Talk Is Cheap, Energy Is Not: Towards a Green,
Context-Aware Metrics Framework for Automatic
Speech Recognition

Maria Ulan! (), Erik Johannes Husom?, and Jeriek Van den Abeele?

L RISE Research Institutes of Sweden, Gothenburg, Sweden maria.ulan@ri.se
2 SINTEF Digital, Oslo, Norway erik.johannes.husom@sintef.no
3 Telenor Research & Innovation, Fornebu, Norway
jeriek-van-den.abeele@telenor.com

Abstract. Automatic Speech Recognition (ASR) systems are increas-
ingly deployed across diverse computing environments, from cloud servers
to edge devices. While accuracy has traditionally been the primary eval-
uation metric, the inference efficiency of these systems, including en-
ergy consumption, memory usage, and hardware utilisation, significantly
impacts their practical usability. This paper introduces a novel bench-
marking framework that assesses ASR models during inference from
both performance and sustainability perspectives. We introduce a multi-
metric evaluation approach quantifying Word Error Rate (WER), Real-
Time Factor (RTF), Energy Per Audio Second (EPAS), inference latency,
GPU Memory Efficiency (GME), and Hardware Utilisation Rate (HUR).
Our framework includes configurable weighting schemes tailored for vari-
ous deployment scenarios: balanced general-purpose evaluation, resource-
constrained environments, high-throughput batch inference, and real-
time processing. To demonstrate the utility of the framework, we bench-
mark several state-of-the-art ASR architectures (Whisper, Wav2Vec2,
HuBERT, WavLM, UniSpeech, and SpeechT5) in both FP16 and FP32
precision on NVIDIA Jetson AGX Orin hardware. The proposed method-
ology supports researchers and practitioners in making informed model
selection decisions based on context-specific inference requirements. By
illuminating performance—consumption trade-offs, the metrics framework
can help to reduce computational costs and the carbon footprint of ASR
systems, while maintaining acceptable accuracy.

Keywords: Green Machine Learning - Sustainability - Automatic Speech
Recognition - Benchmarks

1 Introduction

Automatic speech recognition (ASR), the conversion of acoustic speech signals
to text, is key for enhancing human—machine interaction. Advances in hardware,
algorithms, and data have given rise to ASR models with impressive accuracy,
as typically measured by the Word Error Rate (WER). Consequently, a vari-
ety of speech-based applications is nowadays deployed across the edge—cloud
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continuum, from cloud-hosted virtual customer service agents and large-scale
transcription services, to on-device applications like offline voice translation on
smartphones and voice command recognition in smart speakers, and increasingly,
in wearables and ultralow-power IoT devices. The deployment of Al models closer
to the edge is driven by a growing demand for enhanced privacy, reduced latency,
and increased energy efficiency.

The surging popularity of Large Language Models (LLMs) and Large Mul-
timodal Models (LMMs) has increased scrutiny to the energy consumption of
AT systems [9,[40]. While most Green AI research efforts focus on the training
phase [39], Google data from 2019 to 2021 indicated that about 60% of the en-
ergy consumption for their machine learning systems came from the inference
phase [30], and this was before the boost in public LLM adoption triggered by
OpenAl’'s ChatGPT release. Although a typical ASR inference task may not
require as much energy as, for instance, image generation or captioning [22],
when performed at scale, the environmental impact can become substantial.
For example, transcribing a whole workday’s worth of calls for every agent in a
customer service centre accumulates a considerable energy cost. After all, ASR
pipelines are computationally demanding: they typically consist of an acoustic
model for inferring phoneme sequences from audio signals, a lexical model de-
scribing word pronunciations, and a language model estimating the probability
of word sequences for enhanced transcription accuracy.

While various ASR model architectures reach high WER scores on bench-
mark datasets [36], in practice model selection requires a holistic view, going
beyond accuracy. Real-world ASR deployment requires considering often un-
deremphasised factors like inference latency, computational efficiency, memory
usage, and energy consumption. As ASR systems become gradually more em-
bedded in resource-constrained and environment-sensitive contexts, these dimen-
sions of inference efficiency directly impact the practical usability, sustainability,
and operational costs of ASR solutions. Therefore, understanding and balanc-
ing trade-offs between performance and resource use is essential to select the
appropriate ASR models for specific deployment scenarios.

This paper presents a new multi-metric framework for evaluating the ASR
systems in the inference phase, aiming to provide practitioners with a straight-
forward methodology for assessing which ASR model is most suitable for deploy-
ment in specific usage contexts. Our approach considers WER accuracy alongside
sustainability- and efficiency-oriented metrics: Real-Time Factor, Inference La-
tency, Energy Per Audio Second, GPU Memory Efficiency and Hardware Utili-
sation Rate. We introduce metric weighting schemes to accommodate diverse de-
ployment scenarios, including resource-constrained environments, and real-time
or batch processing. Finally, we benchmark several state-of-the-art ASR archi-
tectures (Whisper, Wav2Vec2, HuBERT, WavLM, UniSpeech, and SpeechT5) on
NVIDIA Jetson AGX Orin hardware, illustrating how the framework supports
informed, context-aware model selection that balances accuracy, performance,
and sustainability.
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2 Related Work

The environmental impact of artificial intelligence has gained significant atten-
tion following seminal research by Strubell et al. [37], which documented the
substantial carbon emissions associated with training large neural networks.
Schwartz et al. |34] introduced the concept of "Green AI" to contrast "Red
A" which prioritises accuracy and capability over efficiency. They argue for in-
corporating energy usage and computational cost as primary evaluation metrics
alongside traditional performance measures, introducing a more holistic evalua-
tion paradigm. These studies were some of the first of a growing body of research
on sustainable computing practices within Al development.

While many studies focused primarily on the training stage [25,29%/30,[37],
large-scale deployment and use of Al models may lead to substantially larger in-
ference costs due to the cumulative impact of numerous inference requests over
the lifetime of a deployed model. Wu et al. [44] demonstrated that both training
and inference phases contribute significantly to the overall carbon footprint of
machine learning applications, with relative proportions varying across different
use cases and implementation scenarios. This variability highlights the impor-
tance of context-specific energy analyses rather than generalised approaches to
environmental impact assessment. Luccioni et al. [20] called for expanding the
analysis of environmental impacts across the entire ML lifecycle to include the
costs during deployment and inference. Investigations into the inference phase
have identified that task-specific models typically demonstrate better energy
efficiency compared to multi-purpose alternatives used for the same tasks, en-
couraging the use of specialised models over general-purpose large models when
task requirements permit [21].

The quantification of AI systems’ energy usage requires robust monitor-
ing frameworks, which have evolved considerably in recent years. Henderson et
al. [12] made important contributions by establishing a framework for environ-
mental accountability through systematic documentation of energy consumption
throughout the AT development process. Several additional teams [1}/4,(10}[18}(19]
have developed methodologies to estimate or track the energy consumption of
AI. These approaches vary in granularity, hardware compatibility, and method-
ology, often yielding inconsistent results that complicate systematic comparisons
between models and systems.

The hardware compatibility constraints of energy monitoring tools present
significant challenges for comprehensive energy assessment. Most tools for en-
ergy monitoring of a system’s internal components only support Intel CPUs
and NVIDIA graphics cards |1,/4/10], as they rely on the manufacturers’ propri-
etary monitoring interfaces, RAPL and NVML/nvidia-smi, respectively. While
these represent common hardware choices, this dependency limits applicability
across deployment scenarios such as edge computing. Moreover, Yang et al. [45|
identified significant limitations in nvidia-smi’s accuracy, showing a +5% error
margin (versus the claimed £5W), which can lead to substantial measurement
discrepancies on high-power GPUs. Their study also revealed that newer GPU
architectures only sample power during 25% of runtime, leaving most power fluc-
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tuations unmonitored. Software-based methods additionally have the inherent
limitation of relying on power models for providing their metrics [16], meaning
that they provide estimates rather than direct measurements.

The AI Energy Score Leaderboard [22| is a benchmarking initiative evalu-
ating models based on standardised power efficiency metrics. While important
for promoting transparency in Al energy consumption and a useful high-level
benchmark, it has notable methodological limitations. First, the AT Energy Score
focuses exclusively on GPU power consumption, without accounting for signif-
icant system-wide energy factors—a shortcoming shared with other energy as-
sessment studies [33]. The creators of the benchmark acknowledge that "CPU
and RAM usage was found to be approximately 30% greater than GPU en-
ergy use," yet these components remain excluded from their primary metrics.
Second, given nvidia-smi’s aforementioned accuracy limitations and sampling
gaps, these GPU-centric measurement approaches may compound measurement
errors with incomplete system coverage, potentially leading to significant un-
derestimation of actual energy consumption. Finally, such benchmarks typically
isolate energy efficiency from other critical performance indicators, and the Al
Energy Score creators note that users should independently consider "through-
put, accuracy, and latency" alongside efficiency metricsEI

Despite the growing focus on Green Al, relatively few studies have specif-
ically addressed energy consumption in Automatic Speech Recognition (ASR)
systems. Parcollet et al. |28] investigated the carbon footprint of training end-
to-end speech recognisers, quantifying COs emissions during model training and
highlighting how minimal performance improvements often come at extremely
high environmental costs. However, their work focused primarily on the training
phase rather than inference.

Chakravarty |7] conducted one of the few studies examining ASR inference
energy consumption, specifically for edge deployment. This work measured en-
ergy consumption for various ASR models on the NVIDIA Jetson Orin Nano,
analysing the effects of model quantisation, precision levels, and noise on per-
formance and energy efficiency. The study found that changing precision from
FP32 to FP16 halved energy consumption across different models with minimal
performance degradation, and that larger model size does not necessarily predict
better noise resilience or energy consumption patterns.

While these studies provide valuable insights into ASR energy consumption,
they lack a cohesive method evaluating both performance and sustainability.
Most existing work focuses either on single-metric evaluations or fails to provide
context-specific evaluations tailored to different deployment scenarios. Addition-
ally, many studies do not adequately address the trade-offs between energy effi-
ciency, accuracy, and other performance metrics that practitioners must navigate
when deploying ASR systems.

4 Thus, while the AT Energy Score offers meaningful ratings, our objective is to en-
able the level of granularity needed for deployment-specific trade-off analysis across
various performance and sustainability factors. Differences in energy measurement
methodology preclude direct comparison with our framework.
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3 Benchmark Framework

Recent ASR models perform remarkably well, reaching accuracy levels compara-
ble to human annotations [36]. However, these advances often come with signif-
icant computational and energy costs. Our benchmarking framework addresses
this fundamental trade-off by providing a comprehensive evaluation approach
that integrates both traditional performance metrics and sustainability consid-
erations. We design the framework around four key principles: (1) moving beyond
accuracy-only assessment to encompass efficiency metrics, (2) recognising that
different deployment scenarios prioritise different aspects of performance, (3) en-
suring consistent and reliable measurements across test runs, and (4) providing
insights that are actionable for researchers and practitioners.

Moreover, our approach acknowledges that ASR deployment occurs across
diverse computing environments, from cloud servers to edge devices. Each en-
vironment has unique constraints and different evaluation criteria for different
priorities. For edge deployment, specifically, where battery life and thermal man-
agement are critical concerns, energy efficiency plays a crucial role.

The framework follows a modular pipeline architecture with four main com-
ponents. The Inference Engine executes ASR models on audio inputs while mea-
suring computational metrics such as inference time, latency, and accuracy. It
ensures that the model’s real-world performance is evaluated effectively. The
Power Monitoring module collects data on the power consumption in real time
during inference. By tracking energy usage, it helps to assess the efficiency of
ASR models and optimise them for deployment on various hardware platforms.
The Metrics Aggregator collects and combines performance and efficiency met-
rics from multiple sources. Collect data related to ASR accuracy, processing
speed, and power consumption, providing a comprehensive evaluation of the ef-
fectiveness of each model. The Weighted Scoring System applies context-specific
weightings to different performance metrics to generate deployment-optimised
scores. This enables informed decision-making by prioritising models that best
meet the specific requirements of a given use case.

3.1 Metrics Definition

The framework measures six key metrics that comprehensively characterise ASR
system performance.

Word Error Rate (WER) is a standard accuracy metric for ASR that
measures the edit distance between the reference and hypothesised transcripts
[24,/43]. The ASR model inference output is a text file, each corresponding to a
single audio input file. To ensure consistency between characters in prediction
and ground truth datasets, we apply a normalisation process where punctuation
marks, special characters, and capitalisation are removed. WER is expressed as

. __ Substitutions4Deletions+Insertions
a percentage, and calculated as: WER = =53e it 00t S 2o

Real-Time Factor (RTF) is the dimensionless ratio of the processing time
to the audio duration, indicating how much faster (or slower) the system operates
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compared to real-time [|23|. This metric is crucial for assessing whether an ASR
system can keep up with live audio input.

Energy Per Audio Second (EPAS) is a metric that quantifies the energy
required to process one second of audio, measured in joules per second. This
metric was inspired by the energy-per-token metric used for profiling energy
consumption in LLM inference [15}33]. EPAS is calculated as the ratio of total
energy consumption to total audio duration.

Inference Latency (in milliseconds) is computed as the 95th percentile of
the processing times of all audio segments, providing insight into the worst-case
responsiveness. The 95th percentile is more useful than the maximum latency,
because it filters out rare outliers, while still representing worst-case scenarios.
It is also known as tail latency [46].

GPU Memory Efficiency (GME) is the ratio of active GPU memory to
total allocated GPU memory, expressed as a percentage.

Hardware Utilisation Rate (HUR) is a measure for the average utilisa-
tion of the compute resources (CPU and GPU), providing insight into balanced
resource usage. The HUR is expressed as a percentage, and is calculated by
taking the mean of the average GPU utilisation and average CPU utilisation.

Lower WER indicates better accuracy, and lower RTF indicates more ef-
ficient processing. When RTF < 1, the system processes audio faster than it
would take to play it. Lower EPAS and Inference Latency values are desirable.
Higher GME values are better, values close to 100% indicate effective use of
allocated GPU memory. Balanced, high HUR (60-90%) is ideal: lower values
suggest underutilisation, higher HUR may indicate bottlenecks and high energy
usage.

3.2 Weights and Aggregation

We use min—max normalisation to transform the raw metrics to a 0-1 scale where
1 represents the best performance. For metrics where lower values are better
(WER, RTF, EPAS, Latency), we invert the normalised values. For HUR, we use
a piecewise normalisation that assigns optimal scores (0.8-1.0) to the balanced
utilisation range (60-90%), with lower scores for both underutilisation (<60%)
and overutilisation (>90%). This approach rewards efficient resource usage while
penalising potential bottlenecks and wasteful underutilisation.
We define a green score as a weighted sum of normalised metrics:

6
Green Score = W - My grm = E w; - My,
i=1

where w = [WwER, WRTF, WEPAS, Wiat, WGME, WHUR) and the components of myorm
are ordered analogously.

In our framework we use configurable weighting schemes that adapt the eval-
uation to different deployment contexts. Rather than providing a single score,
we define four weighting schemes, shown in Table [I} that reflect common ASR
deployment scenarios:



Towards a Green, Context-Aware Metrics Framework for ASR 7

Table 1. Weighting scheme coefficients reflecting different deployment contexts

Scenario WWER WRTF WEPAS Wiat WGME WHUR

Balanced 0.25 0.20 0.20 0.15 0.10 0.10
Mobile 0.15 0.20 0.30 0.05 0.25 0.05
Real-time 0.25 0.25 0.10 0.30 0.05 0.05
Server 0.25 0.10 0.35 0.00 0.20 0.10

Balanced General-Purpose Evaluation (Balanced) is designed for general-purpose
applications with balanced requirements. In this scenario, accuracy is always im-
portant; processing speed matters in most cases; energy efficiency is highly ben-
eficial across all cases; responsiveness is crucial mostly in interactive systems;
and memory efficiency and efficient hardware utilisation are beneficial but less
critical.

Resource-Constrained Environments (Mobile) is optimised for battery-powered
and edge devices with limited resources. In this scenario, accuracy still matters,
but some degradation is acceptable; responsiveness is essential despite limited
resources; energy efficiency is critical for battery-powered devices; latency is less
important than overall energy efficiency; memory constraints are significant; and
balanced utilisation is important, but not a primary concern.

Real-Time Processing (Real-time) is optimised for applications requiring imme-
diate responses, like voice assistants and interactive systems. In this scenario,
high accuracy for user experience is important; the system must process faster
than real-time; energy matters but is secondary to responsiveness; immediate
response is critical; memory efficiency is less critical for devices with sufficient
RAM,; and hardware utilisation is a minor concern.

High-Throughput Batch Inference (Server) is optimised for large-scale cloud de-
ployments. In this scenario, accuracy is still important; throughput matters, but
time sensitivity is lower; energy efficiency is crucial for managing operational
costs; per-request latency is irrelevant for batch jobs; memory efficiency deter-
mines how many models fit on a server; and balancing CPU/GPU load enhances
computational performance.

4 Experimental Setup

We conducted experiments on several ASR models obtained from Hugging Face.
We evaluated the models with half- and single-precision settings, and measured
and aggregated metrics from the proposed benchmark framework. We used high-
quality English speech recordings from public-domain readings and a diverse,
crowdsourced voice collection with broad demographic coverage. To assess ro-
bustness, we also injected synthetic noise into the clean speech samples.
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Table 2. Technical hardware specifications

Component Specification

GPU NVIDIA Ampere architecture (cores: 2048 NVIDIA CUDA, 64 Tensor)

CPU 12-core Arm Cortex-A78AE v8.2 64-bit CPU 3MB L2 + 6MB L3,
2.2GHz max frequency

Memory 32GB LPDDR5 RAM

Storage 64GB eMMC 5.1 Flash Storage

Power Configurable TDP from 15W to 60W

Dimensions 100mm X 79mm X 21mm

4.1 Hardware Platform

All experiments were conducted on the NVIDIA Jetson AGX Orin Developer
Kit, which represents a high-performance edge computing platform,
shows its technical specifications. The Jetson AGX Orin was chosen for its abil-
ity to represent both edge and small server deployment scenarios, with suffi-
cient computational power to run all the evaluated models, while still being
constrained enough to reveal meaningful differences in efficiency metrics. Its
lightweight design allows for seamless integration into smaller devices, while
still providing the computational capabilities necessary to handle complex loads
without relying on cloud computing resources.

The device was interfaced through wired keyboard and mouse, with the Jet-
Pack 6.2 [L4T 36.4.3] OS providing the graphical user interface. For power mea-
surements, we utilised the built-in INA3221 power monitors |38] on the Jetson
platform, which provide accurate measurements of system-on-chip (SoC) and
memory subsystem power consumption.

4.2 Implementation Details

Our framework is implemented as a collection of Python modules that can be
easily extended to accommodate new models and metrics. It includes ASR en-
gine wrappers: custom scripts for each model architecture, providing a unified
interface for model loading, inference, and metrics collection; a power monitor-
ing daemon: a background process that collects power consumption data using
platform-specific utilities; and a metrics aggregator: a data processing pipeline
that combines metrics from various sources, handles normalisation, and applies
weighting schemes.

The entire framework is designed to be portable across different computing
environments, with currently optimised support for NVIDIA Jetson platforms.
The source code is publicly avauilableﬂ7 allowing researchers to replicate our ex-
periments and enhance the framework to suit their specific needs.

We employ continuous sampling of power consumption using the NVIDIA
tegrastats utility [26] at 200 ms intervals, which provides fine-grained power

® https://github.com/ulmarise/asr-green-metrics-framework
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measurements for Jetson platforms. Baseline measurements of RAM and power
are first established during device inactivity, and these values are subtracted
from the total consumption to calculate the specific resources allocated to ASR
tasks. Moreover, we utilise PyTorch’s built-in CUDA memory tracking capa-
bilities combined with system-level memory monitoring to calculate memory
efficiency. We track both allocated and active memory to understand utilisation
patterns.

For consistent and reliable metrics collection, our framework implements the
following methodology. For WER calculation, we use the jiwer library [17] with
a custom normalisation procedure to handle punctuation, capitalisation, and
spacing consistently. This ensures fair comparisons across different model archi-
tectures and output styles. We set up model inference to capture the exact start
and end times for each audio segment, ensuring the accurate calculation of RTF
and Inference Latency metrics. Each audio file is processed separately to provide
per-file metrics for statistical analysis. For EPAS calculations, we isolated the
incremental energy consumption attributable to the ASR model by subtract-
ing baseline power draw. GME and HUR metrics were calculated from memory
usage statistics and from CPU and GPU percentages in tegrastats output.

4.3 ASR Model Selection

To demonstrate the utility of our framework, we selected six state-of-the-art
ASR architectures representing a diverse range of model families:

1. Whisper, a transformer-based encoder—decoder model trained on a massive
multilingual dataset. We used the distilled version [11], which maintains
performance with reduced computational requirements. Specifically, we used
a compact version optimised for English speech recognition with reduced
parameters yet similar performance ; a medium-sized version that balances
computational efficiency and transcription accuracy ; and the largest variant
in the Distil-Whisper family, offering high-quality speech recognition with
significantly fewer parameters than the original Whisper Large-v2 model.

2. Wav2Vec2 [5], a self-supervised model that learns representations directly
from raw audio, using a convolutional feature encoder followed by a trans-
former. We used Facebook Wav2Vec2 Large 960h, a self-supervised speech
recognition model pre-trained on 960 hours of data, featuring robust perfor-
mance on diverse speech inputs.

3. HuBERT |[14], a hidden-unit BERT model that learns representations from
clustered audio features, with a mask prediction objective. We used Facebook
HuBERT Large LS960 FT, a model pre-trained on unlabelled audio and fine-
tuned on 960 hours of labelled speech for improved representation learning.

4. WavLM |§|, an evolution of the HuBERT approach incorporating masked
language modeling and denoising objectives. We used WavLM Libri-Clean
100h Base Plus, an enhanced audio representation model that builds upon
the Wav2Vec framework, fine-tuned on 100 hours of clean data.
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5. UniSpeech |42], a unified pre-training framework that combines self-super-
vised and supervised learning. We used Microsoft UniSpeech-SAT Base 100h
Libri FT, a speech representation model leveraging self-supervised and semi-
supervised training approaches, fine-tuned on 100 hours of data.

6. SpeechT5 |2, a unified-modal encoder-decoder framework that handles
both speech and text. We used Microsoft SpeechTH5 ASR, a unified text-to-
speech and speech-to-text transformer model based on the T5 architecture,
specifically optimised for automatic speech recognition tasks.

For each model, we utilised the implementations available through the Hug-
ging Face library, which provides consistent APIs and optimised CUDA support.
Each model was tested in both FP32 (full precision) and FP16 (half precision) to
evaluate the performance—efficiency trade-offs of reduced precision. Each model’s
inference code was configured to capture timing and resource utilisation metrics,
with detailed logs generated for subsequent analysis.

4.4 Dataset Characteristics

We used the benchmark framework to evaluate two speech datasets. The first
is a smaller benchmark: a subset of the LibriSpeech dataset [27], consisting of
70 audio tracks from the test-clean partition. The second dataset is larger and
more diverse, is an English subset of the Common Voice dataset [3|, comprising
3995 audio tracks from the valid-test partition.

The LibriSpeech audio data is stored in FLAC-encoded (lossless), sampled at
16 kHz with a mono channel. Each segment lasts 3—-5 seconds, totaling approx-
imately 328 seconds. The recordings feature high signal-to-noise ratio speech,
balanced gender distribution, and native English speakers reading public do-
main audiobooks. The dataset size was chosen to be large enough to provide
statistically significant results while remaining manageable for repeated evalua-
tions across multiple models and configurations.

To evaluate the model’s ability to handle acoustic interference, we considered
a noisy version of the dataset. It was created using Gaussian white noise with a
mean of zero and a standard deviation of one, ensuring it matched the length of
each audio track. The noise amplitude was reduced by 10 dB to limit its impact
on the original signal. Then the noise was combined with the audio signal to
produce a composite track that simulates real-world audio corruption in noisy
environments. This approach allowed us to systematically evaluate performance
degradation under consistent noise conditions.

In addition to LibriSpeech, we include the Common Voice dataset to in-
troduce greater variability in speaker demographics, recording conditions, and
background noise levels. This enables evaluation under more realistic, less con-
trolled conditions. The audio files are in MP3 format, sampled at 48 kHz mono.
Segments range 1-28 seconds, totalling around 5 hours of audio. Recordings are
crowd-sourced with moderate noise levels, covering global English speakers with
balanced gender distribution, reading from open-domain text prompts. Audio
files were used as-is, but downsampled to 16 kHz.
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4.5 Evaluation Details

Our evaluation followed these steps for each model and precision configuration.
First, each model was loaded into memory with the specified precision (FP16 or
FP32). Loading time was measured but not included in the inference metrics.
Second, ten audio samples (not part of the dataset) were processed to prime
the model and stabilise GPU memory allocation. Third, during the inference
phase, each audio file was processed sequentially with the following measure-
ments: processing time for each audio sample, memory utilisation tracked at 200
ms intervals, power consumption recorded continuously, and output transcrip-
tions saved for subsequent WER calculation. Fourth, raw measurements were
processed to calculate the six core metrics (see Sec. . Fifth and finally, the
four weighting schemes were applied to generate context-specific Green Scores.

To ensure reliability, each experiment was conducted three times, and the
median values were used for the final results. The ambient temperature was
maintained at 22°C 4+ 1°C to minimise thermal variability. The Jetson AGX
Orin was configured in MAXN power mode to ensure consistent maximum per-
formance across all tests.

5 Results and Analysis

We first examine the overall performance trends under clean conditions, followed
by an analysis of noise robustness, where artificial noise is added. This is then
complemented by an evaluation under natural conditions using real-world noisy
speech. presents the evaluation metrics, and shows the corre-
sponding green scores computed with various weighting schemes for ASR models
evaluated on clean and artificially noisy speech. [Table 5] presents the metrics and
green scores for ASR models evaluated on speech with real-world noise.

On clean LibriSpeech data, HuBERT yields the best transcription accuracy,
while Distil Whisper Large excels with noise. Precision format (FP16 vs. FP32)
minimally impacts accuracy but greatly affects performance metrics. UniSpeech
is fastest overall, with Distil Whisper Small/Medium (FP16) being the most effi-
cient among transformer models. FP16 models consistently outperform FP32 in
speed and energy use, with WavLM, UniSpeech, and Wav2Vec2 (FP16) showing
the highest energy efficiency. Larger models are predictably less memory-efficient,
with Distil Whisper Large (FP32) achieving the most balanced hardware utili-
sation.

HuBERT FP32 achieves the highest balanced green score on clean Lib-
riSpeech data, challenging the notion that FP16 models are always more effi-
cient. Distil Whisper FP16 models offer good accuracy—efficiency balance, while
SpeechT5 and WavLM rank lowest. For mobile/edge deployment, UniSpeech and
HuBERT FP32 excel. In real-time scenarios, UniSpeech FP16 and HuBERT
FP32 perform best. Server-side applications favour HuBERT FP32 and Distil
Whisper Large FP16, with the latter providing strong WER performance. Green
scores remain consistent between clean and noisy LibriSpeech data, suggesting
the aggregation approaches may underweight audio quality sensitivity.
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On Common Voice data, Distil Whisper Large achieves the best transcrip-
tion accuracy, followed by Distil Whisper Medium and Small. UniSpeech has
the fastest processing speed overall, while WavLM and traditional transformer
models (Wav2Vec2, HuBERT) show moderate performance. FP16 models consis-
tently show superior energy efficiency, with UniSpeech, WavLM, and SpeechT5
showing the lowest energy consumption per audio second. FP32 variants of
Wav2Vec2, HuBERT, and WavLM achieve lower latency, while Distil Whisper
models exhibit higher latency but maintain competitive speed-accuracy trade-
offs. Larger Distil Whisper models predictably consume more GPU memory,
with the Large variant (FP32) reaching the highest memory utilisation, while
UniSpeech and WavLM maintain more balanced resource use across precisions.

HuBERT FP32 dominates on Common Voice data with the highest bal-
anced green score, demonstrating that FP32 models can be more efficient despite
their higher precision. Wav2Vec2 FP32 and Distil Whisper Medium FP16 also
perform strongly in balanced scenarios. For mobile/edge deployment, HuBERT
(both precisions) and Wav2Vec2 FP32 excel, while UniSpeech maintains consis-
tent performance across precision types. In real-time scenarios, HuBERT FP32
performs the best, with Wav2Vec2 FP32 and Distil Whisper Medium FP16 close
behind. Server-side applications favour HuBERT models. SpeechT5 consistently
ranks lowest across all categories, with particularly poor real-time performance.

Comparing results across both datasets shows consistent patterns in model
performance. HuBERT FP32 demonstrates superior efficiency-accuracy trade-
offs, achieving the highest balanced green scores on both LibriSpeech and Com-
mon Voice. UniSpeech FP16 maintains the lowest energy consumption and pro-
cessing time across datasets, while Distil Whisper Large offers the best accuracy
on Common Voice but is outperformed by HuBERT on LibriSpeech. The rela-
tive performance ranking of models remains largely consistent across datasets,
suggesting that our green score metrics robustly capture model characteristics
rather than dataset-specific features.

Given a specific precision format, our results may help identify the most
economical model for various deployment scenarios. For FP16 precision, UniS-
peech offers optimal resource efficiency, Distil Whisper models provide the best
accuracy—efliciency balance for real-time applications, and HuBERT delivers su-
perior server performance. For FP32 precision, HuBERT consistently demon-
strates the best overall performance, particularly for real-time scenarios, while
UniSpeech and WavLM maintain excellent resource efficiency. These findings
challenge the common assumption that lower precision formats always yield more
efficient models, as demonstrated by HuBERT FP32’s exceptional performance
across both datasets. It is important to note that these recommendations are
specific to the hardware platform and dataset characteristics used in the ex-
periments. Performance may vary with different hardware configurations, audio
conditions, or application requirements.



Towards a Green, Context-Aware Metrics Framework for ASR 13

Table 3. LibriSpeech metrics for various ASR models with different precision formats
— for clean and, in parentheses, for noisy speech data

Model Prec. WER RTF EPAS Latency GME HUR
Distil-Whisper-S FP16 ||3.48 (17.19) 0.127 (0.125) 0.79 (0.64) 0.83 (0.79) 12.67 (12.45) 31.60

FP32 |[3.70 (17.19) 0.182 (0.181) 3.29 (3.10) 0.91 (0.90) 12.64 (12.47) 29.45
Distil-Whisper-M FP16 [|4.13 (14.25) 0.123 (0.120) 1.58 (1.38) 0.65 (0.64) 15.62 (15.25) 28.75

FP32 |[3.92 (14.25) 0.248 (0.253) 11.36 (11.11) 1.18 (1.18) 18.04 (17.80) 36.94
Distil-Whisper-L. FP16 ||4.03 (12.40) 0.152 (0.152) 3.26 (3.56) 0.85 (0.86) 20.48 (20.27) 34.30

FP32 ||4.03 (12.40) 0.417 (0.418) 23.46 (23.83) 1.97 (2.00) 27.09 (26.90) 39.92 (40.80
Wav2Vec2 FP16 |[4.13 (38.96) 0.378 (0.380) 0.23 (0.25) 1.81 (1.83) 20.71 (20.32) 6.02 (16.55)

FP32 ||4.13 (39.17) 0.094 (0.096) 1.91 (1.73) 0.29 (0.30) 19.74 (19.52) 18.50 (19.03)
HuBERT FP16 |[2.39 (10.88) 0.387 (0.394) 0.26 (0.23) 1.86 (1.86) 20.10 (19.99) 10.02 (3.83)

FP32 |[2.39 (10.88) 0.093 (0.098) 1.97 (1.85) 0.33 (0.32) 19.49 (19.24) 29.28 (21.52)
WavLM FP16 |[12.5 (63.76) 0.32 (0.332) 0.18 (0.23) 1.79 (1.78) 20.70 (20.51) 5.72 (15.66)

FP32 ||12.5 (63.76) 0.07 (0.063) 0.68 (0.65) 0.16 (0.15) 19.87 (19.88) 17.30 (25.06
UniSpeech FP16 |[6.31 (31.23) 0.054 (0.052) 0.26 (0.23) 0.08 (0.07) 20.10 (19.77) 12.87

FP32 |(6.31 (31.23) 0.058 (0.061) 0.53 (0.68) 0.13 (0.12) 19.27 (19.11) 23.62
SpeechT5 FP16 ||11.9 (27.31) 0.351 (0.356) 0.34 (0.37) 2.88 (2.88) 20.59 (20.25) 14.18

FP32 |[11.9 (27.31) 0.360 (0.361) 0.80 (0.79) 2.98 (3.00) 20.10 (19.83) 26.15

6 Discussion

Our evaluation across LibriSpeech and Common Voice datasets reveals signifi-
cant insights for ASR model selection. While FP16 models generally offer bet-
ter energy efficiency and speed, some FP32 models achieve better overall green
scores due to superior accuracy and balanced hardware utilisation. HuBERT
FP32 consistently demonstrates exceptional efficiency-accuracy balance across
both datasets, while UniSpeech FP16 excels in resource-constrained scenarios.
For practical deployments, UniSpeech FP16 is optimal for energy and latency
constraints, HuBERT FP32 delivers the best balanced performance, and Dis-
til Whisper models offer strong accuracy with reasonable efficiency. Precision-
specific analysis directly addresses which model is most economical given par-
ticular constraints, challenging the assumption that energy efficiency necessar-
ily compromises accuracy. These findings emphasise the importance of multi-
dimensional ASR evaluation frameworks, as the traditional focus on WER alone
fails to capture the complex trade-offs in real-world deployments, particularly
for resource-constrained environments and large-scale use, where energy consid-
erations are increasingly critical.

Limitations While our evaluation provides valuable insights into ASR model
performance, some limitations should be noted. Firstly, while our green scoring
system provides a useful aggregated metric for model comparison, we acknowl-
edge that such aggregation approaches may potentially mask poor performance
in individual metrics. The relative importance of different metrics also varies
according to specific application requirements. Users should always examine in-
dividual metric values alongside green scores to ensure that models meet specific
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Table 4. LibriSpeech green scores — for clean and, in parentheses, for noisy speech
data

Model Prec.||Balanced Mobile Realtime Server
Distil-Whisper-S FP16 (|0.73 (0.72) 0.64 (0.64) 0.76 (0.76) 0.69 (0.67)
FP32 {|0.67 (0.68) 0.58 (0.58) 0.70 (0.71) 0.62 (0.64)
Distil-Whisper-M FP16 (|0.74 (0.76) 0.68 (0.70) 0.77 (0.80) 0.70 (0.72)
FP32 {|0.59 (0.61) 0.53 (0.54) 0.61 (0.63) 0.56 (0.59)
Distil-Whisper-L. FP16 (|0.74 (0.76) 0.73 (0.74) 0.75 (0.78) 0.74 (0.77)
FP32 ||0.41 (0.45) 0.42 (0.44) 0.39 (0.42) 0.46 (0.50)
Wav2Vec2 FP16 ||0.55 (0.47) 0.61 (0.56) 0.49 (0.40) 0.69 (0.61)
FP32 {|0.78 (0.69) 0.76 (0.71) 0.84 (0.74) 0.74 (0.66)
HuBERT FP16 |[0.59 (0.58) 0.62 (0.62) 0.52 (0.51) 0.72 (0.72)
FP32 {|0.84 (0.82) 0.79 (0.78) 0.88 (0.87) 0.80 (0.79)
WavLM FP16 [[0.37 (0.39) 0.51 (0.52) 0.31 (0.32) 0.49 (0.51)
FP32 {|0.61 (0.62) 0.67 (0.68) 0.66 (0.68) 0.56 (0.58)
UniSpeech FP16 [[0.77 (0.79) 0.78 (0.79) 0.84 (0.85) 0.72 (0.74)
FP32 {|0.77 (0.76) 0.76 (0.75) 0.83 (0.82) 0.72 (0.70)
SpeechT5 FP16 [[0.33 (0.48) 0.49 (0.58) 0.20 (0.36) 0.51 (0.66)
FP32 {|0.33 (0.47) 0.48 (0.57) 0.19 (0.35) 0.51 (0.66)

requirements for their deployment scenarios. The green scores are intended as
a complementary decision-making tool rather than a replacement for detailed
metric analysis. Future work could explore the incorporation of minimum per-
formance thresholds or weighted penalty functions to address scenarios where
certain metrics are considered critical for specific applications.

Secondly, in our experiments, we utilised power measurements obtained from
the built-in sensors of NVIDIA Jetson devices. Although the accuracy of these
measurements may pose a threat to construct validity, previous studies demon-
strated that such measurements are quite accurate and can be further calibrated
to develop more realistic energy consumption models [35]. Moreover, we illus-
trated our framework on a limited selection of eight ASR models and two speech
recording datasets. Implementing our framework on other hardware with more
models and data would reduce this threat to external validity, and is a matter
for future work.

Finally, we emphasise that our framework does not cover the total energy cost
over the full Al system lifecycle, and that improved Al efficiency may still lead to
higher overall energy consumption due to increased demand (Jevons paradox).
Also, the framework does not consider potential biases in the ASR training data
and models, which may disproportionately affect underrepresented user groups.

7 Conclusions and Outlook

We presented a multi-metric framework for ASR systems that extends beyond
traditional accuracy metrics to incorporate energy efficiency and deployment
considerations. Evaluation across both controlled (LibriSpeech) and real-world
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Table 5. Common Voice metrics and green scores

Model Prec.||WER RTF EPAS Latency GME HUR|Balanced Mobile Realtime Server

Distil-Whisper-S FP16 || 6.16 0.074 0.514 433.07 14.20 36.96 0.77 0.67 0.81 0.71
FP32 | 6.15 0.106 2.995 558.52 13.94 41.70 0.73 0.62 0.77 0.67

Distil-Whisper-M FP16 || 5.78 0.071 1.558 386.33 17.79 41.06 0.80 0.73 0.84 0.76
FP32 | 5.77 0.192 11.147 933.02 19.83 41.66 0.63 0.56 0.64 0.61

Distil-Whisper-L. FP16 || 4.81 0.096 3.232 516.20 22.70 20.72 0.78 0.76 0.81 0.78
FP32 | 4.82 0.360 23.972 1671.79 28.82 48.12 0.46 0.45 0.43 0.51

Wav2Vec2 FP16 | 9.84 0.053 0.307 1799.57 24.25 15.19 0.69 0.78 0.63 0.78
FP32 | 9.84 0.030 1.816 190.39 21.75 48.70 0.82 0.79 0.86 0.78
HuBERT FP16 | 6.19 0.056 0.412 1812.83 25.24 16.99 0.74 0.82 0.67 0.84
FP32 | 6.17 0.033 1.945 212.09 22.46 50.24 0.87 0.83 0.90 0.83
WavLM FP16 || 22.36 0.048 0.229 1371.85 25.66 18.90 0.58 0.73 0.54 0.65
FP32 | 22.39 0.018 0.709 93.74 23.78 42.18 0.69 0.75 0.73 0.66
UniSpeech FP16 || 18.45 0.011 0.197 64.14 24.09 42.46 0.75 0.80 0.79 0.72
FP32 | 18.46 0.014 0.654 76.47 23.26 45.64 0.74 0.78 0.78 0.71
SpeechTb FP16 || 24.59 0.292 0.237 2407.59 25.05 18.87 0.33 0.53 0.19 0.54

FP32 || 24.60 0.286 0.452 2369.41 24.58 22.12 0.34 0.53 0.20 0.54

(Common Voice) speech datasets demonstrates that our findings are robust
across different speech conditions. Our results highlight that ASR model selection
involves complex trade-offs between accuracy, speed, energy consumption, and
hardware utilisation. We found that HuBERT and UniSpeech models achieve the
best overall efficiency across different deployment scenarios, while Distil Whisper
models offer an excellent balance between accuracy and efficiency, particularly
in noisy environments. Importantly, our analysis challenges the assumption that
energy efficiency necessarily compromises accuracy, as evidenced by models like
HuBERT FP32 that excel in both dimensions. The green scoring system in-
troduced in this work provides stakeholders with a practical tool for making
informed decisions based on their specific deployment requirements. By quanti-
fying the environmental impact of ASR models, we contribute to the growing
effort to develop more sustainable Al systems without sacrificing performance.

Several limitations and promising directions for future research emerge from
this work. Our evaluation was conducted on read speech datasets, which do
not fully represent real-world conditions. Future work should extend this anal-
ysis to more challenging datasets, such as those involving conversational speech
with overlapping speakers (e.g., CHIME [6]), realistic noise and reverberation
conditions (e.g., Rev16 [32]), semi-spontaneous speech (e.g., TED-LIUM |[13]),
and multilingual domain-specific content (e.g., VoxPopuli [41]). Additionally, our
model selection could be expanded to include non-transformer architectures like
KALDTI [31], which employs lightweight Hidden Markov Models. These models
may offer competitive accuracy on clean speech, while potentially delivering su-
perior efficiency metrics compared to transformer-based approaches. Beyond tra-
ditional metrics, future evaluations should consider incorporating semantic sim-
ilarity measures as complementary accuracy metrics. Semantically-aware evalu-
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ation would provide a more nuanced understanding of model performance, es-
pecially in applications where precise wording is less critical than conveying the
correct meaning. Finally, as ASR systems are deployed in increasingly diverse
settings—f{rom edge devices to large data centres—research on domain-specific
optimisation techniques will be increasingly important. This includes exploring
quantisation methods beyond FP16, model pruning, and architecture-specific
optimisations that can further improve the balance between accuracy and effi-
ciency. By advancing holistic evaluation approaches for ASR systems, we hope
to encourage the development of models that not only recognise speech accu-
rately, but do so in an environmentally responsible manner across the spectrum
of deployment contexts.
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