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Abstract. The rising proportion of renewable energy in the electric-
ity mix introduces signi�cant operational challenges for power grid op-
erators. E�ective power grid management demands adaptive decision-
making strategies capable of handling dynamic conditions. With the in-
crease in complexity, more and more Deep Learning (DL) approaches
have been proposed to �nd suitable grid topologies for congestion man-
agement. In this work, we contribute to this research by introducing a
novel Imitation Learning (IL) approach that leverages soft labels derived
from simulated topological action outcomes, thereby capturing multiple
viable actions per state. Unlike traditional IL methods that rely on hard
labels to enforce a single optimal action, our method constructs soft
labels that capture the e�ectiveness of actions that prove suitable in re-
solving grid congestion. To further enhance decision-making, we integrate
Graph Neural Networks (GNNs) to encode the structural properties of
power grids, ensuring that the topology-aware representations contribute
to better agent performance. Our approach signi�cantly outperforms its
hard-label counterparts as well as state-of-the-art Deep Reinforcement
Learning (DRL) baseline agents. Most notably, it achieves a 17% bet-
ter performance compared to the greedy expert agent from which the
imitation targets were derived.

Keywords: Power Grids · Graph Neural Networks · Topology Control
· Learning to Run a Power Network

1 Introduction

In recent years, Reinforcement Learning (RL) and Imitation Learning (IL) have
emerged as powerful approaches for sequential decision-making in complex envi-
ronments, including power grid management. In this context, agents must make
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rapid and informed topological adjustments to maintain grid stability under dy-
namic conditions. Recent advances in power grid control have demonstrated the
e�ectiveness of RL-based agents, particularly when they are pre-trained using
IL [5, 11]. Prior work has applied IL for topology control using standard feed-
forward neural networks with subsequent RL �ne-tuning to improve decision-
making policies [10, 11, 5]. Additionally, Graph Neural Networks (GNNs) have
become popular as a structured way to encode power grid topology, enabling
improved action representation and decision-making [6, 21, 28, 19, 29, 30].

However, the existing IL methods often fail to capture the inherent uncer-
tainty in the solution space and typically learn to mimic a single expert action per
state, disregarding the fact that there are often multiple e�ective interventions
that can ease congestion. This restrictive view can undermine policy robustness
and adaptability, leading to rigid policies that struggle with generalization.

Grid2Op [3] provides a widely used framework for developing and evaluating
RL-based grid control methods, particularly for topology optimization tasks such
as substation recon�gurations [14]. In addition, RL agents have demonstrated
strong performance in Learning to Run a Power Network (L2RPN) challenges
[15, 17, 16, 20], where the goal is to maintain grid operability under uncertainty
and disturbances. In our experiments, we leverage the WCCI 2022 environment
implemented in Grid2Op4, thus allowing the benchmarking of our methods.

1.1 Main Contributions

To address the limitations of current approaches and enable more robust and
adaptable policy learning for power grid control, we propose a soft-label imi-
tation learning approach. Soft-label IL retains and exploits information about
multiple e�ective actions for each grid state through a richer supervisory signal.
This rich supervision guides the policy toward greater robustness and adaptabil-
ity, re�ecting the operational reality that power grid congestion can be resolved
in more than one single way. Our approach thereby avoids over�tting to po-
tentially sub-optimal expert decisions, reduces label noise, and guides the agent
in learning a generalized policies that also are applicable for previously unseen
grid states. Furthermore, soft labels enable us to naturally produce a ranking of
candidate actions, which is especially valuable in power grid control, where the
choice of multiple viable interventions can account for operational preferences,
N-1 contingencies, or robustness criteria. This combination � retaining multiple
desirable options alongside their respective con�dence scores � ultimately results
in a more reliable, adaptable, and realistic control policy.

Additionally, we leverage GNNs to account for the structural properties of
power grids, re�ecting their physical topology and power �ow relationships.
GNNs enable the policy to learn contextually rich representations for each grid
component, which further improves decision-making. Our contributions can be
summarized as follows:

4 Grid2Op: https://grid2op.readthedocs.io/en/latest/ (last accessed 12/03/2025).
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1. Development of a novel soft-label approach for IL in power grid control,
incorporating multiple viable actions into the learning signal.

2. The integration of GNNs to e�ectively leverage the inherent graph structure
of power grids and enhance decision-making.

3. A demonstration that our method outperforms two state-of-the-art RL ap-
proaches and particularly the greedy expert itself by utilizing soft action
labels.

2 Related Work

The idea of congestion management through topology optimization has wit-
nessed a surge in research interest, in part due to the L2RPN challenges by the
french Transmission System Operator (TSO) RTE [15, 17]. In many cases the
proposed solutions consist of a model-free Deep Reinforcement Learning (DRL)
algorithm that is restricted by rule-based or heuristic components [5, 10, 11, 1,
31]. Most of these DRL approaches are built with standard feed-forward Neural
Network (FNN), however, [6] �nd in their survey that an increasing number of re-
searchers use GNNs to incorporate the graphical nature of the power grid. As the
number of topology actions increases drastically with grid size, there have further
been di�erent approaches to tackle the large action spaces. Some researchers pro-
pose a hierarchical agent strategy [13, 29], or multi-agent approaches [19, 18] to
split the decision making process in smaller sub-tasks. Alternatively, [4] propose
a Monte Carlo Tree Search (MCTS) to plan multiple steps ahead.

Moreover, IL has been explored for power grid control, motivated by the po-
tential to accelerate computation through the imitation of rule-based and other
expert agents. While there have been some application of IL by [5, 11] and [10] to
pre-train a feed-forward network on a greedy agent, they only used the models to
jumpstart the DRL training process but didn't utilize the IL model as an agent
for topolgy control directly. A further IL approach in this regard has been studied
by [7] and [8]. In the �rst paper, [7] analyze both a greedy and a N-1 rule-based
agent on the Grid2Op IEEE 14 environment and then use the experience of the
agents to train a IL model. Several types of hybrid agents were constructed,
which combined IL and simulation functionality. The hybrid agents showed sim-
ilar performance with almost 100% completion of the scenarios, while reducing
the inference duration of the agent. Even more interesting, [7] found that there
occurs in some cases a confusion of the actions by the IL model, as some actions
are not clearly distinguishable in some scenarios. In the second paper, [8] follow
up on their IL framework and focus on applying (node-level) GNN prediction
of the grid topology. They identify the busbar information asymmetry problem,
where nodes on the same substation but di�erent busbars remain unconnected in
traditional graph representations, hindering GNN performance. They propose a
heterogeneous GNN to address this by modeling inter-busbar connections, out-
performing homogeneous GNNs and FNNs in accuracy and out-of-distribution
generalization. Existing IL methods inherit expert biases by relying on deter-
ministic policies that overlook diverse viable actions for overload mitigation, we
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highlight the need to capture all e�ective actions instead and address it through
a richer representation of the labels.

3 Power Grid Setup

As mentioned earlier, we follow the previous researchers and use the Grid2Op
environment, as it is the current benchmark for transmission grids [6] and allows
the comparison with other approaches. Grid2Op is an open-source simulation
platform designed for power grid operation research, particularly in the context
of DRL and other Deep Learning (DL) control strategies. Since Grid2op was
designed with RL in mind, we utilize the same terminology, though we do not
apply RL in this work.

3.1 Environment

In this work, we utilize the L2RPN WCCI 2022 environment, which models the
IEEE 118-bus transmission system with an expected 2050 electricity mix. As a
result, the simulated fossil fuel generation accounts for less than 3%, and renew-
able energy sources are signi�cantly increased [20]. At its core, the power grid
can be represented as a graph where substations are nodes that are connected via
transmission lines. Substations serve as connection points for grid components,
including generators, loads, and power lines. This can be seen in Fig. 1, where
we visualize the WCCI 2022 environment. This speci�c IEEE 118 transmission
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Fig. 1: Overview of the WCCI 2022 L2RPN environment, generated using
Grid2Op's native visualization tools.
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grid consists of 118 substations, 91 loads, 62 generators, and 7 battery stor-
age units, all interconnected by 186 transmission lines. The observation space S
of the contains 4,295 features such as active and reactive power �ows, voltage
magnitudes and angles, generator and storage injections, load demands, planned
maintenance schedules, cooldown periods, and topology con�gurations. Among
these, the most critical variable for this work is the line loading capacity, denoted
as ρl for each line l ∈ L, with the maximum capacity across all lines given by
ρmax = maxl(ρl). Furthermore, a double busbar system is implemented. There,
each substation consists of two busbars, with each component connected to either
one of the busbars. However, power can only �ow between elements connected
to the same busbar within a substation. Thus, through the reassignment of grid
components to a di�erent busbar, one can substantially alter the power �ow.
For this reason, the topology optimization on a substation can provide a cost-
e�ective and fast solution to tackle congestion issues in the transmission grid.
Another feature of Grid2Op is the simulation function, obs.simulate(), which
is essential for assessing the impact of proposed actions. It forecasts the grid's
next state based on realistic generation and consumption data and computes the
power �ow.

Power �ows can be simulated under the N-0 case, which assumes normal grid
operation without any line outages. In contrast, the N-1 case involves simulating
the failure of a single transmission line and calculating the resulting power �ows,
particularly focusing on the maximum line loadings to assess grid resilience. In
the Grid2Op framework, a full N-1 contingency analysis is not conducted exhaus-
tively. Instead, a softened version is used where an adversarial agent randomly
disconnects one line from a prede�ned subset of lines deemed critical [14]. This
simulates unexpected failures while maintaining computational feasibility and
allowing learning-based agents to develop robust control strategies.

Grid2Op simulates power grid operations in 5-minute intervals, modeling
�uctuations in demand, generation adjustments, and potential failures. Its goal
is to maintain stability and prevent cascading failures due to line overloads using
synthetic scenarios (chronics) based on historical data. An episode in Grid2Op
can end in two ways: successful completion or early termination due to grid
failure. A successful episode occurs when an agent manages the grid throughout
all 2016 time steps (equivalent to one week). In contrast, early termination �
often resulting in a blackout � happens when grid stability is compromised.
A common cause is cascading failures triggered by the rule that disconnects
a transmission line if its load remains above 100% for three consecutive time
steps. Additionally, an episode ends immediately, in case a generator or load is
disconnected, islanding occurs, or if the power �ow solver fails to converge.

3.2 Action Space

The action space is divided into four di�erent action types. The �rst action type
includes line disconnection and reconnection, while the second type includes sub-
station recon�guration, which we interchangeably refer to as topology actions.
The third action type includes generator redispatch as well as curtailment of
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renewable energies, while the fourth type relates to battery storage operations.
In this work however, we only consider topology actions as they are the most
cost-e�cient action type. One simpli�ed example substation recon�guration ac-
tion is shown in Fig. 2, which switches the line end 5 from the �rst to the second
busbar. This completely changes the connection between the two substations,
altering the power �ow and mitigating the line overload. These discrete actions
scale combinatorially with the number of substation elements, creating a large
action space. Grid2Op restricts certain actions to maintain operational feasibil-
ity, ensuring that agents cannot take unrealistic or physically impossible steps.
Nevertheless, the large action space still presents a signi�cant challenge for con-
trol algorithms, hence an action space reduction is usually applied. Note that the
line disconnection and reconnection also in�uences the busbar con�guration, as
non-connected elements can not be switched by topology actions. The resulting
implications are later discussed in Sec. 4.4, as they in�uence the feasibility of
topology actions. Nevertheless, all compared agents, including our own, do not
explicitly learn line disconnection and reconnection, but instead automatically
reconnect lines whenever possible to restore grid stability.

4 Methodology

We present a systematic approach to addressing grid overloads by combining
simulation-based decision-making with advanced learning techniques. We begin
by detailing the Greedy Expert Agent (Greedy90%), a reactive agent that selects
the best corrective actions based solely on current grid conditions via load �ow
simulations. Then, we introduce the generation of soft labels, a strategy that
leverages the full spectrum of simulated outcomes to create a richer supervisory
signal. Additionally, we explain how the inherent graph structure of power grids

3:Gen

Bus 1

Bus 2

Substation 1

4:Load

1:Gen 2:Load

Bus 2

Substation 2
Bus 1

6:Line

7:Load

5:Line

Switch 5:line action on first substation

𝑡

3:Gen

Bus 1

Bus 2

Substation 1

4:Load

1:Gen 2:Load

Bus 2

Substation 2
Bus 1

6:Line

7:Load

5:Line

𝑡 + 1

Fig. 2: Example of a substation recon�guration action. Two substations are visu-
alized, each with two busbars. Generators, loads, and line ends are represented
as nodes that are interconnected via a busbar of a substation. From time step t
to t+1, one end of line 5 is switched to the other busbar, altering the connection
between the elements and mitigating the line overload.
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is leveraged using GNNs to capture spatial dependencies. Lastly, the agent's ar-
chitecture and practical enhancements, such as topology reversion and improved
action feasibility is discussed.

4.1 Greedy Expert

The Greedy90% performs an N-0 load �ow simulation for all possible actions
for one timestep and selects the one that has the lowest maximum line load-
ing. For this, we utilize Grid2Op's env.simulate() method, which perform a
power �ow calculation based on forecasts of generation and loads. Speci�cally,
the Greedy90% is activated if any line loading exceeds 90%. In that case it sim-
ulates all actions and selects the action that provides the lowest maximum line
loading ρmax. This agent requires a lot of costly power �ow simulations and is
highly reactive, making decisions based solely on the current state of the grid
without considering long-term implications or alternative strategies. Further-
more, it only considers the maximum line loading value and thus other lines
with higher load are not regarded. Consequently, it is missing exploration and
does not consider the holistic e�ect of actions.

4.2 Soft Labels

We begin the generation of soft labels by running the Greedy90% agent through
our environment. The details of the complete procedure for generating soft la-
bels along with applying the greedy optimal action are described in Algorithm
1. However, instead of a simple greedy iteration through all actions and simulat-
ing the ρmax for each action (line 4&5), we also compute an e�ectiveness score
ea based on the inverse maximum line loading 1 − ρmax (line 5).5 With this
e�ectiveness score, we generate our soft labels that compare the impact of the
action to all other actions. These soft labels are created by applying a temper-
ature softmax function to the e�ectiveness score ea (line 8). Note that we used
a temperature parameter τ = 0.01 via preliminary tests over several values to
sharpen the softmax so that highly e�ective actions get substantial probability
mass without excessive skew; a full sensitivity analysis could further validate
this choice.

The remaining algorithm is then simply the greedy selection from the original
Greedy90% (line 11). Ultimately, this approach enables the agent to learn from
all the simulations of possible actions that are otherwise discarded. Soft labels
provide a relative measurement. A signi�cantly higher value for a particular
action indicates that this action is distinctly more e�ective in reducing line load
compared to its counterparts and therefore, the model should be more con�dent
in predicting this action. Conversely, if the e�ectiveness ratio is more evenly
spread across several actions, it suggests that these actions have similar e�ects.
Instead of rigidly following the best action, the agent is exposed to a richer
supervisory signal.

5 Note that we do not collect an e�ectiveness score if a grid failure is imminent, i.e.,
no action is able to resolve the congestion in the next step.
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Algorithm 1 Soft Label Generation

Require: Environment env, Set of actions A, temperature parameter τ
1: Initialize dataset D ← ∅ and environment env
2: for each observation s ∈ S do ▷ Iterate through environment and receive s
3: for each action a ∈ A do ▷ Simulate maximum Line Loads
4: Run env.simulate(a) to get ρmax(s, a)
5: Compute e�ectiveness score: ea = 1− ρmax(s, a)
6: end for
7: for each action a ∈ A do ▷ Compute soft labels
8: Ψ(a | s) = exp(ea/τ)∑

a′∈A exp(ea′/τ)

9: end for
10: Store (s, Ψ(a | s)) in dataset D
11: Apply greedy optimal action a∗ = arg min

a′∈A
ρmax(s, a

′) using env.step(a∗)

12: end for
13: return D

4.3 Utilizing the inherent graph structure of power grids

Power grids are inherently graph-structured systems, where substations, gener-
ators, loads, and transmission lines form interconnected nodes and edges. To
leverage this structure, we transform the observations into a graph representa-
tion. This graph-based encoding allows GNNs to capture spatial dependencies
and propagate congestion-reduction strategies across the grid.

Graph Construction We treat each grid component � loads, generators, each
end of a transmission lines, and storage � as an individual node. For every node,
we aggregate features that capture the state of the grid component. To con-
struct the graph, we �rst extract a range of features from the observation. These
features include operational parameters like cooldown values, power injections,
voltage measurements, and maintenance information. Each row in the graph's
feature matrix corresponds to a grid asset, and each column captures a speci�c
attribute, e.g., the power consumption of a load or the generation capacity of a
generator. Missing values for features that do not apply to a particular compo-
nent type are �lled with zeros.

The edges in the graph are determined based on the physical connectiv-
ity of the grid. Speci�cally, nodes are connected according to the grid's topol-
ogy, where edges represent electrical connections between components within
the same substation or via transmission lines linking di�erent substations. Im-
portantly, transmission line features such as power �ow, voltage, and loading
are encoded directly into the nodes representing the respective line ends. This
approach allows for a uniform node-based feature representation, ensuring that
all relevant grid information is captured at the node level while maintaining a
simple and e�cient graph structure.
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GNN architecture Our GNN architecture employs Graph Attention Network
(GAT) [22] to model relationships between grid components, using attention
mechanisms to weight the in�uence of neighboring nodes and thereby prior-
itizing critical connections, such as heavily loaded lines. Each observation is
�rst transformed into a graph structure and processed through four GAT lay-
ers, which progressively re�ne the node representations. A global max pooling
operation then aggregates these node-level features into a representation for
graph-level prediction. This pooled output is subsequently passed through three
feed-forward layers and an output layer whose dimensionality matches the size
of the action space. The architecture search was conducted using Optuna's Tree-
structured Parzen Estimator (TPE) algorithm [25], ensuring that the model's
hyperparameters were optimally tuned for the task. Finally, the model is trained
using Kullback-Leibler Divergence (KLDivLoss) to minimize the discrepancy be-
tween predicted output and soft labels derived according to Algorithm 1.

4.4 Agent

We construct the SoftGNN 90% agent using the GNN with speci�c mechanics
to ensure adequate performance. First, we iterate through the environment and
activate the agent only in case of an emergency, i.e., when the max line load
ρmax exceeds the threshold of 90%. In case the grid is stable (ρmax < 90%), we
either execute a DoNothing action or revert the topology, as described below.
Otherwise, we use the model's predictions to the current observation and sort
the actions in descending order according to the model's output. The agent then
iterates through the sorted list, validating each candidate action for feasibility
and simulate its impact on the grid using the env.simulate() method to com-
pute the post-action maximum line loading ρmax. The �rst action that reduces
ρmax below the prede�ned threshold of 90% is executed. If no such action ex-
ists, the agent defaults to the DoNothing action. This process ensures that if an
action is selected, it mitigates the grid congestion while adhering to operational
constraints. We describe the ad-hoc enhancements as follows:

Topology reversion Reverting back to the base topology of the power grid in
which all busbar couplers are closed, i.e., no substation is split, has been shown to
enhance the performance of agents [10, 11]. This is due to the fact that the base
topology performs well for stable time steps such as during nights. Therefore, all
agents discussed in this paper check for topology reversion when the activation
threshold has not been reached. Whenever safely possible, i.e., when reversion
doesn't cause ρmax to increase beyond the threshold of 80%, the topology rever-
sion is applied. The threshold value is adopted based on established literature
[10], which has demonstrated that this value yields optimal performance.

Enhancing Topology Action Feasibility In the context of applying substa-
tion recon�guration actions in Grid2Op, we identi�ed a critical limitation in the
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default behavior of the topology actions using the set-bus method: when an ac-
tion is applied, it attempts to set busbar assignments for all elements, including
those associated with currently disconnected lines. This behavior is problematic
because it invalidates actions that are subsequently rejected by the environment.
Particularly, all actions of both substations adjacent to the disconnected line are
rendered invalid. This can be very critical when the disconnected line is adja-
cent to a large substation that accounts for a signi�cant proportion of the action
space. To address this issue, we introduce a pre-processing step that selectively
removes bus assignments for all disconnected lines before applying an action.
By doing so, the action retains valid bus assignments for connected components
while ensuring that no invalid modi�cations are attempted for disconnected lines
and hence signi�cantly improving the feasibility of topology actions.

N-1 load �ows at inference time Lastly, to enhance robustness against
potential line failures, we propose an extension agent SoftGNN 90% N − 1 that
incorporates N-1 security criteria into its action selection. During inference, we
�rst �lter the top 10 actions from the sorted GNN output. For each candidate
action, the agent simulates its impact under both N-0 (no failures) and N-1
(single-line failure) scenarios. It prioritizes actions that minimize this worst-case
metric and selects the action with the lowest N-1 ρmax. However, if all N-1 sim-
ulations result in overloads, i.e., ρmax ≥ 100%, the agent falls back to the N-0
criterion, selecting the action that minimizes the baseline ρmax. Consistent with
the Grid2op framework and [10], we do not perform a full N-1 contingency anal-
ysis across all lines, but instead restrict simulations to the prede�ned subset of
lines that can be attacked by the adversarial agent. Furthermore, we exclude line
93 from the N-1 analysis in accordance with the �ndings of [9], which show that
disconnecting this line inevitably triggers a cascading failure within three time
steps, regardless of the remedial action taken. Including such a pathological case
would disproportionately distort the evaluation of otherwise e�ective actions.

5 Experiments

5.1 Experimental Setup

As outlined in Sec. 3.1, our study utilizes the WCCI 2022 L2RPN framework,
visualized in Fig. 1. We train our agents on the publicly accessible environment
data. All agents are trained for a maximum of 800 epochs, however, early stop-
ping is applied based on validation performance to prevent over�tting. The early
stopping criterion monitors the validation loss, and training halts if no improve-
ment is observed for 20 consecutive epochs. The model with the best validation
performance is selected for evaluation. Each agent is trained using the Adam
optimizer, with learning rate adjustments managed by a learning rate scheduler
that reduces the learning rate by a factor of 0.9 if no improvement in the valida-
tion loss is observed for 10 consecutive epochs. The batch size was �xed to 256
while all other hyperparameters were determined using optuna. Table 1 shows
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Table 1: Model architecture of the soft-label graph neural network used all
SoftGNN agents. The architecture search was conducted using Optuna's Tree-
structured Parzen Estimator (TPE) [25]. Additionally, the search range of the
dropout parameter for all layers is [0, 0.5].

Component Hyperparameters (Selected) Search Range

GAT Layers (input, output, heads, dropout)

Layer 0 GATConv(27, 16, 1, 0.177) dim: {16, 32, 64, 128}, heads: {1,2,4,8}

Layer 1 GATConv(16, 32, 4, 0.139) dim: {16, 32, 64, 128}, heads: {1,2,4,8}

Layer 2 GATConv(128, 64, 2, 0.174) dim: {16, 32, 64, 128}, heads: {1,2,4,8}

Layer 3 GATConv(128, 128, 4, 0.096) dim: {16, 32, 64, 128}, heads: {1,2,4,8}

Num. of Layers 4 {2, 3, 4, 5, 6}

Pooling Global Max Pooling {"max", "mean", "add"}

Linear Layers (input, output, dropout)

Layer 0 Linear(128, 1024, 0.496) dim: {128, 256, 512, 1024}

Layer 1 Linear(1024, 1024, 0.489) dim: {128, 256, 512, 1024}

Layer 2 Linear(1024, 2030, 0.0) �

Num. of Layers 3 {2, 3, 4}

Training

Learning Rate 4.14× 10−3 [10−5�10−2]

Weight Decay 8.48× 10−6 [10−6�10−3]

the selected hyperparameters for the GAT model of all SoftGNN agents as well
as the respective search ranges. The GAT layers apply ELU as their activation
function, while the subsequent linear layers apply ReLU. Hyperparameter search
was conducted in a distributed setup on a computing cluster featuring 8 NVIDIA
A100 GPUs, and training of the �nal model required approximately 8 hours on
a single GPU.

We evaluate our agents using the test environment of the 2022 challenge
[20] provided by RTE France. The test environment comprises 52 scenarios,
each spanning 2016 time steps. We follow the approach of [10] by employing 20
randomized master seeds to ensure statistical robustness and address variability
across scenarios in�uenced by environmental seed di�erences. For comparability,
we use the same master seeds. We further use the same action space of [10], which
consists of 2000 actions from the L2RPN 2022 challenge winner [4]. Moreover, 30
expert actions selected by RTE were added, resulting in a total of 2030 actions.

The dataset, code, and trained models will be made publicly available in a
dedicated GitHub repository6, as well as to the CurriculumAgent7 repository for
compatibility with state-of-the-art RL approaches.

6 https://github.com/AI4REALNET/soft_label_gnn
7 https://github.com/FraunhoferIEE/curriculumagent
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Ablation Study Our ablation study evaluates the impact of soft labels and
GNNmodels on agent performance by comparing four core variants, which allows
for a granular comparison. The variants include two hard-label approaches�an
FNN model and a GNN model�termed HardFNN and HardGNN, respectively,
as well as two soft-label approaches�SoftFNN and SoftGNN. Additionally, we
analyzed the SoftGNN 90% N − 1 variant from Sec. 4.4 to assess the synergy be-
tween soft labels and N-1 safety-aware action selection. The agents were trained
on the same data generated using Algorithm 1, with identical action spaces and
the pre-processing �x for invalid bus assignments described in Sec. 4.4. We fur-
ther compare the performance of these models to four benchmark agents. First
the DoNothing baseline, second the expert greedy agent Greedy90% with the
pre-processing �x. Moreover, we re-evaluate two state-of-the-art agents from lit-
erature (Senior95% [10] and TopoAgent85−95% [10]) with the pre-processing �x
in order to isolate the e�ects of the �x. We dub these agents SeniorFix 95% and
TopoAgentFix 85−95%, respectively.

The Senior95% is a sophisticated DRL agent that performs topology ac-
tions when ρmax exceeds a 0.95 threshold, ensuring safe and reliable interven-
tion during extreme conditions, while the superior TopoAgent85−95% activates
under moderate instability and additionally employs a greedy search over pre-
identi�ed robust Target Topologies to sequentially combine actions and guide
the grid toward a more stable con�guration.

Metrics Performance metrics include the L2RPN score (mean, median, quar-
tiles) from the L2RPN 2022 challenge [20], a composite score that assesses the
agent's ability to keep the power grid operational while minimizing operational
costs. The score is computed by �rst calculating the total operational cost for
each scenario � this includes energy losses, redispatch, curtailments, storage oper-
ations, and penalties for blackouts � and then applying a linear transformation
to aid interpretability. It is calibrated by assigning the DoNothing baseline a
score of 0. Agents performing worse than this baseline can receive scores as low
as −100, while those that survive longer earn positive scores. The completion of
every episode results in a score of 80 and for a 100 the agent must also minimize
both energy loss and operational costs. Moreover, we measure the survival time
with the median survival time and the Median Survival Time across Chronic
Medians (MSTCM). The latter is less in�uenced by outlier performance since it
averages over the chronics �rst [10].

5.2 Results

The experimental evaluation demonstrates the e�cacy of our soft-label imitation
learning approach combined with GNNs. We summarize the results in Table 2
and visualize in Figure 3 the median survival time of each chronic across the 20
seeds. As expected, the DoNothing baseline achieved a score of 0 and median
survival time of 229 steps, while the Greedy90% agent improved performance
with a mean L2RPN score of 37.91 and a median survival time of 1014 steps.
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Fig. 3: Comparison of agent Median Survival Times across all test scenarios,
calculated over 20 random seeds. The MSTCM is shown above the �gure for
reference. Chronics where all non-baseline agents survived (median survival time
of 2017 steps) were excluded (13 in total) for clarity.

Re-evaluating previous state-of-the-art agents with the action feasibility �x
(Sec. 4.4) yielded measurable gains. The SeniorFix 95% agent outperformed the
original Senior95%, increasing its median L2RPN score from 37.13 to 39.40 and
MSTCM from 1160 to 1468. Similarly, TopoAgentFix 85−95% achieved higher per-
formance across all metrics, though to a lesser extent. This clearly shows the
e�ect of our preprocessing-�x.

With respect to the ablation study, both hard-label approaches perform sim-
ilarly to the Greedy90% agent with a small advantage of the HardGNN 90%. This
highlights the struggles to overcome imperfect teacher agents. In contrast, the
soft-label models signi�cantly surpass their hard-label counterparts. Among the
soft-label agents, the GNN agent outperforms the FNN variant, indicating a syn-
ergy between the enhanced GNN feature representation and soft label learning.
The SoftGNN 90% agent improved the L2RPN score by nearly 15% compared to
its hard-label counterpart HardGNN 90%. Particularly for very challenging runs,
the SoftGNN 90% agent manages to outperform the hard-label variant and the
expert and survives signi�cantly longer. Similarly, for the FNN variants, the
soft-label agent improved the score by 8%.

Finally, our SoftGNN agents are able to outperform the state-of-the-art
agents Senior95% and TopoAgent85−95% that employ more sophisticated sim-
ulation strategies and speci�cally optimize for long-term performance through
RL. The SoftGNN 90% N−1, incorporating N-1 security criteria during inference,
achieved the highest overall performance with a mean L2RPN score of 44.43 and
median survival time of 1299 steps. Notably, its MSTCM of 1566 surpassed even
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Table 2: Overview of the aggregated agent performance. The table provides the
L2RPN score metric statistics as well as the median survival time and MSTCM.

Agent
L2RPN Score Survival Time

x̄ σ x̃ Q1 Q3 x̃ MSTCM

DoNothing 00.00 0.00 00.00 00.00 00.00 229 383

Greedy90% 37.91 3.89 37.07 35.62 40.78 1014 1280

Senior95% [10] 37.13 4.49 37.21 33.48 39.84 988 1160

SeniorFix95% 39.40 2.98 39.50 37.14 41.25 1026 1468

TopoAgent85−95% [10] 41.26 3.01 40.41 39.41 43.69 1232 1436

TopoAgentFix85−95% 41.81 3.11 42.17 40.33 44.00 1263 1494

HardFNN 90% 37.54 3.87 37.08 35.06 40.22 1020 1114

SoftFNN 90% 40.73 4.16 40.54 36.60 43.64 1113 1316

HardGNN 90% 38.28 3.58 37.95 35.85 40.08 1048 1255

SoftGNN 90% 43.84 3.60 43.96 41.40 46.09 1293 1479

SoftGNN 90% N − 1 44.43 3.27 43.49 42.33 47.34 1299 1566

the TopoAgentFix 85−95% by 72 time steps, demonstrating the synergy between
soft-label learning and safety-aware action selection.

We used Welch's t-test [26] to compare the SoftGNN 90% N −1 agent against
Greedy90%, HardGNN 90%, SoftFNN 90%, and TopoAgentFix 85−95%, and in all
cases rejected the null hypothesis (p < 0.05; see Tab. 3), indicating signi�cant
di�erences. D'Agostino's test[2] con�rmed that the data adhered to normality.

Table 3: Test Results of the Welch's t-test [26] with the hypothesis H0 : µi = µj

against the alternative hypothesis H1 : µi ̸= µj .

H0 Hypothesis p-value

H0 : µGreedy90% = µSoftGNN90% N−1 1.4× 10−6

H0 : µHardGNN90%
= µSoftGNN90% N−1 1.6× 10−6

H0 : µSoftFNN90%
= µSoftGNN90% N−1 0.003

H0 : µTopoAgent85−95%
= µSoftGNN90% N−1 0.013

These results underscore three key trends: (1) Soft-label IL signi�cantly out-
performs hard-label IL, (2) GNNs exploit the grid topology to improve decision-
making, and (3) post-hoc N-1 evaluation further elevates performance by prior-
itizing N-1 resilient actions.
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6 Discussion

The experimental results demonstrate that our soft-label imitation learning (IL)
approach, which leverages soft scores over viable topology actions, consistently
outperforms both hard-label IL methods and the expert agent itself. This section
synthesizes the key insights and contextualizes them within the landscape of IL.

Conventional hard-label IL methods inherit and amplify the �aws of the
expert by enforcing rigid, deterministic policies. Our results show that both the
HardFNN 90% and HardGNN 90% agents are on par with the Greedy90% agent
while performing signi�cantly worse than their soft-label counterparts. This gap
underscores how hard labels propagate the expert's biases, such as favoring in-
optimal actions that might mitigate overloads for singular grid states but lead to
unstable topologies for following states and hence disrupt long-term performance.

In contrast, soft labels enable the agent to generalize across states by learn-
ing structural patterns in the action space rather than memorizing individual
decisions. By learning from soft scores, the model observes which actions are
e�ective for each scenario and infer which actions are universally e�ective. This
also reduces the label noise and the chance of over�tting to singular sub-optimal
actions. We argue that the soft labels work like a con�dence score, where the con-
�dence decreases whenever there are many viable actions. This avoids over�tting
to the action with the highest � yet not far o� � score. Especially in these low
con�dence situations where the scores are distributed among multiple e�ective
actions, the exact order of the actions is less important for the model to predict.
This is consistent with the use of the KL divergence loss which doesn't account
for the order of the predictions but rather the element-wise deviations from the
target. Hence, the overall viability of actions is assigned more importance than
the exact order according to the labels. This �ts our use case perfectly, since it
is merely important to bring line loads below a certain threshold. Because the
model is able to observe the richer soft label, it is able to assess the general e�ec-
tiveness of actions, resulting in a tendency to rank actions higher that contribute
to reducing line loads in the training set more frequently.

It is even desired to output multiple action recommendations, which can be
evaluated with more scrutiny, such as to their impact on the N-1 load �ows. Our
SoftGNN 90% N −1 agent does exactly that for the top 10 actions and achieves a
higher score and longer survival time. The �exibility of having multiple recom-
mendations for operators is critical for power grids, where topology optimization
must not only reduce line load, but also consider other optimization tasks, such
as N-1 security or the topology depth [23].

Bridging our results to recent advances in IL, [27] demonstrated that con-
�dence scores which indicates the quality of demonstrations enable IL agents
to recover optimal policies from imperfect data. Similarly, our soft labels can
be interpreted as such con�dence scores. They show that reweighting imperfect
demonstrations using con�dence signals improves policy robustness. By borrow-
ing this principle to power grid control, we show that soft labels surpass the
performance of the imperfect expert by synthesizing a richer understanding of
e�ective actions. By encoding uncertainty through soft labels, the agent avoids
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over-committing to suboptimal decisions and is therefore more robust to unseen
grid states. It's noteworthy to point that the same phenomenon, of students
models outperforming expert models as agents, was also con�rmed by [8].

The integration of GNNs ampli�es the bene�ts of soft labels by explicitly
modeling the topological structure of the power grid. While the soft-label FNN
agent improved performance over its hard-label counterpart, adding a GNN
achieved the highest scores and median survival times. GNNs enhance decision-
making by propagating congestion reduction strategies across interconnected
substations and lines, ensuring that physical grid constraints are considered.
This result is consistent with recent studies [6, 8].

Applying Machine Learning (ML) techniques in real-world control rooms as
decision support for (topological) remedial actions is still in its infancy. For ex-
ample, the GridOptions tool [24] is one of the �rst AI-based decision-support
tools deployed in a TSO control room. However, the scope of the �rst version
of the GridOptions tool has been limited in several ways [12]. In particular,
the optimization approach does not exploit ML yet, and, hence, is slow and in-
�exible. Consequently, our method's success has direct relevance to real-world
grid operations. By training on diverse action soft scores, the agent becomes
resilient to unexpected grid disturbances, e.g., equipment failures or renewable
volatility. Our approach maximizes the utility of topology actions by identifying
high-impact recon�gurations and therefore reduces the need for costly redis-
patch. Since we deal with critical infrastructure, our system is developed solely
as a decision-support tool that provides action recommendations while leaving
the �nal decision-making authority to quali�ed human operators.

While our approach marks a signi�cant advancement, several challenges re-
main. Future work could explore action sampling strategies as well hybrid ap-
proaches applying RL �ne-tuning to IL models to capture true long-term de-
pendencies. Scaling to real-world sized power grids with di�erent topologies will
validate the method's broader applicability.

7 Conclusion

In this study, we introduce a novel imitation learning framework that leverages
soft labels � derived from comprehensive load �ow simulations � to capture mul-
tiple e�ective topology actions in power grid control. Our approach overcomes
the limitations of traditional hard-label methods, which tend to rigidly follow
a single expert decision and propagate its biases. By integrating graph neural
networks, our agent learns to capture the grid's inherent spatial structure, lead-
ing to an improved performance. The impact of the proposed agent was studied
on a benchmark IEEE 118-Bus transmission system. We �nd that the proposed
method outperforms state-of-the-art RL agents and the greedy expert itself,
showing the potential of soft-label imitation learning.
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