fidelity and usefulness of synthetic EHRs for research
and clinical applications. We assess the effectiveness of TempEHR, using
EHRs from the Medical Information Mart for Intensive Care (MIMIC-
IV) repository. Our results demonstrate the potential of the proposed
method in capturing the temporal patterns present in EHRs in utility,
fidelity and privacy evaluations.

Keywords: synthetic data - Electronic Health Records (EHRs) - tem-
poral data - time-series analysis.

1 Introduction

Recent advancements in artificial intelligence (AI) have accelerated research in
studies on data-driven medicine, where electronic health records (EHRs) serve
as the primary data source for these studies. EHRs are a valuable source of
information to facilitate such research studies and enhance patient care out-
comes [1] as they encompass time-sequenced records of various clinical events
and interactions between patients and healthcare providers over time [2].
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Fig. 1: An illustration of the irregularities in patient records. Time intervals are
not regular, i.e., T; 1 # T, and different actions and measurements can be done
at each visit.

One promising area in the work on EHRs is the generation of synthetic EHRs
using deep generative models such as Generative Adversarial Networks (GANSs),
Variational Autoencoders (VAEs), Diffusion Models, and most recently, Large
Language Models. This is being investigated as a viable means of obtaining
EHRs that do not compromise the privacy regulations surrounding real EHRs [1].
Significant efforts have been made in recent years in several studies [3-8] to
generate diverse and temporal synthetic EHRs. Although viable, these existing
approaches ignore one fundamental characteristic of EHRs and assume regularity
between clinical events in patient records, which is an unrealistic perception.

EHRs are inherently irregular due to varied patient visits, admissions and
interactions, as illustrated in Figure 1. In healthcare, we encounter multivariate
EHRs with irregularities attributed to missing recordings, irregular patient vis-
its, and varying lab measurements. This irregularity can also be attributed to
economic and social factors [5], such as accessibility to healthcare facilities in
underprivileged societies.

Existing EHR generation methods proposed in several studies [1,4, 6] em-
ploy recurrence methods such as Recurrent Neural Networks (RNNs) and Long
Short-Term Memory networks (LSTMs) [9,10] that assume regular intervals be-
tween successive elements. This is a significant limitation because it compromises
the validity of the generated EHRs, as the temporal dependency is inaccurately
modelled. Several studies [9-11] have shown that using vanilla recurrence models
such as LSTMs to model irregular data leads to subpar and inconsistent perfor-
mance in modelling progression patterns in EHRs. In addition, some studies [12]
have demonstrated that traditional recurrence architectures also struggle with
representing or learning the trends present in temporal data.

More recent studies in synthetic EHR generation have begun addressing the
challenges posed by the inherent temporal irregularities in EHRs. For example,
Yoon et al. [1] explored incorporating irregular time information as an additional
feature in observed patient data before synthesising the data. While this method
attempts to model temporal irregularity, it treats the irregularities associated
with clinical events as just another feature in the observed EHR data. As a
result, the approach limits the generative model’s ability to fully capture and
leverage the temporal dependencies between events, as the model does not fully
account for the time irregularities in the data.
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Other research efforts [13,14] have sought to address the challenge of mod-
elling temporal irregularity in synthetic EHRs by transforming time information
into embedding vectors that are concatenated with the latent space represen-
tation during training. However, modelling the complexities of temporal irreg-
ularity in synthetic EHR generation remains an underexplored area. Moreover,
several studies have emphasised the critical role of modelling irregular time inter-
vals when synthesising EHRs [5,6,14], highlighting the importance of advancing
research in this domain.

Building on these efforts, we present TempEHR, which explores a time-aware
approach that leverages time information to enhance the generative model’s abil-
ity to capture temporal dependencies within EHRs. Our approach employs an
information-maximising variational autoencoder (MMD-VAE) [15] with time-
aware long short-term memory networks (T-LSTMSs) [9], transforming time in-
tervals between clinical events into weights. These weights are used to adjust
the memory in the recurrence layers, emphasising close events. Inspired by the
work of Lin et al. [16], we supplement this with a novel module, which we call
TrendFinder, which learns the underlying temporal trends in the real data to
enhance the quality of the synthetic EHRs.

To the best of our knowledge, this is the first work to combine time-aware
models, such as T-LSTMs, with trend-extracting methods within a generative
framework for synthetic EHRs. To this end, the contributions of this work are
as follows:

— We propose TempEHR, a generative framework for synthesising temporal
EHRs that accounts for the irregular patterns and associated temporal trends
inherent in EHRs.

— We leverage the time intervals between clinical events as weights to prioritise
recent data and capture the temporal patterns in irregular EHRs.

— We introduce a novel TrendFinder module that leverages a time exponential
moving average to learn the underlying trends in irregularly timed EHRs.

— We evaluate the effectiveness of TempEHR on a real-world publicly available
EHR dataset on fidelity, utility and privacy measures.

2 Related Work

2.1 Modelling Irregular Data in Deep Learning

Irregularity in sequenced or temporal data refers to temporal data characterised
by non-uniform intervals between successive time points. This may arise from
irregular sampling, variable observations, and misaligned time points [10]. Irreg-
ular data is particularly common in healthcare, where data is often recorded at
inconsistent intervals due to varying processes, patient behaviours, and condi-
tions. This paper specifically addresses the challenge of modelling irregularity
related to varying intervals between successive time points in EHRs.

In deep learning for temporal data, recurrent models such as RNNs and
LSTMs are among the most widely used architectures. Despite their success
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across various tasks, these models face challenges when dealing with irregular
data as they typically assume fixed or relatively small intervals between succes-
sive data points [9,10]. As a result, they are often inefficient in handling data
with irregular intervals, struggling to capture the evolving patterns in temporal
data [11]. Common approaches to handling this include incorporating additional
information about irregularities, such as indicators or time intervals, before using
a recurrence model [17]. In contrast, some studies have examined methods that
modify the underlying LSTM model by adding time-gating mechanisms [10] or
transforming the time intervals between consecutive observations into weights,
which adjust the contents of the hidden state accordingly [9]. Moreover, atten-
tion models have been employed to help the model focus on recent parts of the
input by using positional encodings [10].

2.2 Synthesising Temporal EHRs

Existing methods for generating temporal EHRs often utilise recurrent architec-
tures within deep generative models, such as GANs and VAEs. Recurrence-based
GAN models, including TimeGAN [3], TAP-GAN [4], DAAE [7], and EHR-
Safe [1], initially employ an autoencoder to learn the underlying representations
of real EHRs that are used in combination with a GAN to generate synthetic
EHRs.

Similarly, Biswal and Ghosh [5] utilise a VAE with convolutions, while Niko-
lentzos et al. [8] introduced an approach that employs a Variational Graph Au-
toencoder (VGA) to model patient trajectories. Other research efforts, such as
EHR-M-GAN [6], combine a VAE and a GAN with Coupled Recurrent Networks
(CRN) to generate mixed-type longitudinal EHRs.

Additionally, some studies have explored the use of diffusion models [14] to
generate synthetic temporal EHRs. However, most assume a fixed interval for
clinical events for the EHRs.

An emerging focus in recent studies is the generation of synthetic EHRs
that handle the time irregularity inherent in EHRs. For instance, EHR-Safe [1]
employs an autoencoder-based framework that models the irregular timing of
events as a feature. However, it does not use these time intervals to guide the
overall generation process.

IGAMT [13] and EHRPD [14] also address irregularities by learning the
relationships between features across different time steps. IGAMT utilises a
transformer-based encoder-decoder framework, while EHRPD employs a diffusion-
based autoencoder structure. Both models calculate time intervals between events,
converting these increments into embedding vectors concatenated with the latent
space representation of the EHR data.

EHR-Safe [1], IGAMT [13], and EHRPD [14] all explore different approaches
for addressing temporal irregularity in EHR generation. However, the field is
still under-explored and presents opportunities for further research.
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2.3 Moving Averages

Moving averages (MA) are key concepts in temporal data analysis, defined as a
time series generated by averaging consecutive values from the original data [18§].
For a given time series x;, z;y1,-. ., Tk, the moving average over k time steps can
be expressed as:

MA,; =

T =

t
> M
i=t—k+1

In time series analysis, moving averages serve two main purposes: they help to
track the behaviour of a time series by smoothing out fluctuations and revealing
underlying trends, and they are also used to forecast future values [18,19].

Different variations of moving average methods exist, with the most common
being the simple moving average, which computes the arithmetic mean of a set of
observations. The cumulative moving average calculates an average by including
all previous data points, while exponential moving averages apply a smoothing
factor to prioritise recent observations.

Moving averages can also be adapted for irregular temporal data. In such
cases, the moving averages are adjusted to account for the time intervals between
observations. Menth and Hauser [19] proposed various techniques for incorpo-
rating these time intervals into the moving average calculations for irregular
temporal data.

3 TempEHR

3.1 Problem Definition

Let D = {(xi,a;)}X, represent the multivariate EHR dataset, where N is
the total number of patient records. Each record z; is a sequence of events
for different variables, and a; is the corresponding sequence of inter-admission
intervals, representing the time between consecutive events. Specifically, x; =
{z} 22 ... 2T}, where z! denotes the event at time step t for the i-th patient,
and a; = {a},a?,...,al "'}, where a! denotes the associated time interval at
time step t for the i-th patient. The goal is to learn an approximate distribution
p(D), from which we can sample data points to create a synthetic dataset, D.

3.2 TempEHR

TempEHR ! comprises a time-aware VAE combined with an additional moving
average-based neural network, which we call the TrendFinder, to handle the ir-
regularity inherent in EHRs as illustrated in Figure 2. TempEHR simultaneously
learns a latent representation of the irregular EHRs and the underlying trend
across time. This yields an enriched latent space that can be used to synthesise
temporal EHRs and the associated time intervals.

! Code repository for TempEHR: https://github.com/EmmanuellaBudu/TempEHR


https://github.com/EmmanuellaBudu/TempEHR

6 E. Budu et al.

Data Preprocessing Encoding Decoding

TrendFinder

Encoder
==

= z &=
|

§

Reconstructed EHRs

§

§

Reconstructed inter-admission
intervals

Inter-admission intervals

Fig.2: Overview of TempEHR. TempEHR leverages a T-LSTM-based VAE to
generate synthetic EHRs and associated time intervals.

3.3 Learning temporal dependencies

TempEHR utilises T-LSTM layers [9] within the encoder and decoder mod-
ules of a VAE framework. The Encoder takes as input the multivariate EHRs
containing clinical events along with the associated time intervals, At, between
visits/admissions. The time intervals At are transformed into weights using a
time decay function in the Encoder. These weights are then used to adjust the

cell state contents, subsequently influencing the learned hidden representation
h, from the T-LSTM-based Encoder.

Additionally, we incorporate a TrendFinder network inspired by the work
of Lin et al. [16] that employs a time exponential moving average (TEMA )to
identify trends, . The motivation for using TrendFinder is to learn the temporal
dependencies in irregularly-timed data better. By enhancing the latent represen-
tation, we aim to improve overall model performance in generating high-fidelity
synthetic EHRs. TEMA is described in Equation 2:

TEMA, = =27 . 4, + (1 — e_At/T) . TEMA,_y (2)

Where: z; is the value at time ¢, 7 is the time constant, At is the time
difference between ¢ and t—1. We employ TEMA after evaluating various moving
average methods to identify the most effective one. Additionally, it aligns with
the inherent mechanisms of T-LSTMs, emphasising recent values. This approach
enables us to capture the underlying trend despite the irregularities effectively.

Next, the representations r and h are concatenated and passed through linear
layers to generate p and o vectors, which parameterise the latent space z. The
latent space z is regularised with Maximum Mean Discrepancy (MMD) to obtain
a more informative prior [15] as compared to the traditional Kullback-Leibler
(KL) divergence. Next, the Decoder uses samples from z to reconstruct the input
EHRs and the associated time intervals.
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Table 1: Description of datasets.
MIMIC-CHF MIMIC

Total Admissions 8835 21380
Total Patients 1767 2138
Total Features 24 23
Max Seq. Length 5 10

3.4 TempEHR Loss

TempEHR employs three loss functions during training to generate synthetic
EHRs. First, we utilise a VAE loss, which is composed of a reconstruction loss
and an MMD loss on the latent space, where p(z) is the prior distribution and
q(2) is the posterior distribution over the EHRs:

£VAE = £Reconstruction + AlMMD [p(Z), q(z)] (3)

Second, we incorporate a mean squared error (MSE) loss to model the time
intervals explicitly. This loss penalises the difference between the real-time and
generated time intervals. This explicit focus on time intervals provides finer
control over time, which is critical in this context:

ETime = )\ZMSE(arealy asyn) (4)

The total loss is a weighted sum of the reconstruction loss, MMD loss, and
time loss, where the weights, A\; and Ao are empirically determined to balance
the contributions of each term:

Ltotal = EReconstruction + AlMMD [p(z), Q(Z)] + )\QLTime (5)

4 Experiments

4.1 Datasets

We utilise real-world EHRs from the Medical Information Mart for Intensive
Care (MIMIC-IV) data repository. This publicly accessible database contains
de-identified patient records from the Beth Israel Deaconess Medical Centre,
covering the years from 2001 to 2012 [20].

For this study, we extracted two separate sets of EHRs from the hospital
module, which includes records from general hospital stays. We target a cohort
of heart failure patients (MIMIC-CHF) alongside a general group of patients
without specific disease diagnoses (MIMIC) as done in previous studies [1]. We
extract demographics, vital signs, lab measurements, and co-morbidity flags. The
characteristics of the datasets are described in Table 1.

The dataset is organised so that each patient is represented by a time-ordered
sequence of admissions containing data recorded during that admission, often
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Fig. 3: TempEHR training and validation losses on MIMIC-CHF dataset.

known as a patient trajectory. The dataset includes both discrete and continu-
ous values. During preprocessing, discrete values are transformed into continu-
ous values by mapping them to the range [0,1], following the approach described
in [21]. The interval [0,1] is divided into sections based on the cumulative prob-
ability of each unique discrete value. Each discrete value is then mapped to a
point within its corresponding section. Additionally, all continuous values are
normalised to the range [0,1].

4.2 Baselines

We consider two baseline temporal generative models: (i) EHR-M-GAN [6], a
dual-VAE model with a Coupled Recurrent Network (CRN) generator for gen-
erating heterogeneous temporal EHRs, and (ii) TimeGAN |[3], a state-of-the-art
GAN-based time-series data generator that employs LSTMs or Gated Recurrent
Units (GRUs). For these baselines, we model the irregular timing of events as a
feature [1]. Due to some code unavailability, technical challenges, and time con-
straints with the implementations of some other related works [1,13,14], we were
unable to directly include the models as baselines. Despite these limitations, the
selected baselines are useful benchmarks for evaluating our proposed method.

4.3 Training Details

TempEHR is implemented in PyTorch and trained with the Adam optimiser and
a learning rate of 0.001. We employ a reduce-on-plateau learning rate scheduler
to adapt the learning rate during training. Furthermore, we partition the datasets
using a 70:30 split; the loss from training on the MIMIC-CHF is illustrated in
Figure 3, showing the combined losses and individual losses. The rest of the
model parameters are as follows: hidden size:128, latent size:64, encoder and
decoder layers:3, A1: 4.97,15:0.39.
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4.4 Evaluation

This study employs a comprehensive evaluation framework to assess the syn-
thetic EHRs generated by TempEHR and the baseline models, focusing on fi-
delity, utility and privacy [22]| evaluations. Fidelity refers to the faithfulness
of the synthetic data to the real data. We employ fidelity measures to assess
whether the structural and temporal relationships in the real EHRs have been
replicated in synthetic EHRs. Specifically, we assess structural similarity in low
dimensions using Uniform Manifold Approximation and Projection (UMAP),
discriminative accuracy [3,6], and temporal dynamics [23] using Dynamic Time
Warping (DTW) and trend similarity. In contrast, utility focuses on assessing
the usefulness of synthetic data compared to real data. Specifically, we assess
the performance of a predictive model trained on the synthetic EHRs and tested
on the real EHRs. Lastly, privacy measures evaluate whether real patient in-
formation has been leaked into the synthetic data. We employ the membership
inference attack to determine whether real patient records used to train the gen-
erative model can be inferred based on the synthetic data. We report results
averaged over three independently generated synthetic datasets.

5 Results and Discussions

5.1 Structural Similarity with Dimensionality Reduction

We first assess the structural similarity between real and synthetic EHRs by
visualising a low-dimensional representation of the data with UMAP, presented
in Figure 4. The blue points indicate real patient admissions, while the red points
represent synthetic patient admissions. To ensure comparable visualisations, we
combine the real and synthetic EHR datasets, add an indicator variable, and
transform them into a lower-dimensional space.

From the visualisation, we observe that the coverage of the synthetic EHRs
generated by TempEHR overlaps the real EHRs better than the synthetic EHRs
generated by TimeGAN and EHR-M-GAN for the MIMIC-CHF and MIMIC
datasets. TempEHR captures most of the significant and minor clusters present
in the real data. This demonstrates that the TempEHR is better at replicating
the underlying distribution of the real EHR data, which is important given the
complexity of healthcare datasets such as EHRs. A synthetic EHR dataset should
effectively replicate the global structural properties of real EHRs.

5.2 Discriminative Accuracy

To assess how distinguishable the synthetic patient trajectories are from the real
patient trajectories, we compute the discriminative accuracy [6] of a T-LSTM-
based classifier evaluated on data generated by TimeGAN, EHR-M-GAN, and
TempEHR. A classifier that cannot distinguish between real and synthetic EHRs
would achieve an accuracy of 0.5.
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Fig.4: UMAP visualisation for real and synthetic admission data from MIMIC-
CHF (top row) and MIMIC (bottom row) patients.

As shown in Table 2, TempEHR achieves a lower discriminative accuracy
of 0.751 (£0.042) in the MIMIC-CHF dataset compared to TimeGAN (0.778
+0.011) and EHR-M-GAN (0.757 +0.028). The classifier struggles more to dis-
tinguish TempEHR-generated trajectories from real EHRs, indicating that Tem-
pEHR better preserves the sequential structure of real EHRs, making them ap-
pear more realistic.

For the MIMIC dataset, the discriminative accuracies for all models are close
to 0.5, with TempEHR achieving an accuracy of 0.534 (£0.032). This indicates
that the classifier has difficulty differentiating between real and synthetic tra-
jectories across the models. All models generate synthetic EHRs that are nearly
indistinguishable from the real EHRs.

Table 2: Discriminative scores and predictive errors. In both cases, lower values
indicate better performance.

Metric Model MIMIC-CHF MIMIC

TimeGAN 0.778 £0.011 0.525 + 0.030
Discriminative Accuracy EHR-M-GAN 0.757 £0.028  0.540 + 0.011
TempEHR 0.751 £ 0.042 0.534 + 0.032
Real 0.243 4 0.000 0.230 4= 0.000
TimeGAN 0.268 £0.014 0.243 £0.010
EHR-M-GAN 0.266 £ 0.007 0.238 £ 0.004
TempEHR  0.262 4 0.002 0.242 + 0.009

Predictive Error (MAE)
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Fig.5: Moving average across time for the features, Age and Potassium in real
and synthetic data. Moving average starts at timestep 2.

5.3 Trend Similarity

Trends describe the overall change in data across time. We compute feature-level
trend similarity scores, focusing on continuous variables such as patient age, lab
values and vital signs.

First, we classify trends by assessing the probability of variables increasing,
decreasing, fluctuating or remaining constant over time within a predefined nor-
mal range according to the MIMIC repository [20] (except for age). We then
compare these distributions between the real and synthetic EHRs. As an ex-
ample, we illustrate the moving average over time along with the probability
distribution of possible trends for Age and Potassium from the MIMIC-CHF
dataset, as shown in Figures 5 and 6.

We employ Jensen-Shannon Divergence (JSD) between the distributions,
shown in Table 3, to quantify the similarity. Scores range from 0 (identical dis-
tributions) to 1(dissimilar distributions).

As shown in Table 3, TempEHR shows more consistent trend similarity scores
compared to EHR-M-GAN and TimeGAN, indicating better trend replication.
For patients’ ages with clear trends over time, TempEHR consistently outper-
forms both models due to its TrendFinder Network, which models the temporal
dependency.

However, some inconsistencies are observed in Figure 6, such as deviations
in age trends among a small subset of the synthetic EHRs. This originates from
the limitations of modelling temporal relationships in the generative process [24].
While these can be addressed through further processing of the generated EHRs,
our analysis focuses on the raw generated EHRs to evaluate the trends in the
data.

In reality, EHRs often contain complex, nonlinear temporal patterns that
generative models struggle to fully capture [24]. TimeGAN and EHR-M-GAN
exhibit variabilities across the different variables, while TempEHR demonstrates
a more consistent performance. This reflects TempEHR’s potential to model
temporal trends and maintain the global structure of the real EHRs.

5.4 Temporal Dynamics

We employ a multivariate DTW-based assessment [23] to evaluate the similarity
in overall temporal dynamics between patient trajectories in the real and syn-
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Fig. 6: Histogram showing the probability of belonging to different trends over
time for the features Age and Potassium.

thetic EHRs. DTW is a time-series similarity measure that quantifies the simi-
larity between time series that may have different local shifts and speeds [25]. We
first compute pairwise DTW similarity scores [26] in a real-vs-synthetic setting
to assess the similarity, comparing real patient trajectories with synthetic tra-
jectories. We then report the average DTW similarity score of the most similar
synthetic patient trajectories in Table 4. This measures how well the synthetic
data captures the temporal dynamics in the real patient trajectories. The sim-
ilarity score ranges from 0 to 1, where 0 indicates dissimilarity and 1 indicates
similarity.

The table shows that TempEHR consistently achieves high DTW scores
across the MIMIC-CHF and MIMIC cohorts, with scores of 0.649 (£+0.002) and
0.633 (£0.001), respectively. TimeGAN also demonstrates strong capabilities
in modelling the temporal dynamics of patient trajectories. On the other hand,
EHR-M-GAN has the lowest scores among the models, which suggests it has chal-
lenges in accurately replicating the underlying temporal movements and shifts
in the real patient trajectories.

A crucial aspect of EHR synthesis is modelling the temporal nature of real
EHRs. In real EHRs, the order and timing of events are crucial as they influence
clinical decisions. As such, the time between clinical events plays an important
role in modelling. Most studies on EHR modelling tend to ignore this. Thus
producing outputs that may not fully capture the temporal patterns present in
real patient trajectories [9]. TempEHR attempts to address this by incorporating
time information between patient visits in the generative model, enabling it to
better replicate shifts in values better over time.

5.5 Predictive Errors

We evaluate the utility of the generated data on a downstream sequence pre-
diction task using the TSTR framework. Specifically, we train a T-LSTM-based
model to predict different patient outcomes. For the MIMIC-CHF cohort, we
predict whether a patient visit was planned or not. In contrast, for the MIMIC
cohort, we predict the hospital expire flag, which indicates whether a patient
died during hospitalisation or survived.

We compare the Mean Absolute Error (MAE) of the predictions from the
synthetic data with the predictions from the real data as a baseline. Table 2
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Table 3: Trend similarity on continuous variables in the MIMIC-CHF and
MIMIC-RSP cohorts. Lower scores (bolded) are optimal. SBP: Systolic Blood
Pressure, DBP: Dystolic Blood Pressure, O2sat: Oxygen Saturation, Resprate:
Respiration Rate.

Dataset Variable TimeGAN EHR-M-GAN TempEHR

Age 0.661+0.132 0.415+0.019  0.199 £ 0.009
Potassium 0.711 £0.167 0.387 & 0.080 0.513 £ 0.056
Urea Nitrogen 0.129 +0.072 0.067 = 0.009 0.143 £+ 0.016

Sodium 0.424 +£0.006 0.465+0.027 0.377 £0.134
MIMIC-CHF Creatinine 0.324 £0.057 0.173+0.165 0.140 £ 0.060
Chloride 0.368 £0.067 0.4124+0.058 0.267 £ 0.022

Hematocrit  0.144 +0.115 0.076 4+ 0.021 0.143 +0.021
Hemoglobin  0.105+0.085 0.028 4 0.016 0.147 4 0.034

Age 0.8314+0.001 0.832+0.001 0.545 £ 0.100
Heartrate 0.069 £ 0.001 0.125 £ 0.052  0.124 4+ 0.099
Resprate 0.189 £0.001 0.194+0.044 0.116 £+ 0.019
O2sat 0.206 £0.001 0.072 4+ 0.036 0.262 + 0.109
MIMIC SBP 0.102 £ 0.001 0.152 £ 0.016 ~ 0.103 & 0.052
DBP 0.289 £0.001 0.175 4 0.016 0.260 £ 0.063
Hemoglobin  0.118 +0.066 0.057 4= 0.003 0.135 4+ 0.106
Glucose 0.138 £0.001 0.1754+0.010 0.127 £+ 0.022

Temperature 0.439 +0.001 0.396 4= 0.005 0.468 & 0.069

shows the MAE for the CHF and MIMIC datasets. The table shows that the
TempEHR-generated data performs comparably to the real data for predictive
purposes, obtaining an MAE of 0.262 (£0.002) in the MIMIC-CHF dataset and
0.242 (4£0.009) in the MIMIC dataset. This demonstrates that machine learning
models trained on TempEHR-generated data can generalise well to real-world
scenarios, maintaining low prediction errors. Notably, TimeGAN and EHR-M-
GAN yield relatively low predictive errors as well.

Evaluating the utility of EHR generation models allows us to determine
whether these generated EHRs can be utilised for medical or clinical purposes,
such as analysing healthcare policies and planning resources [23].

5.6 Privacy Evaluation

We assess the privacy preservation of the generated data using membership
inference attack as in previous studies [1,6], and report the accuracy of these
attacks. An optimal attack accuracy is approximately 0.5, indicating that the
attacker’s performance is no better than random guessing.

As illustrated in Figure 7, TempEHR achieves a relatively lower attack ac-
curacy of 0.612 (+0.038) for the MIMIC-CHF cohort and 0.616 (+0.072) for the
MIMIC cohort. Likewise, TimeGAN and EHR-M-GAN obtain attack accuracies
of 0.624 (+0.072) and 0.632 (£0.112) for the MIMIC-CHF cohort, respectively.
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Table 4: Average pairwise DTW similarity scores between patient trajectories
from the real and synthetic data. Higher scores (bolded) indicate the closest
match to real data.

MIMIC-CHF MIMIC

TimeGAN 0.535+0.001 0.669 £+ 0.001
EHR-M-GAN 0.546 £0.002 0.304 £ 0.002
TempEHR  0.649 & 0.002 0.633 £ 0.001

For the MIMIC cohort, TimeGAN and EHR-M-GAN report accuracies of 0.609
(£0.181) and 0.628 (£0.093), respectively.

Notably, all models yield attack accuracies close to 0.6, with TempEHR
yielding consistently low accuracies across both the MIMIC-CHF and MIMIC
datasets. This indicates similar levels of privacy preservation and limited leakage
of patient identities. The near-random attack accuracy for TempEHR, TimeGAN,
and EHR-M-GAN demonstrates their effectiveness in maintaining patient iden-
tities while generating plausible synthetic EHRs.

B MIMIC-CHF
= MIMIC

0.609
0.632

0.628
0624 0616

0.612

TimeGAN EHR-M-GAN TempEHR

Fig. 7: Accuracy on MIA

5.7 Ablation Studies

To evaluate the effectiveness of the components of TempEHR, we conduct an
ablation study to assess the contribution of each component. We report the
discriminative scores and predictive errors from these in Table 5. The experi-
ments are described as follows: S-1: TempEHR without the TrendFinder, S-2:
TempEHR without T-LSTM layers, and S-3: TempEHR, without time loss.
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Table 5: Discriminative scores and predictive errors from ablation studies. S-
1:TempEHR without the TrendFinder, S-2: TempEHR without T-LSTM layers,

S-3: TempEHR without time loss.

Model MIMIC-CHF MIMIC

S-1 0.806 + 0.032 0.537 +0.019
Discriminative Accuracy S-2 0.793 £0.018 0.574 £ 0.080
S-3 0.791 + 0.039 0.573 +0.043
S-1 0.291 £+ 0.012 0.258 £ 0.004
Predictive Score S-2 0.267 + 0.017 0.277 +0.013
S-3 0.289 + 0.018 0.254 + 0.009

From Table 5, we observe that T-LSTM layers, TrendFinder, and time loss
components all contribute to the overall performance of TempEHR in learning
an enriched representation of the data and generating synthetic EHRs.

6 Conclusions

In this work, we proposed TempEHR, a generative framework for synthesising
irregularly-timed EHRs. TempEHR enhances the generation of synthetic EHRs
by incorporating an enriched latent state representation that captures tempo-
ral dynamics, enabling more consistent replication of temporal dependencies in
real EHRs than previous generators. In modelling healthcare data, capturing the
order and timing of clinical events is essential for evaluating a patient’s health
status at any point in time. Our results demonstrate that TempEHR can preserve
the global and temporal relationships of real EHRs, achieving low predictive er-
rors and a more consistent performance across most evaluation measures. These
findings highlight its potential for improving synthetic EHRs for healthcare re-
search and innovation.

Although TempEHR performs well on most temporal patterns, some remain
challenging, as seen in the trend similarity scores. In future work, we aim to
refine the architecture to better replicate complex clinical patterns, enhancing
the quality of synthetic EHRs for healthcare applications.
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