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Abstract. In daily fantasy sports, players enter into “contests” where
they compete against each other by building teams of athletes that score
fantasy points based on what actually occurs in a real-life sports match.
For any given sports match, there are a multitude of contests available to
players, with substantial variation across 3 main dimensions: entry fee,
number of spots, and the prize pool distribution. As player preferences
are also quite heterogeneous, contest personalization is an important tool
to match players with contests. This paper presents a scalable contest rec-
ommendation system, powered by a Wide and Deep Interaction Ranker
(WiDIR) at its core. We productionized this system at our company, one
of the large fantasy sports platforms with millions of daily contests and
millions of players, where online experiments show a marked improve-
ment over other candidate models in terms of recall and other critical
business metrics.
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1 Introduction

Over the past decade, fantasy sports have grown remarkably. The global market
is estimated to exceed $37 billion in 2025 and is projected to continue to grow
by 14% annually through 2030 [4]. The majority of this growth is driven by
daily fantasy sports (DFS), where players create teams of athletes and compete
against each other on a match-by-match basis. To enter into these competitions–
typically referred to as “contests”–players pay an entry fee which contributes to a
shared prize pool. Once a contest concludes, this prize pool is then divided across
the top-performing entries according to a predetermined prize distribution.

In this paper, we focus on the contest recommendation problem at our com-
pany, one of the large fantasy sports platforms globally with millions of players.
For a real-life sports match, our platform hosts a wide variety of different con-
tests for players to join, ranging from small head-to-head clashes to extremely
vast competitions that involve millions of teams. Beyond just size (number of
spots), contests also principally differ across two other key dimensions: entry
fees and prize distributions. Player preferences are also quite diverse, meaning
⋆ work done while at Dream11
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that personalized recommendations can be critical in directing players to con-
tests that best align with their tastes, and can generate substantial lifts in player
conversions and entry amounts for the platform [3].

To solve this problem, we built what we call a Wide and Deep Interaction
Ranker (WiDIR), which builds upon the architecture developed to rank apps on
the Google Play store [2]. WiDIR similarly integrates a wide linear branch, which
excels at “generalization”, and a deep neural network branch, which specializes
in “memorization”.

In the context of fantasy sports, generalization in contest recommendation
refers to the ability to recommend relevant contests to new players or recommend
newer or less popular contests that may still be a good fit to the existing players.
Memorization, however, focuses on recommending popular contests to players
who have previously shown a preference for them. Our recommendation model
is designed to achieve both of these capabilities.

We further enhance the deep network by explicitly modelling contest-player
interactions and by dividing it into three specialized sub-branches: one dedicated
to player features, another to contest features, and a third focused specifically on
interaction features. Our offline experiments show that WiDIR achieves better
precision and recall compared to other candidate models on out of sample test
data. Moreover, online experiments showed that significantly more lift on player
engagement and other key business metrics against other candidates.

The primary contributions of our paper are listed below;

– We introduce WiDIR (Wide and Deep Interaction Ranker), a personalized
recommendation system specifically tailored for daily fantasy sports (DFS)
contests.

– Through extensive experimentation on a large-scale DFS platform involving
millions of players, WiDIR achieves a significant uplift in key player engage-
ment and business metrics such as contest joins and gross gaming revenue
(GGR).

– We present a fully operational and scalable inferencing pipeline designed to
deliver personalized contest recommendations within milliseconds, effectively
handling millions of players and contests daily.

The rest of the paper is organized as follows; Section 2 provides additional
context on fantasy sports as well as a brief overview of our platform. Section
3 presents our data and methodology. Section 4 describes our overall system.
Section 5 discusses the experimental results and analysis. Finally, Section 6 con-
cludes the paper.

2 Context

Fantasy sports involve creating virtual teams composed of real-life athletes,
where the performance of these athletes in actual sporting events determines
the success of the fantasy team. Players draft athletes, manage rosters, and
compete based on the accumulated statistical metrics of their athletes, such as
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(a) Contest categories listed (b) Specially For You Section

Fig. 1: Some of the contests on our platform for Delhi (DEL-W) vs Mumbai
(MUM-W) TATA WPL match

runs scored in cricket, touchdowns in football, or goals in soccer. These metrics
have an equivalent “fantasy score”, for example in cricket:

– Run Scored: 1 point per run
– Wicket Taken: 25 points per wicket
– Catch: 8 points per catch
– Stumping/Run-out: 12 points per dismissal
– Boundary Bonus: 1 point for each boundary (4 runs), 2 points for each six

(6 runs)

Traditional fantasy sports competitions last an entire season, requiring long-
term strategic planning, regular engagement, and active management of team
rosters. However, in recent years, daily fantasy sports have become increasingly
popular due to their shorter contest durations, typically spanning a single day.
Unlike traditional fantasy sports, where teams remain relatively stable through-
out a season, DFS participants create new teams for each contest. DFS’s appeal
lies primarily in its immediate outcomes and reduced time commitment, at-
tracting a broader range of participants. On our platform, after entering into a
contest, players will construct a team from the athletes who are competing in
the corresponding real-life sports match.

We host three types of contests: Public, Special, and Mega (or Grand). “Pub-
lic contests” are non-guaranteed, with spots ranging from 2 to over 1,500. These
contests are regenerated each time an instance fills up. “Special contests” of-
fer guaranteed prize pools, often featuring highly attractive top-prize templates.
These contests provide significant business benefits and are among the most
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appealing on the platform. “The Mega (or Grand) contest” is a special contest
with the largest prize pool, standing out as the most prestigious and high-value
contest available.

Our proposed WiDIR excels in Daily Fantasy Sports (DFS) by effectively
leveraging dynamic player-contest interactions and rapidly adapting to evolving
player preferences. Unlike traditional season-long fantasy sports, DFS’s highly
dynamic contest environment and immediate feedback loop allow WiDIR to
continuously adapt recommendations, utilising interaction features to enhance
player engagement and business metrics.

Figure 1a depicts the player interface after selecting a specific cricket match
(Delhi (DEL-W) vs Mumbai (MUM-W) TATA WPL match) on our mobile app.
At the top is the “Mega Contest”, the largest and most lucrative contest, offering
significant prize pools that attract up to millions of players. Directly below are
contest bundles, known as “Combo Contests”. allowing players to conveniently
join multiple contests simultaneously at discounted entry fees, enhancing the
overall playing experience and value proposition.

Further down, players encounter the “Specially For You” section, illustrated
in greater detail in Figure 1b. This section leverages advanced personalization
algorithms, recommending contests tailored to individual player preferences and
historical playing behaviour, thereby increasing engagement and player satisfac-
tion. As much of the rest of the first page is more business-optimized, this section
is explicitly optimizing for player engagement, ensuring a more balanced expe-
rience. Players benefit from organic engagement driven by personal preferences
while maintaining visibility for key business offerings.

2.1 Problem Definition

Our contest recommendation model aims to predict which contests a user is most
likely to join in future rounds, leveraging their historical join behavior and the
features of available contests.

Our primary objective is to generate personalized contest recommendations
that align closely with individual player preferences. By improving the relevance
of contest recommendations, we aim to enhance user engagement, increase con-
test participation, and ultimately support long-term player retention and plat-
form revenue growth.

3 Data and Methodology

3.1 Primary Data and Feature Engineering

Our primary data comprises two main components: the player contest join his-
tory and contest characteristics. The join history records contain player_id,
contest_id, match_id, and joining_time, while the contest characteristics in-
clude entry_fee, prize_money, contest_size, prize_distribution, guaranteed,
contest_type, and multi_entry.
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Among these, contest_size, contest_type, prize_distribution, guaranteed,
and multi_entry are categorical variables, whereas entry_fee and prize_money
are numerical. Below is a brief description of each feature:

– player_id: Unique identifier for each player.
– contest_id: Unique identifier for each contest. Multiple instances of the

same contest can exist; once one contest is filled, a new contest with identical
features is dynamically created and assigned a different contest_id.

– match_id: Unique identifier for the sports event associated with the contest.
– joining_time: Timestamp indicating when a player joined a contest.
– entry_fee: Amount required to participate in a contest.
– prize_money: Total prize pool for a contest.
– contest_size: Maximum number of participants allowed in a contest.
– contest_type: Type of contest (e.g., public, special, mega).
– prize_distribution: Template identifier representing the prize distribution

among winners.
– guaranteed: Indicates whether the contest is guaranteed (i.e., the prize

money remains fixed even if the contest is not fully filled).
– multi_entry: Indicates whether a contest allows multiple team entries from

the same player.

From our primary data, we engineered three distinct sets of features: player
features, contest features, and interaction features.

– Player Features: These features characterize a player’s behaviour based on
their historical contest participation. For each player, we compute statistics
over the contests joined in the last k days. The goal is to capture current
player behavior (k = 3) alongside historical preferences (k ∈ (7, 30)).
The features include:

– Contest Join Behavior : Counts of distinct contest types, contest sizes,
and entry fees encountered.

– Spending Patterns: Average and maximum entry fees paid.
– Winning Proportion: Average and maximum prize money won.
– Diversity Level : Count of distinct types of contests played.

– Contest Features: These features describe the intrinsic attributes of a
contest, as outlined above.

– Interaction Features: These capture the current affinity between a player
and a contest by aggregating player behavior over recent time windows.
Specifically, we compute features over the contests the player participated
in over the previous day and the last k days (with k = 5).
Examples include the count of contests with the same type as the target
contest, count of contests with the same entry fee as the target contest, and
number of contests with the same prize pool as the target contest.

This final dataset is then split into training (∼ 12 months), validation (∼
2 months) and test sets (∼ 6 months). Table 1 summarizes key data statistics,
including the duration of the training and test periods, contest join counts, and
the number of unique players and contests.
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Property Train Test

Contest joins ∼ 1 Billion ∼ 0.5 Billion
Total players ∼ 100 thousand ∼ 100 thousand
Unique contests ∼ 1.5 thousand ∼ 1.1 thousand
Total contests ∼ 1.5 Million ∼ 0.9 Million

Table 1: Train and Test Data Statistics

3.2 Methodology

Our contest recommendation system aims to predict the ranking of contests that
a player is most likely to join in future matches, given their contest transaction
history. Let i index the set of players P, t index the set of matches M, and c
index the set of contests C. We construct training samples at the player-match
level as the active set of contests varies from match to match: for each player
i ∈ P and match t ∈ M, we construct an ordered list of contests:

Oit =
(
c
(1)
it , c

(2)
it , . . . , c

(Lit)
it

)
where c

(1)
it denotes the most frequently joined contest by player i in match t

to c
(Lit)
it which denotes the least. This list is then fixed to 100 entries, either

trimmed down or padded by randomly appending contests that weren’t joined
to the end of Oit. We set this value based on our experiments with (50, 100, 200).
From Oit, we can form the set of contest pairs:

Θit =
{
(c, c′) ∈ Oit ×Oit | c ≻ c′

}
,

where c ≻ c′ indicates that contest c was joined more frequently than contest
c′ by ui. These pairs are constructed to train our ranking model, WiDIR using
a pairwise hinge loss [5]. A ranking loss was chosen since we aim to rank the
contests based on their relative relevance rather than accurately predicting the
affinity score of each contest.

WiDIR produces an affinity score ŝic for each player i, each match t, and
each contest c. This model is then trained using pairwise hinge loss as mentioned
above.

↕it(c, c′) = max{0, 1− ŝi(c) + ŝi(c
′)}. (1)

which penalizes situations where a less preferred contest c′ is scored higher than
a more preferred contest c. The overall loss is given by

L =
∑
i∈P

∑
t∈M

∑
(c,c′)∈Oit

↕it(c, c′). (2)
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Fig. 2: WiDIR architecture showing both training and inference flow

WiDIR is built on a wide and deep neural architecture to leverage both mem-
orization and generalization capabilities (see Figure 2). Unlike [2], our model em-
ploys three separate deep branches to model the embeddings for players, contests,
and their interactions. This approach allows each component to be represented
more effectively. The embeddings are then combined in a final branch to model
the correlations between them. The training process is described below:

– Embed the player, contest, and interaction features into dense representa-
tions.

– Concatenate these embeddings and pass them through multiple fully con-
nected layers (the deep component).

– In parallel, combine the raw features into a wide layer.
– Merge the wide and deep components, then feed the result into a final linear

layer to predict contest scores.
– Compute the pairwise hinge loss from Equation (1) over all contest pairs and

back-propagate the error.

Table 2 summarizes the layer flow and parameter counts in each branch. Here,
dp, dc, and di denote the dimensionalities of the player, contest, and interaction



8 M.Srilakshmi et al.

Component Layer Flow Parameter Count
Player Branch (PB) P → 64 → 64 64 ∗ dp + 4224

Contest Branch (CB) C → 64 → 64 64 ∗ dc + 4224

Interaction Branch (IB) I → 16 → 16 16 ∗ di + 560

Wide Branch (WB) P + C + I → 1 dp + dc + di + 1

Deep Branch (DB) (64 + 64 + 16) → 128 (4X) 68096
Combined Layer 128 → 64 → 64 → 32 → 8 → 4 14796
Final Ranking (4 + 1) → 4 → 1 29
Total 65 ∗ dp + 65 ∗ dc + 17 ∗ di + 91930

Table 2: Model Architecture and Parameter Counts (Symbolic)

Fig. 3: Data flow and Inference architecture

features, respectively (our raw feature set dimensions were 107, 11, and 9 in our
experiments).

During inference, the model scores all contests available in a match based
on their features. The top-h contests, as determined by their predicted scores,
are then recommended to the player. Since the model relies on high-level contest
features (e.g., contest_type, entry_fee) rather than contest-specific identifiers,
it can generalize effectively to new contests.

4 System Architecture and Data Flow

This section describes the architecture of the personalized contest recommenda-
tion system implemented in our fantasy gaming platform. The system integrates
the following key phases as shown in Figure 3. The following sections provide
details on each phase.

1. Data Preparation
2. Training
3. Inference
4. Serving
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4.1 Data preparation

We use player transaction history and contest features to generate our recom-
mendations. This data is stored in a data warehouse which is maintained and gets
updated with any real-time changes via data engineering stream/ETL pipelines.

We fetch the data from the warehouse and compute player features, and
interaction features using distributed pyspark jobs viz. Player features task and
Interaction features task. Section 3.1 describes our feature engineering.

This data is then processed into model-expected formats and stored in the
Offline Feature Store, serving as a repository for the processed feature data.
Features are created and updated once a day since our feature aggregation gran-
ularity is day-level.

4.2 Training

For model training, player features and interaction features are fetched from the
offline feature store, and contest features are fetched from the data warehouse.
Our baseline system, Light GBM ranker, is trained using synapseML 1 to effi-
ciently process large datasets stored in PySpark dataframes. For WiDIR, we use
tensorflow [1] with petastorm data loaders 2. The pair wise loss implementation
is sourced from tensorflow-ranking.

The entire training process is managed through run identifiers enabling us to
reproduce any component specific to a given run. We track those run-ids, model
artefacts, hyperparameters, data statistics and evaluation metrics using MLflow
[7] 3.

4.3 Batch inference

During inference also, we fetch player features and interaction features from the
offline feature store, and contest features from the data warehouse and input
them to our trained ranking model. The model outputs a player-contest affinity
score for all available contests and we rank them in decreasing order of their
scores.

To optimize the balance between providing recommendations and minimizing
the cost of running inference on players who may not engage with the app,
inference is performed only for players who have been active in the past month.

4.4 Serving

To ensure that player rankings remain dynamic with contests currently live, we
maintain a relative ranking of all available contests in our Sylla DB-based Online
Feature Store. The orchestration layer performs the following operations:
1 https://microsoft.github.io/SynapseML/
2 https://github.com/uber/petastorm
3 https://mlflow.org/docs/latest/



10 M.Srilakshmi et al.

– Whenever a player is active on the app and selects a gaming match, it gathers
all live contests and requests the online feature store for the relative ranking
of these contests.

– The ranking is then served back to the app, all within 10 milliseconds. Each
subsequent refresh or update, including specific triggers such as a contest
being filled and needing replacement, involves a fresh call from the orches-
trator.

5 Experiments

To select the optimal modelling strategy, we employ a two-stage experimentation
process that includes both offline and online A/B testing. This approach ensures
thorough testing before production deployment. In this section, we outline our
evaluation metrics, the baselines used for comparison, the experimental setup,
and the results from both online and offline settings.

5.1 Baseline systems

We compare WiDIR with the following baseline systems.

– ML-based model: tree-based Light GBM ranker (LGB) [6] with same input
features as WiDIR.

– Popularity-based ranker: This approach ranks contests by the prize amount.

5.2 Evaluation Metrics

Our offline experiments are evaluated using precision@h and recall@h, where
h ∈ (1, 3, 5, 10).

Precision@h =
|recommended contests@h ∩ actual contests joined|

h

Recall@h =
|recommended contests@h ∩ actual contests joined|

|actual contests joined|

We evaluate online simulations / AB tests using the following gameplay busi-
ness metrics. Each metric is aggregated and then we compute the delta between
the control group CG and each target group TGi for the entire test period.

∆ =
MTGpost −MCGpost

MCGpost

−
MTGpre −MCGpre

MCGpre

Where ∆ is delta and M is the aggregated metric, one of the below. CGpre and
TGpre are the pre-treatment start aggregates, and CGpost and TGpost are the
post-treatment start aggregates.

– CJ - denotes the total contest joins.
– CEA - denotes the cumulative entry amounts.
– GGR - denotes the gross gaming revenue.
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Hyperparameter WiDIR LGB ranker
Embedding Dimensions 64 -
Epochs 100 30
Learning Rate (LR) 0.001 0.1
Batch Size 212 (4096) 64
Validation Batch Size 214 (16384) -
Loss Function pw_hinge lambdarank (application)
Ranking Sort Order - player_id, match_id, join_count
Boosting - dart
Num Leaves - 64
Early Stopping rounds 15 10
Eval at - 1, 3, 5, 10

Table 3: Hyperparameter Configurations for WiDIR and LGB Models

Group Treatment player Count Duration
CG None 1M 6 Weeks
TG1 Popular 1M 6 Weeks
TG2 LGB 1M 6 Weeks
TG3 WiDIR 1M 6 Weeks

Table 4: Experiment Details: Here TGi refers to the different cohorts on which
we exposed the mentioned treatment. The cohorts were sampled from monthly
active players, stratified randomly

5.3 Experimental Setup

The process starts with trained models viz. tree-based light gbm, WiDIR. Table
3 reports the details of hyperparameters for both systems. The parameter tuning
was conducted using a hold-out validation set.

Stage 1: Offline Experiments We evaluated modelling strategies through
offline experiments on a year’s worth of player transactional data. The recom-
mendation models were evaluated using precision and recall.

Stage 2: Online A/B Testing Promising models based on offline results
undergo A/B testing and deployed to a subset of players while a control group
gets no treatment. We record player interactions and business impact before full
deployment and record the business metrics after the experiment. Refer to Table
4 for details.

5.4 Results and Analysis

The online and offline results of our wide and deep recommendation model and
the baselines are shown in Figure 4 and Figure 5. From the results, it is evident
that WiDIR performs better than popular and LGB ranker in all but one case.
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Fig. 4: Comparing Precision@h and Recall@h of WiDIR against popular and
LGB ranker

Fig. 5: Comparing our online metrics (CJ delta, CEA delta and GGR delta)

The popular performs better at position 1 as the most popular contest is one
that most players join anyway as it is attractive and strategically priced.

Offline experiments indicate that, as number of recommended contests (h)
increases, precision decreases while recall increases for all models. This is because
most players join only one or two contests in a given match, fewer than h. This
doesn’t negatively impact recall, as recall is measured by the percentage of actual
contest joins that the model successfully recommends.

The online results show that WiDIR significantly outperforms other systems
in terms of business metrics. By effectively learning player preferences, it drives
an increase in contest joins, which subsequently improves CEAand GGR. While
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the LGB ranker also performs better than Popular in the CJ and CEA metrics,
it performs poorly in GGR.

6 Conclusion & Future scope

We presented our model-wide and deep interaction ranker for recommending per-
sonalized contests at scale. Our online and offline experiments demonstrate that
the model significantly improves key player relevance metrics, such as precision
and recall, alongside critical business metrics like CJ, CEA, and GGR.

The proposed WiDIR (Wide and Deep Interaction Ranker) has demonstrated
strong performance in personalized contest recommendations; however, several
avenues remain for further enhancement. Future work will integrate edge models
to optimize last-mile inference and incorporate session-based features, enabling
real-time personalization closer to the player. The model’s interaction features
provide inherent flexibility to adapt to evolving playing patterns. Additionally,
we aim to explore multi-armed bandits to facilitate richer dynamic exploration-
exploitation strategies, ensuring contest recommendations continuously evolve
in response to changing player behaviour.

Beyond ranking optimization, multi-task learning presents an opportunity
to extend WiDIR beyond a single-task ranker, making it adaptable to multi-
ple personalization objectives. To further enhance representation learning, we
plan to capture higher-order relationships in player-contest interactions by in-
vestigating graph modelling approaches, which could uncover deeper structural
dependencies and improve recommendation diversity. Additionally, scalable on-
line learning techniques will be explored to maintain efficiency while dynamically
adjusting to the ever-changing contest landscape.
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