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Abstract. In this work, we augment reinforcement learning with an
inference-time collision model to ensure safe and efficient container man-
agement in a waste-sorting facility with limited processing capacity. Each
container has two optimal emptying volumes that trade off higher through-
put against overflow risk. Conventional reinforcement learning (RL) ap-
proaches struggle under delayed rewards, sparse critical events, and high-
dimensional uncertainty—failing to consistently balance higher-volume
empties with the risk of safety-limit violations. To address these chal-
lenges, we propose a hybrid method comprising: (1) a curriculum-learning
pipeline that incrementally trains a PPO agent to handle delayed re-
wards and class imbalance, and (2) an offline pairwise collision model
used at inference time to proactively avert collisions with minimal online
cost. Experimental results show that our targeted inference-time colli-
sion checks significantly improve collision avoidance, reduce safety-limit
violations, maintain high throughput, and scale effectively across vary-
ing container-to-PU ratios. These findings offer actionable guidelines for
designing safe and efficient container-management systems in real-world
facilities.

Keywords: Reinforcement learning · Curriculum learning · Inference-
time planning · Industrial control · Collision avoidance

1 Introduction

Waste-sorting facilities increasingly rely on data-driven methods to meet strict
energy efficiency and sustainability goals, due in part to regulatory directives
for responsible recycling of packaging waste. Modern plants must deal with fluc-
tuating material types, unpredictable daily volumes, and stringent safety con-
straints. This work is inspired by the final stage of a waste-sorting facility where
n containers (bunkers) accumulate various types of material at unique stochastic
rates. These materials are subsequently transported to a processing unit (PU) for
compaction into bales or products 1 during which PU is unavailable for further
1 In this study the terms bunker/container and processing unit (PU)/press are used

interchangeably.
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processing. In addition, each container has a strict maximum capacity and over-
flowing beyond a threshold requires halting the facility for corrective measures,
incurring steep penalties. In this context, container management emerges as a
critical bottleneck: Emptying these containers too late risks overflow; emptying
them too early or too frequently undermines throughput and raises energy costs.

Recent work has modeled container management as a reinforcement learn-
ing (RL) problem, notably through ContainerGym [9], providing a real-world
benchmark where an RL agent decides when to empty each container. How-
ever, naive Proximal Policy Optimization (PPO) agents frequently fail in this
domain, as delayed rewards, sparse critical events, and a single shared PU cre-
ate complex scheduling dynamics. For instance, some containers have a “higher
peak” volume (around 60–75% capacity) for optimal throughput and a “lower
peak” (around 30–40%) as a fallback. Emptying containers at the peak volumes
yields optimal products, hence emptying at other volumes is undesirable. The
prime reason for missing a peak volume is unavailability of the PU caused by
a collision of two or more containers reaching peak volume around the same
time. Prior work showed that curriculum learning helps mitigate early overflows
and improves PPO’s learning curve [10]. Still, the problem of handling collisions
remains unsolved, especially at higher container-to-PU ratios.

On the other hand, despite the installation of sophisticated sensors in these
facilities and real-time monitoring, most waste sorting design layouts remain
fixed once built, even if data points to major bottlenecks. This reveals a broader
gap: leveraging RL not only to optimize day-to-day operations but also to guide
facility design decisions such as how many containers can safely share a PU
before collisions dominate. In other industries—like robotics or warehouse logis-
tics—RL insights have influenced layout reconfiguration, helping systems adapt
hardware choices to software-derived constraints. Yet in waste-sorting, this feed-
back loop remains largely unexplored.

To address these gaps, we present a hybrid RL method that integrates cur-
riculum learning with a domain-specific collision model at inference time. Our
approach (1) reduces collision-induced overflows and throughput losses, and (2)
closes the loop between software-driven scheduling and hardware design insights.
Specifically, we:

– Propose a three-phase curriculum learning strategy to tackle delayed rewards
and dual-volume targets (higher vs. lower peak).

– Introduce an offline-trained collision model for on-the-fly inference checks,
overriding risky “no-op” actions when multiple containers approach critical
volumes.

– Systematically evaluate varying container-to-PU ratios (7:1 to 12:1), provid-
ing actionable guidelines on how many containers a single PU can realistically
handle without causing excessive collisions.

Empirical results demonstrate that the proposed hybrid RL framework signif-
icantly cuts collisions, reduces safety limit violations, maintains higher through-
put, and yields design insights for scaling container management.
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Fig. 1: Layout sketch of a facility with 12 containers and a PU, connected with
conveyor belts. The containers are filled from above, with their current fill states
indicated by the shaded areas.

2 Related Work

Reinforcement learning has proliferated in industrial and logistics applications,
moving beyond canonical benchmarks to real-world applications. We categorize
related literature under the following three key themes:

Curriculum Learning in Industrial RL Curriculum learning (CL) system-
atically organizes the training tasks, typically starting with simpler sub-problems
before moving to more challenging ones [1,2]. In industrial domains, where crit-
ical actions are rare and reward signals can be delayed or sparse, CL helps
agents gather meaningful experience without being overwhelmed by complex
dynamics from the outset. Prior work in container management [10] showed
that a curriculum-based PPO significantly reduces early overflows compared to
naive baselines. We build on this by designing a multi-phase reward curricu-
lum—enabling the agent to master dual-peak emptying targets and maintain
stable performance under varying inflows.

Inference-Time Planning and Collision Avoidance While a trained RL
policy provides baseline decisions at deployment, inference-time planning aug-
ments these decisions with lookahead logic or heuristic checks, often through
Monte Carlo methods. Techniques vary in whether they update the agent’s pa-
rameters or remain “stateless.” Prominent examples include Monte Carlo simu-
lations in game-playing AI [8,3], but similar ideas have surfaced in robotics [4,5],
energy systems control [7] and autonomous driving [6]. In our context, we adopt
a collision model that is trained offline to predict when multiple containers
are poised to exceed safe volumes simultaneously. This model supplements a
curriculum-trained policy by overriding risky no-operation actions—preventing
multi-container collisions. By decoupling real-time safety checks from the offline-
trained policy, our method maintains policy stability and adds minimal inference
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overhead, which is essential for deployment in high-throughput industrial envi-
ronments.

RL-Driven Design insights An emerging trend in industrial settings is the
use of RL not merely to control a dynamic process but also to inform insights into
design decisions. In large warehouse environments, multi-agent RL has optimized
the assignment of “chutes” to destinations [12], reducing robot congestion and
improving throughput. Similar approaches in factory automation focus on work-
station placement [13], where RL-driven layout designs outperform handcrafted
alternatives. Meanwhile, open-source platforms like “Storehouse” show that RL
can outperform heuristic policies in dynamic warehouse slotting [14]. These suc-
cesses underscore how AI insights can redesign processes for higher efficiency,
paralleling our goal of using RL not just to operate container management but
to shape decisions on how many containers a PU can handle effectively.

Context of our Contribution By integrating a predefined curriculum for de-
layed rewards with an offline collision predictor, our hybrid PPO-CL-CM ap-
proach targets both throughput optimization and collision avoidance in container
management. Offline pairwise simulations yield a lightweight collision classifier,
which can be queried at each time step to override the policy when collision risk
is high. The result is a system that meets key challenges—dual-peak scheduling,
sparse rewards, and collision hazards—while also generating real-world design
insights. In the following sections, we present the formal environment setup, de-
tail our curriculum learning phases, and then describe how we integrate collision
checks at inference.

3 Environment and RL formulation

In this section, we provide details of the considered container management en-
vironment. Building on the scenario described in Section 1, we reiterate the
central design optimization criterion; each container has two preferred or “ideal”
volumes at which emptying yields the highest-quality output. These correspond
to a Higher peak offering better overall throughput if the container can safely
reach this point and a Lower peak, providing a reasonable fallback when wait-
ing longer could risk overflow or collide with the PU’s availability window. In
practice, larger volumes generally improve efficiency, as the PU operates more
effectively when processing bigger batches at once. However, strictly aiming for
the higher peak can provoke collisions or safety limit breaches if the single PU
is not available in time.

Markov Decision Process (MDP) Setup. We model the container-management
scenario as an MDP (S,A, p, r, γ):
– State st: Comprises volumes {vi,t}ni=1 for each container, a PU-availability

counter pt (time until the processing unit becomes available), and auxiliary
signals such as ideal volumes. This provides the agent with both physical
constraints (capacity, current usage) and strategic cues (optimal targets).
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– Action at ∈ {0, . . . , n}: Either do nothing (at = 0) or attempt to empty
container i. If pt > 0 (the PU is busy), an emptying request fails, and con-
tainer i continues to fill. This design highlights collision risks when multiple
containers approach peak volumes simultaneously.

– Volume Dynamics: Each container i grows according to a random walk
with drift :

vi,t+1 = max
(
0, vi,t + αi + ϵi,t

)
, (1)

where αi is the average fill rate, and ϵi,t ∼ N (0, σ2
i ) captures stochastic

fluctuations. Overflow occurs if vi,t > 40, triggering a heavy penalty and
episode termination.

– PU Overhead: Emptying container i with volume v imposes a busy time
gi(v). The busy time consists of a material-dependent part that is propor-
tional to the volume, and a constant offset for conveyor belt transport of the
material from the container to the PU. During this period, pt counts down
to zero, after which the PU is free again. Requests made while pt > 0 are
effectively lost, emphasizing scheduling constraints.

– Rewards: The agent receives reward for emptying containers close to their
peak volumes, since that behavior results in high quality output. Rewards
are designed so that emptying at the higher peak is preferable. Container
overflow is a terminal state with an episode reset. Invalid or wasteful empties
(e.g., container already empty or PU busy) incur a negative penalty rpen,
while the do-nothing action yields zero.

Collision state. A collision arises when one or more containers simultaneously
approach or exceed their higher-peak volumes, but the PU remains busy pro-
cessing another container. This can rapidly push volumes over physical capacity
if not addressed promptly. Although we first train the agent without a collision-
specific mechanism, Section 5 discusses how we incorporate a collision model at
inference time.

Objective. The agent must schedule empties near either the higher or lower
volume peak to maximize efficiency, while preventing overflows and avoiding
collisions on the shared PU. The tension between delaying emptying for higher-
volume payoffs versus frequent empties for safety and reduced collisions creates
a challenging RL problem under delayed rewards and a scarce PU bottleneck.

Key Challenges
– Stochastic inflow & sensor noise: Each container’s fill rate depends on

material type, density, and unpredictable external factors (e.g., time of day,
seasonal fluctuations). Sensor noise further obscures volume estimates, mak-
ing it difficult to predict precisely when a container will reach a target vol-
ume.

– Delayed rewards & class imbalance: Some containers fill slowly, requir-
ing hours of in-simulation time to reach the target volume. Consequently,
episodes contain many “do nothing” steps, during which the state changes
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steadily but rewards from emptying remain sparse. As emptying actions are
rare, reward-bearing moves are infrequent, creating skewed action distribu-
tions that challenge many reinforcement learning algorithms.

– Dual-peak design & Collisions: Having two ideal emptying peaks per
container creates a nuanced trade-off: waiting for the higher peak boosts
efficiency but risks collisions and overflow if multiple containers converge
while the PU is busy. Alternatively, settling too often for the lower peak
increases emptying frequency, raising energy costs and volume deviations.
Balancing these opposing factors—alongside scheduling constraints to avoid
collisions and safety violations—poses a central challenge.

Algorithm 1: Three-Phase Reward Computation
Input : Phase ph ∈ {1, 2, 3}, current volume vt, action at, penalty rpen,

peaks (vlow, vhigh), Gaussian params (h,w) or (h1, h2, w1, w2)
Output: Immediate reward rt

if at = 0 then // No-op
rt ← 0;

else
if ( invalid conditions) then // Invalid empty

rt ← rpen;

else
if ph = 1 then // Phase 1

rt ← (h− rpen) exp
(
− (vt−vhigh)

2

2w2

)
+ rpen;

else if ph = 2 then // Phase 2

rt ← rpen +
∑

i∈{low,high}

[
hi − rpen

]
exp

(
− (vt−vi)

2

2w2
i

)
;

else // Phase 3
if |vt − vlow| ≤ 1 ∨ |vt − vhigh| ≤ 1 then

rt ← 1.0
else

rt ← 0

4 Methodology

In this section, we detail our complete pipeline for training PPO-based agents
to manage containers. We begin with a naive PPO baseline, highlighting its
struggles with sparse, multimodal rewards and the tendency toward premature
empties. To address these issues, we then propose a curriculum learning scheme
(PPO-CL) that incrementally shapes the agent’s reward landscape. This two-
stage progression—naive PPO followed by PPO-CL—lays the groundwork for
an inference-time collision model, which further mitigates overflow risks when
multiple containers compete for the PU.
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4.1 Naive PPO Baseline and Its Shortcomings

A straightforward approach is to train a PPO agent directly on the final (mul-
timodal) reward that encourages emptying containers at either the higher or
lower peak. However, as outlined in Section 3, this environment poses multiple
challenges: rewards are delayed and infrequent, containers fill at varying rates,
and collisions can arise when the PU services multiple containers simultaneously.
Without additional structure or foresight, empirical results (see table 2) show
that a naive PPO agent tends to:

– Ignore long-term returns. Driven by sparse rewards, the agent often per-
forms multiple partial empties rather than waiting for the larger peak. This
short-sighted strategy blocks the PU more frequently, increasing energy us-
age and leaving less capacity for containers that are about to overflow.

– Struggle with skewed action distributions. With many “do-nothing”
steps before a container reaches its target volume, the agent fails to learn
precise timing to consistently hit higher-volume empties.

– Overlook future collisions. Having no explicit mechanism to anticipate
bottlenecks on the PU, the agent may wait too long and face simultaneous
arrivals at near-peak volumes, risking overflow or forced early empties.

4.2 Curriculum Learning with PPO

These shortcomings motivate a more structured approach to handle delayed re-
wards, skewed actions, and collision risks. We therefore present a curriculum
learning strategy that gradually refines the agent’s timing and decision-making.
We train a PPO agent with a three-phase reward curriculum, gradually intro-
ducing complexity over successive training segments. In each phase, the agent
follows the same state and action definitions, but the reward function evolves to
guide the agent toward better timing of empties:

– Phase 1 (Unimodal Reward): We place a single Gaussian peak at the
higher peak volume and no reward at the lower peak, helping the agent learn
to avoid excessively early empties.

– Phase 2 (Multimodal Reward): Two Gaussian peaks (higher and lower),
letting the agent discover a fallback if waiting for the higher peak is unsafe
or if the PU is unavailable.

– Phase 3 (Step Reward): A strict scheme awarding positive reward only
when the emptied volume is within a narrow window (±1) around either
peak, refining precision once the agent learned to handle both targets.

As in [10,11], we further stabilize training by freezing the policy network in parts
of Phase 2, updating only the value estimator to account for changes in reward
structure. During Phase 3, we unfreeze the policy network but apply a stricter
KL-divergence constraint, ensuring the agent does not deviate too aggressively
from the policy learned in earlier phases. Algorithm 1 presents the logic for all
three phases. By stepping through these phases with carefully tuned budgets, the
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agent (PPO-CL) acquires more robust scheduling behaviors than a naive single-
stage approach. In particular, it learns to occasionally pick the lower peak to
avert overflow. However, PPO-CL alone remains largely myopic about collisions
across containers, motivating our inference-time mitigation strategy in the next
section.

5 Collision Model and Inference Pipeline

Although PPO-CL improves emptying behavior, it still shows no signs of suc-
cessfully learning about collision risks. We mitigate the problem by designing
a mechanism to handle situations where multiple containers simultaneously ap-
proach their peak volumes. We address this by introducing a collision model
(CM) trained offline on pairwise container data, then integrating it with the
PPO-CL agent at inference time to form PPO-CL-CM. This approach bal-
ances high-volume empties with timely overrides to avert collisions, all at mini-
mal run-time overhead.

Monte Carlo Rollouts for Pairwise Collisions: For efficient inference-
time planning, we generate a large offline dataset of pairwise collision scenarios.
By simulating isolated or small groups of containers, we capture diverse collision
states with minimal run-time cost. We simulate each container pair (i, j) under
stochastic filling (1). Two million repetitions across a container configuration
yield a comprehensive offline data set of near-capacity, overflow, and collision
events, minimizing deployment computation. For each pair, we perform:

1. Random initialization: Sample means and standard deviations µi, µj , σi, σj

for filling rates.
2. Stochastic evolution: Evolve volumes vi(τ), vj(τ) over timesteps τ .
3. Collision bookkeeping: Record collisions when both containers near peaks

while the PU is busy.

Feature Extraction and Training At each simulation timestep, we extract
collision-predictive features:

– Volumes: Container states
(
vi, vj

)
– Proximity to peaks: ∆vi = pi − vi, ∆vj = pj − vj
– Filling parameters: (µi, σi, µj , σj)
– Time-lag context: Optional short-volume histories {vi(τ − 1), vj(τ − 1)}

Each timestep receives a collision label {0, 1}, creating a supervised dataset
{features, collision label} for training. From this dataset, we train an XGBoost
classifier to estimate collision probabilities: P

(
Ci,j | st, at

)
= fcol

(
featuresi,j

)
.

XGBoost’s gradient-boosted trees efficiently model complex relationships be-
tween volumes, fill rates, and near-capacity states. Tuned XGBoost offers fast,
accurate pairwise collision risk predictions.
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Inference-Time Integration with PPO-CL: Once trained, the collision
model fcol is invoked at each decision step to assess pairwise collision proba-
bilities. The baseline PPO-CL agent first proposes an action at. If it decides to
empty a specific container (at ̸= 0), we accept that choice directly. However, if
PPO-CL proposes no operation (at = 0), the system queries fcol for all container
pairs to estimate near-future collision risks. If any container at high volume is
flagged with a collision probability above a threshold θ, we override the no-op
by forcing an empty action on the most at-risk container. Algorithm 2 details
the procedure.

Action Override Rationale. By limiting overrides to the no-op action, we
minimally disturb PPO-CL’s learned preference for waiting until containers reach
higher volumes. Only when the model detects a high probability of overflow or
severe collisions do we force an empty on a likely-to-clash container. This blend
of offline collision modeling and selective inference-time planning yields a more
collision-aware agent.

Algorithm 2: Integrated Inference-Time Decision with Pairwise Colli-
sion Prediction
Input : State st, PPO-CL policy πCL, collision model fcol, threshold θ,

peak volumes {pi}
Output: Final action afinal ∈ {0, 1, . . . , n}
1. PPO-CL Action: at ∼ πCL(at | st);
if at ̸= 0 then

return afinal ← at; // Accept non-zero action

2. Collision Assessment:
foreach pair (i, j) do

P (Ci,j) ← fcol
(
featuresi,j

)
;

Assemble matrix Pt[i, j] = P (Ci,j);

3. Check Potential Collision Overrides:
C ←

{
i | vi(t) ≥ pi − δ

}
;

if C ≠ ∅ then
foreach i ∈ C do

CollisionRisk(i) ← RiskScore(i, Pt)

i⋆ ← argmaxi∈C
[
CollisionRisk(i)

]
;

if CollisionRisk(i⋆) ≥ θ then
afinal ← i⋆ ; // Override with container i⋆

else
afinal ← 0 ; // Retain no-op

return afinal

return afinal ← 0; // No containers at risk, do nothing
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(a) Press idle time comparison. (b) Total volume processed comparison.

Fig. 2: Performance metrics comparison between PPO-CL and PPO-CL-CM
methods across different container configurations (7b1p to 12b1p). The bars
show mean values and error bars indicate standard deviation. Left: Press idle
time shows the duration the press remains inactive. Right: Total volume pro-
cessed indicates the amount of material handled during one inference episode of
600 timesteps.

Fig. 3: Comparison of Coefficient of Variation (CV%) across different collision
probability thresholds for all container configurations. Each subplot shows the
performance of PPO-CL and PPO-CL-CM methods for a specific configuration.
Lower CV% indicates more consistent performance.
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6 Experimental Evaluation

In this section, we present a quantitative evaluation of the three agents naive
PPO, PPO-CL, and PPO-CL-CM across multiple container-to-PU configura-
tions. Our analysis addresses the following research questions (RQs):

1. RQ1: Is the inference-time collision model (PPO-CL-CM ) effective com-
pared to PPO-CL and naive PPO in terms of achieved reward?

2. RQ2: How effectively does the collision model reduce safety-limit violations
(i.e., empties above the critical volume limit)?

3. RQ3: How do these findings inform real-world design choices, such as the
ideal ratio of containers to processing units?

In the spirit of open and reproducible research, we make our source code
available via an anonymous repository .2 The repository contains a script for
reproducing all results presented in this section.

6.1 Experimental Setup

We evaluate our methods on environments with 7 to 12 containers and a single
PU (labeled “7b1p” through “12b1p”). Following [9] we use an episode length
of 600 timesteps, with a 60-second granularity. For each agent, we conduct 15
independent training runs using distinct random seeds. During inference, we run
each seed-based policy in 5 rollouts and collect statistics. We present results for
both the best and median performing seeds of each method, ensuring a fair and
comprehensive comparison. Specifically, the best seed is selected based on the
smallest number of collision timesteps, while the median seed is chosen from the
remaining seeds in terms of the same metric.

Metrics: The reward signal aggregates many different subgoals. To obtain a fine-
grained picture of algorithm performance, we monitor the following performance
metrics:

– Press Idle Time (Fig. 2a): total timesteps during which the PU is not pro-
cessing any container.

– Total Volume Processed (Fig. 2b): material throughput in one 600-step in-
ference episode.

– Collisions in time-steps: the total number of timesteps in which a collision
state occurs; that is, at least two containers simultaneously approach or
exceed their ideal volumes (especially the higher peak) while the PU is busy
and thus unable to service them.

– Coefficient of Variation (CV%) (Fig. 3): a normalized measure of variability
in performance under different collision thresholds.

– Total Volume Deviation: the average (over all containers and timesteps) of
the absolute difference between a container’s actual volume and its nearest
ideal peak, gauging how well empties align with target volumes.

2 https://gitlab.com/anonymousppocl_cm1/anonymous_collisions_paper

https://gitlab.com/anonymousppocl_cm1/anonymous_collisions_paper
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– Actions per Container, Reward per Action, and Peak-Usage Ratios: drawn
from Tables 1 and 2.

– Safety-Limit Violation Percentage (Fig. 4): the fraction of emptying actions
during inference where a container volume exceeds a fixed critical volume
limit, set 5 units above that container’s higher ideal emptying peak.

All agents are tested under the same environmental conditions to isolate the im-
pact of curriculum training and collision modeling. Moreover, the results shown
in Figures 2 and 4 and in Tables 1 and 2 are reported using the threshold val-
ues that yield the lowest CV% in Figure 3, reflecting the most collision-stable
configurations in our analysis.

6.2 Impact of Collision Model (RQ1)

From Table 2, we note that naive PPO often fails to empty containers at the
higher ideal peak altogether (e.g., ratio close to zero), indicating it resorts to
early or sub-optimal empties. This behavior leads to more frequent episodes
ending prematurely due to overflow (especially in the larger “12b1p” setup) or
consistently high volume deviations. While PPO-CL capitalizes on the multi-
phase reward shaping to handle delayed feedback and class imbalance, collisions
can still occur if multiple containers simultaneously converge on their higher
peaks. This is where incorporating inference-time collision checks to yield PPO-
CL-CM has an edge.

As shown in Fig. 3, PPO-CL-CM achieves lower variability (CV%) across
different collision probability thresholds, meaning it more consistently avoids
hazardous states. From Fig. 2a, we see PPO-CL-CM generally reduces press idle
time compared to PPO-CL, indicating fewer deadlocks where containers are left
unemptied until near-overflow conditions. Meanwhile, Fig. 2b shows that total
volume processed remains at least on par with (and often surpasses) PPO-CL,
demonstrating that collision avoidance does not compromise overall throughput
in an inference episode.

Table 1 reveals that collision timesteps drop systematically for PPO-CL-
CM, and its volume deviation is also slightly lower on average. The higher/lower
peak ratio in Table 2 confirms that PPO-CL-CM empties containers earlier
(lower peak) only when the collision model flags imminent risk, thereby bal-
ancing high-throughput empties with safety. Hence, RQ1 is answered: adding
an inference-time collision model mitigates bottlenecks and collisions beyond
what curriculum-based RL can achieve alone.

6.3 Safety-Limit Violations (RQ2)

Figure 4 summarizes the frequency of empties that exceed the safety critical vol-
ume limit, thus posing a higher risk of overflow and breach of physical limit. We
observe that PPO-CL-CM consistently maintains a smaller fraction of risky
empties overall than PPO-CL for all bunker-to-PU setups from 7b1p through
12b1p. This indicates that the collision model not only reduces direct collisions
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but also prompts timely empties before containers venture into risky volume
ranges. Hence, we conclude RQ2 by confirming that inference-time collision
checks can effectively mitigate dangerous critical empties, supporting safer op-
eration without sacrificing throughput.

6.4 Real-World Implications and Design Guidance (RQ3)

Fig. 2a illustrates that as we move from “7b1p” up to “12b1p,” press idle time
diminishes significantly, reflecting how the PU becomes fully utilized with rising
container counts. On the other hand, in extremely large configurations (e.g., 12
containers to 1 PU), collisions inevitably remain because a single resource can-
not realistically handle multiple near-peak arrivals at once. While PPO-CL-CM
can curb severe collisions, it cannot eliminate them entirely when the resource
ratio is unfavorable. Thus for Moderate Ratios: Up to around 7–11 containers
per PU, collision avoidance measures like PPO-CL-CM yield strong improve-
ments without saturating the system. But for High Ratios:, beyond a certain
limit (e.g., 12b1p), press idle time becomes negligible, and collision events dom-
inate. An additional PU may be necessary for higher container configurations.
Addressing RQ3, in practice, operators can apply these findings when deciding
how many containers can be feasibly connected to a single processing unit, and
whether advanced collision checks are cost-effective. Importantly, applying a col-
lision model allows to safely operate more containers with the same number of
expensive PUs.

Config Agent Collisions (Ts) Tot. vol. dev (%) Reward/action

7b1p PPO-CL 72.4±20.0 / 81.6±20.9 7.3±2.1 / 6.9±1.2 0.4 / 0.4
PPO-CL-CM 22.0±3.9 / 34.4±6.7 5.1±0.7 / 6.1±0.6 0.7 / 0.8

8b1p PPO-CL 77.2±15.1 / 98.6±6.1 7.4±0.8 / 7.3±0.9 0.3 / 0.4
PPO-CL-CM 66.2±14.0 / 80.6±10.2 6.7±1.2 / 7.0±0.7 0.6 / 0.5

9b1p PPO-CL 117.0±31.7 / 153.4±31.4 6.5±1.4 / 7.5±1.1 0.4 / 0.3
PPO-CL-CM 89.8±14.4 / 117.0±17.0 6.3±1.4 / 7.6±0.7 0.6 / 0.4

10b1p PPO-CL 154.6±28.1 / 189.8±25.8 6.8±1.2 / 8.7±0.9 0.4 / 0.2
PPO-CL-CM 138.2±18.5 / 145.4±26.3 6.4±0.4 / 6.8±0.9 0.5 / 0.5

11b1p PPO-CL 130.8±25.0 / 156.4±33.8 8.0±1.3 / 6.9±0.5 0.3 / 0.3
PPO-CL-CM 83.2±13.9 / 148.4±15.4 7.6±1.2 / 6.8±0.7 0.5 / 0.5

12b1p PPO-CL 126.4±26.8 / 195.8±36.0 11.8±2.1 / 10.2±1.3 0.3 / 0.3
PPO-CL-CM 117.4±31.9 / 175.6±38.9 13.0±2.2 / 11.2±1.6 0.5 / 0.4

Table 1: Main performance metrics (Best/Median) for each bunker configuration,
all rounded to one decimal place. Each cell shows Best ± std. / Median ± std. in
one line. We boldface the better result in PPO-CL-CM whenever it outperforms
PPO-CL (lower collisions/dev or higher reward).
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Config Type Higher/Lower Peak % Ratio Actions/Container

Naive PPO PPO-CL PPO-CL-CM Naive PPO PPO-CL PPO-CL-CM

7b1p Best 0.0 45.7 1.0 32.7±8.9 20.0±3.4 25.6±2.6
Median 0.0 18.6 0.8 29.6±12.3 19.6±2.8 24.4±3.1

8b1p Best 0.0 8.4 2.2 31.0±10.0 18.9±3.8 20.8±3.9
Median 0.0 14.0 2.9 31.2±8.6 18.8±3.1 20.9±4.7

9b1p Best 0.0 16.5 4.5 33.3±9.0 19.4±3.4 21.2±2.7
Median 0.0 19.6 3.3 34.8±9.9 18.3±4.1 21.4±3.1

10b1p Best 0.0 30.5 3.3 33.2±10.3 18.9±2.5 20.8±4.2
Median 0.0 11.7 3.1 31.6±8.0 19.1±2.8 20.7±5.0

11b1p Best 0.0 3.1 1.8 34.1±6.3 20.6±4.6 22.5±4.3
Median 0.0 6.7 2.9 32.9±7.6 20.3±2.7 21.7±3.5

12b1p Best N/A 1.9 1.6 N/A 23.1±7.0 23.2±8.1
Median N/A 2.6 2.4 N/A 22.1±4.8 22.1±6.1

Table 2: Comparison of Higher/Lower Peak Percentage Ratio and Mean Actions
per container (single decimal precision). For each configuration, “Best” / “Me-
dian” rows show mean ± standard deviation where applicable.

Fig. 4: Comparison of safety limit violation percentages across different bunker
configurations. Bars show the percentage of emptying actions that exceeded the
safety limit for each bunker configuration using PPO-CL and PPO-CL-CM meth-
ods.
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7 Conclusion

We have presented a hybrid strategy for container management in a waste-
sorting facility in a constrained resource scenario, where each container has two
preferred “ideal” emptying volumes. The first component, PPO-CL, addresses
the challenges of sparse rewards and dual-volume targets through a curriculum-
learning approach that teaches the agent to empty containers near either a lower
or higher peak. The second component, a collision model integrated at inference
time (PPO-CL-CM ), provides targeted overrides when containers risk colliding
at peak volumes. This combination effectively balances the key design criteria:
prioritizing the higher peak for optimal throughput while resorting to the lower
peak only when collisions or safety violations become imminent.

Empirical results across various container-to-PU ratios (7:1 to 12:1) demon-
strate that PPO-CL-CM reduces both collision episodes and empties above a
critical safety threshold, without sacrificing total processed volume. By explicitly
modeling future collision risk, it prevents premature empties that might other-
wise occur if the agent tried to avoid collisions by abandoning the higher peak
too soon. From an operational standpoint, these findings suggest that facility
managers can confidently scale up container counts to a point, relying on our
framework to avoid overflows and to ensure safe, high-volume empties. Beyond
that point, collisions become unavoidable, but our method still lessens their
severity.

A notable advantage of this framework is that the collision model is trained
entirely offline via Monte Carlo simulations, adding only minimal overhead dur-
ing inference. This approach stands in contrast to computationally intensive
online planners like Monte Carlo Tree Search, making it better suited for large,
stochastic industrial environments with real-time decision needs. Looking ahead,
we envision several avenues to extend this work: integrating multiple PUs (or
more complex resource constraints) within the same collision-avoidance frame-
work, dynamically tuning collision thresholds based on time-of-day inflows or
real-time capacity data, and more tightly fusing offline collision insights with
online RL updates to further refine scheduling decisions. Our findings highlight
that a domain-aware collision model, combined with carefully shaped RL curric-
ula, can yield safer, more efficient container management, establishing a robust
framework for broader industrial adoption and more complex resource-allocation
tasks.
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