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Abstract. Large Events Models (LEMs) are a class of models designed
to predict and analyze the sequence of events in soccer matches, captur-
ing the complex dynamics of the game. The original LEM framework,
based on a chain of classifiers, faced challenges such as synchronization,
scalability issues, and limited context utilization. This paper proposes
a unified and scalable approach to model soccer events using a tabular
autoregressive model. Our models demonstrate significant improvements
over the original LEM, achieving higher accuracy in event prediction and
better simulation quality, while also offering greater flexibility and scala-
bility. The unified LEM framework enables a wide range of applications in
soccer analytics that we display in this paper, including real-time match
outcome prediction, player performance analysis, and game simulation,
serving as a general solution for many problems in the field.

Keywords: Large Events Model · Sports Analytics · Deep Learning ·
Generative Model.

1 Introduction

Large Events Models (LEMs) [11] are an innovative concept in soccer analytics,
drawing inspiration from the success of Large Language Models (LLMs). Just
as LLMs predict the next word in a sequence based on the context of previous
words, LEMs are engineered to predict the next event in a soccer match, given
the current game state. These events include discrete actions such as passes,
shots, fouls, and more, collectively forming the “language” of soccer.

LEMs leverage deep learning techniques and are trained on extensive datasets
of soccer event data. This training enables them to identify patterns and se-
quences in gameplay, allowing them to simulate entire soccer matches from a
specified starting point or predict the likelihood of specific events occurring next.
The goal of LEMs is to solve one of the long-standing limitations of traditional
soccer analytics models: existing models often lack flexibility, i.e., they are de-
signed for specific tasks and require redevelopment for new applications.

In Mendes-Neves et. al. [11], the authors employ a chain of classifiers ap-
proach to build a LEM. This method involves a sequence of multiple classifiers
working together, where each classifier focuses on predicting a specific aspect of
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the upcoming event, using the outputs of the previous classifiers as additional
input. The chain begins with predicting the next event type (such as a pass,
shot, or foul) using the current game state (e.g., previous event, ball location,
...). The second classifier then takes the predicted event type plus the game state
to determine the event’s accuracy (whether it will be successful and whether it
will result in a goal). Finally, the third classifier uses all prior predictions (event
type, accuracy, and goal outcome) alongside the game state to forecast addi-
tional details, including the time elapsed until the event occurs, its location on
the field (X and Y coordinates), and whether the home team will perform it. By
structuring the prediction process this way, the chain of classifiers captures how
the event type influences its likelihood of success and other attributes, leading
to a more accurate model of soccer match dynamics.

Although the chain of classifiers architecture effectively captures the core
elements of a soccer event, this approach exhibited several drawbacks. Firstly,
the discontinuous nature made fine-tuning complex, as each classifier required
individual adjustments [10], leading to a cumbersome process when adapting the
model to specific teams or players. Secondly, scaling the model proved challeng-
ing. Different analytical tasks might necessitate different model sizes, but the
chain structure required synchronized scaling across all modules. Finally, the
parallel nature of some predictions within the architecture meant that specific
components did not leverage the full context of the event sequence.

These limitations show the need for a more streamlined and integrated ap-
proach to modeling soccer event data. In this paper, we explore the potential
of a unified LEM. Using a causal masking strategy, we unify the LEM by pre-
dicting the next event in a tabular format. The central idea driving this unified
approach is to design a system capable of sequentially predicting each element
of a soccer event. This sequential prediction process, even if it requires multiple
inference steps for a single event, allows the model to incorporate the full context
of preceding event elements. In the appendix of this paper, we also document a
strategy to treat the problem as a language modeling task, with inferior results
to our approach.

This paper is organized as follows. Section 2 reviews related work in soccer an-
alytics and generative modeling, highlighting the gaps our approach addresses.
Section 3 details our experimental setup, including data preparation and the
methodology. Section 4 presents our results, evaluating model performance across
prediction accuracy and simulation fidelity, with applications demonstrated in
Section 5. Finally, Section 6 concludes with a summary of findings and direc-
tions for future work. Appendices provide supplementary details on datasets and
alternative modeling approaches.

2 Related Work

Soccer analytics has witnessed a remarkable evolution, driven by models tailored
to dissect various facets of the game, addressing a spectrum of tasks like valuing
discrete actions, players, and teams. For example, expected goals (xG) models
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predict the likelihood of a shot resulting in a goal based on location, angle, and
other contextual factors like defensive pressure [13, 1]. Frameworks like Valuing
Actions by Estimating Probabilities (VAEP) [4] and expected threat (xT) [15, 8]
extend this concept by assessing the broader impact of actions on scoring or con-
ceding probabilities. Meanwhile, models leveraging tracking data analyze player
movements offering insights into off-ball contributions and team formations [17,
5]. This diversity underscores the complexity of soccer, necessitating specialized
tools for distinct analytical objectives.

The advent of LLMs has demonstrated the power of large-scale, self-supervised
models to address a wide range of tasks within a single framework [14, 3]. LLMs
learn data representations from vast, unlabeled datasets, enabling them to gen-
eralize across applications (e.g., text generation, translation, and question an-
swering). This paradigm shift offers a compelling analogy for sports analytics. In
soccer, current methods often rely on task-specific models. The success of LLMs
suggests that a sequence model could serve as a “foundation” for soccer analytics,
capable of modeling event sequences and adapting to diverse downstream tasks
without specialist solutions.

Before the introduction of LEMs, generative modeling in soccer analytics was
limited to narrow scopes. For instance, Seq2Event [16] employed transformers
and recurrent neural networks to predict the next event in a match sequence but
limited itself to passes, dribbles, crosses, and shots. TacticAI [20] utilized graph
neural networks to model player interactions, predicting outcomes and suggesting
tactical adjustments, but limited to corner kicks. There are other efforts [2],
but all require a limited action set to compromise. These shortcomings set the
stage for developing LEMs, which aim to provide a comprehensive generative
framework.

LEMs was a pioneering approach to generatively model soccer events in a
holistic manner. Inspired by LLMs, LEMs sought to learn the underlying prob-
ability distribution of event sequences, enabling realistic simulation and predic-
tion. LEMs adopted a chain of classifiers to model multiple event attributes
within a unified framework. This approach covered a significant portion of the
SPADL schema [4] (excluding identifiers), offering a more complete representa-
tion of soccer dynamics than its predecessors while modeling 33 event types.
This was a significant improvement over existing proposals.

Despite their innovations, LEMs exhibited several drawbacks that limit their
effectiveness and scalability, which we seek to address in this paper. The reliance
on a chain of classifiers introduces architectural complexity, requiring the training
(and post-training) to be executed three times, upon which there is a necessity
to verify if the models have learned coherent patterns among themselves. The
context window of the model is also limited, only using a single event to predict
the following.
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3 Experimental Setup

3.1 Data

For training our models, we used data from the 2015-2016 to 2021-2022 seasons
for the first and second leagues of Portugal, Spain, Germany, and France, as
well as the first leagues of Denmark and Belgium. We selected these leagues
due to their high level of competitiveness and availability. We used the 2022-
2023 season of the same leagues for validation purposes, with 100 000 randomly
sampled instances reserved for validation during model training and 15% of the
remaining validation set used to evaluate the models. The 2023-2024 season is
used for testing applications in Section 5. A more in-depth description of the
datasets is available in Table 1.

The work is also reproducible using publicly available datasets, such as Pap-
palardo et. al. [12] or Statsbomb Free Data3. However, because companies utilize
different data standards to annotate events, there may be differences in how the
models perceive these events. Nonetheless, the quality and depth of the under-
lying data has an effect on the model quality.

3.2 Deviations from the Original Dataset

In contrast to Wyscout’s original grouping, with several event types under broad
categories, we refined and expanded some of these event types. The changes we
made are the following:

– Wyscout groups multiple types of duels under the “duels” event type. We
split this category into five distinct types of duels: “defensive duel,” “offensive
duel,” “aerial duel,” “loose ball duel,” and “dribble.”

– We separated the “passes” category into three subcategories: “pass,” “long
pass,” and “cross.”

– For “shot,” we differentiated based on the part of the body used: “right-footed
shot,” “left-footed shot,” and “headshot.”

– We differentiated the “shot against” event type by changing it to “save” when
a goalkeeper made a save.

– Cards were previously associated with an “interruption” event. We now ex-
plicitly distinguish between “yellow card” and “red card” events.

– Some events also have an associated “carry.” A carry occurs when a player
moves the ball from where they received it to a new position before executing
another action or being interrupted by a duel. To improve the accuracy of
our models and given the importance of spatio-temporal aspects in soccer,
we added an event each time a carry is associated with another event. The
carry event follows the event with which it was initially associated.

– We also introduced two new event types: the “first half end” and “game end.”
These events help in modeling when game simulations should terminate,
fixing the issue with the original proposal where all games ended exclusively

3 https://statsbomb.com/what-we-do/hub/free-data/



A Scalable Approach for Unified Large Events Models in Soccer 5

based on time. This extends the time limit where games are forced to end
from 90 to 99 minutes, with the first half extending from 45 to 49 minutes

To reduce the number of inputs in our model, we computed two new variables:

– Accurate: In the dataset, different event types have different indicators of
success. Since they are independent, we merged them into a single variable
to reduce the number of variables being forecasted. An event is considered
accurate if it meets the following criteria:
• the event is a pass and is accurate
• a player is the first to touch the ball in an aerial duel
• a player successfully progresses with the ball in an offensive duel
• a player recovers possession in a ground duel
• the event is a carry that leads to progression on the field
• the event is a shot that results in a goal

– Time elapsed: Time in an event is described by two variables: minute and
second. We compute the time difference in seconds between two events to
reduce them to a single variable. Then, we clip the “time elapsed” variable
to a maximum value of 100, ensuring that we do not require extra tokens to
manage larger values. This extends from the original proposal that capped
the “time elapsed” at 60 seconds.

The new “accurate” variable now carries both the information of the isAc-
curate and of isGoal from the original architecture [11]. This provides an im-
provement by reducing the number of variables to forecast from 7 to 6. While
previously, in the chain of classifiers approach, this was not significant since
both variables are predicted with a single step, in our new approach, reducing
the number of variables is important as each variable is inferred individually.

3.3 Statistical Description of the Dataset

For the rest of this paper, we will use the following abbreviations for the variables
included in the models.
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hy → Home team yellow cards.
ay → Away team yellow cards.
hr → Home team red cards.
ar → Away team red cards.
hg → Home team goals scored.
ag → Away team goals scored.
p → True if period is second half.
m → Minute.
s → Second.
h → True if the event was made by the home team.
e → Event type.
x → x-coordinate of the event on the field.
y → y-coordinate of the event on the field.
t → Time elapsed since previous event.
a → Accurate.

Table 1. Descriptive statistics of the processed Wyscout dataset.

Set

Variable Train Validation Test

General
Events # 39,580,286 6,036,590 5,955,852
Matches # 22,773 3,352 3,256
Events per Match Mean 1,738 1,800 1,829

Home Team (h)
Majority Class 1 1 1
Majority Class % 0.51 0.51 0.51

Event Type (e)
Unique Values # 32 32 32
Majority Class pass pass pass
Majority Class % 0.36 0.38 0.38

Coordinates (x, y)
Unique Values # 101 101 101
x Mean 47.58 47.13 47.07
y Mean 49.63 50.33 50.19

Time (t)
Unique Values # 101 101 101
Majority Class 2 2 2
Majority Class % 0.22 0.22 0.23
t Mean 3.27 3.19 3.20

Action Type (a)
Majority Class 1 1 1
Majority Class % 0.51 0.5 0.51
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3.4 Reshaping

We reshaped the dataset to fit in a tabular format. We created six copies of
each event, each with a target for each of the h, e, x, y, t, and a variables. Some
inputs will be masked as −1 depending on the target variable to hide future
information from the model. For example, to predict the y variable, we mask y
and all subsequent variables (t and a). When we aim to predict the first variable
h, we mask all variables. Listing 1.1 shows a sample of the data in this format.

In addition to the event variables we aim to predict, we have contextual
variables such as the current goals scored for home and away team (hg and ag),
along with red and yellow cards (hr, ar, hy, ay). All other variables preceded by
a c refer to contextual variables extracted from previous events.

Listing 1.1. A tabular dataset sample for sequence size 3. The first row indicates
column headers while subsequent rows show example event records.

id,h,e,x,y,t,a,p,m,s,hg,ag,hr,ar,hy,ay,c1_h ,c1_e ,
c1_x ,c1_y ,c1_t ,c1_a ,c2_h ,c2_e ,c2_x ,c2_y ,c2_t ,
c2_a ,c3_h ,c3_e ,c3_x ,c3_y ,c3_t ,c3_a ,target

235200910,1,0,64,71,3,-1,0,40,42,0,0,0,0,0,0,0,6,
13,36,2,0,1,18,100,100,29,0,1,12,100,68,9,0,1

192308161,1,0,29,25,-1,-1,1,69,13,0,1,0,0,1,1,1,0,
10,61,5,1,1,24,0,0,5,0,0,0,27,43,3,0,4

...

3.5 Tabular Modeling with Multilayer Perceptrons

In our proposal, we model soccer events as a tabular problem, where each row
represents an event and columns represent features of that event. The core idea
is to autoregressively predict each event in a sequence, using the context of
previous events and the current game state. We will refer to this approach as
Multilayer Perceptrons Large Events Model (MLP LEM).

Data Flow The data flow in MLP LEMs is presented in Figure 1.
The input data for LEMs consists of three main components:

1. Game Context: represents the global state of the game at any given time.
These features provide crucial context for the model, reflecting each team’s
overall performance and situation and influencing the likelihood of different
events.
It includes (hg, ag, hy, ay, hr, ar).

2. Previous Event Sequence: provides a localized context, capturing the imme-
diate history leading to the current event. The model receives a fixed-length
sequence of the n most recent events. Each event in the sequence is repre-
sented using a six-token format, just like the current event.
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Fig. 1. Data flow in MLP LEMs. The model inputs the game context, previous events,
and the current event to predict the next event in the sequence. Each event is repre-
sented by six tokens: Team, Event Type, Elapsed Time, Start X, Start Y, and Accuracy.
The model predicts each token sequentially, updating the current event representation
with each prediction.

3. Event: represents the event being predicted at each step, containing the
information of which tokens are masked and require prediction.

The LEM predicts each event autoregressively, one token at a time. Each
token is a part of an event which is encoded to enable modeling. This means the
model predicts each token of the current event sequentially, conditioning each
prediction on the game context, previous events, and the previously predicted
tokens. Initially, when all tokens of the current event are unknown, the current
event vector is initialized with an “unknown” token (represented as -1 in our
implementation) for each token. The prediction process then unfolds sequentially
as follows: h, e, x, y, t, and a.

Like the original proposal [11], the model does not simply classify the most
likely token at each step. Instead, it outputs a probability distribution over the
possible values for each token. This allows us to incorporate randomness into
the event-generation process through sampling.

Training Procedure The raw event data is transformed into a numerical for-
mat suitable for the neural network using tokenization, where each feature of an
event is mapped to a discrete numerical token. This tokenization process resulted
in a vocabulary size of 101, tokenized as follows:
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– The spatial features, x and y, representing the coordinates of an event on
the field, were discretized into 101 tokens each, representing values from 0
to 100.

– The temporal feature, t was also discretized into 101 tokens. Since the origi-
nal data could go up to 30 minutes without an event occurring, we condensed
the range to reduce the vocabulary size while maintaining sufficient temporal
resolution for normally occurring games.

– The e feature was encoded using 34 tokens, representing the different types
of events in the dataset. We reused the tokens 0-33 to avoid increasing the
output space.

– The t and a features were represented with two tokens (0 and 1).

We experimented with MLP architectures of varying depths and widths to
explore the impact of model size on performance. After preliminary experiments,
we selected 7 architectures that scale their parameter count exponentially (10k,
30k, 100k, 300k, 1M, 3M, and 10M). The configurations presented in Listing 1.2
were extensively tested.

Listing 1.2. Model architectures for MLP LEMs.
MLP(input_size=get_size(seq_len), hidden_sizes =[ 80, ], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[ 96, 96, 96], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[ 196, 196, 196], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[ 360, 360, 360], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[ 682, 682, 682], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[1200 , 1200, 1200], output_size =101)
MLP(input_size=get_size(seq_len), hidden_sizes =[2220 , 2220, 2220], output_size =101)

The models were trained using the Adam optimizer [9], with an initial learn-
ing rate of 0.01. We employed the binary cross-entropy with logits loss function,
with a batch size of 1024. A dropout rate of 0.3 was used on every layer of
all models for regularization. During training, we measured the model’s perfor-
mance in the validation set. Due to the computational cost of evaluating the
entire validation set, a representative sample of 100 000 data points was used for
evaluation. For scaling law experiments, we use 25% of the train data. Subse-
quently, the best models were trained using the entire dataset for 4 epochs. The
code to reproduce our training process is available on Github4.

4 Results

4.1 Scaling Laws

We conducted initial experiments to investigate the relationship between model
size, sequence length, and performance using a subset of the training data. We
trained a series of MLP models as described in Section 3.5. The validation loss
curves for these models are presented in Figure 2.

The results demonstrate that a sequence length of 3 consistently yielded the
lowest validation loss across different model sizes. This suggests that capturing
the immediate context of the three preceding events provides the most valuable
information for predicting the subsequent event.
4 https://github.com/nvsclub/LargeEventsModel/
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lines represent train losses.

4.2 Training on the Full Dataset

Based on the insights gained from the scaling law experiments, we selected the
100k, 300k, 1M, 3M, and 10M models with a sequence length of 3 and trained
them on the full dataset. The learning rate was reduced to 0.001 for this stage of
training to prevent overshooting the optimal solution. The validation loss curves
for these models are shown in Figure 3.

The validation loss curves indicate that the models continued improving,
achieving lower loss values than the scaling law experiments. The trend in the
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validation loss curves suggests that the models might benefit from further train-
ing. It is possible that, with more training epochs, the models could achieve even
better performance, as the slope of the curves indicates that we are yet to con-
vergence. Nonetheless, the returns are diminishing as the scale of resources to
increase performance increases exponentially. This decay in performance increase
is observable in the performance metrics presented in Table 2.

Table 2. Performance metrics for MLP models on the validation set. Our new approach
outperforms the original approach (OG LEM) at nearly every scale. All variables where
the performance increase is not visible reflect significant modifications on the new model
that put our new proposal at a disadvantage.

MLP MLP MLP MLP MLP
OG LEM 100k 300k 1M 3M 10M

Accuracy

h (Team) 0.938a 0.855 0.864 0.871 0.873 0.874
e (Event Type) 0.557 0.644 0.656 0.664 0.667 0.670
a (Accuracy) 0.817b 0.852 0.856 0.860 0.860 0.861

F1-Score

h (Team) 0.938a 0.855 0.864 0.871 0.873 0.874
e (Event Type) 0.499 0.577 0.591 0.603 0.608 0.612
a (Accuracy) 0.873b 0.852 0.856 0.859 0.860 0.861

R²

x 0.636 0.812 0.836 0.851 0.857 0.858
y 0.292 0.435 0.571 0.603 0.625 0.651
t (Time Elapsed) 0.552c 0.153 0.408 0.420 0.447 0.464

MAE

x 8.5 6.945 6.308 5.919 5.775 5.695
y 15.6 13.526 11.330 10.648 10.233 9.804
t (Time Elapsed) 2.6c 1.735 1.515 1.475 1.427 1.401

Inference Time (seconds per 150 000 tokens)

Any variable 0.023 0.011 0.019 0.048 0.130 0.419
a In the original proposal, the h variable was predicted in the last step and, in this

iteration, is the first variable to be predicted, having less information to work with.
Therefore, this value is inflated.

b In the original proposal, the a variable was predicted in the second step and, in this
iteration, is the last variable to be predicted, having more information to work with.
Integrating the goal variable into a also inflates the accuracy of our newer models.

c The time elapsed variable ranged between 0 and 60 in the original proposal, while
it now ranges from 0 to 100.
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MLP models can learn meaningful patterns from event data better than our
original proposal. The larger models generally outperform the smaller ones, but
the gains diminish with increasing size. The best model choice depends on the
specific application and the acceptable trade-offs between performance, infer-
ence time, and computational resources. The largest model, 10M, provides the
best overall performance across the board but at the cost of significantly higher
inference times. A smaller model might be more suitable for applications where
speed is critical, offering a good balance between performance and efficiency.

4.3 Benchmarking Large Events Models

Evaluating the quality of our LEMs based on their accuracy in predicting indi-
vidual tokens is not enough. Token-level accuracy alone does not fully capture
the capabilities of a generative model, particularly for downstream tasks like
simulating entire soccer matches. While a high token prediction accuracy is de-
sirable, it does not guarantee that a model can generate coherent sequences of
events that accurately reflect the dynamics of a real game. We evaluate our mod-
els’ ability to simulate full soccer matches and compare the statistical properties
of these simulated matches (10,000 simulations from kickoff to the end of the
match) to real-world data, focusing on three key metrics: goals scored by the
home team (Home Goals), by the away team (Away Goals) and the difference
between the scores of each team (Goal Difference).

We compute a distance metric based on the element-wise differences to quan-
tify the similarity. Specifically, for each metric (home goals, away goals, goal dif-
ference), we calculate the absolute difference between the corresponding elements
of the predicted and expected distributions and then sum these differences. For-
mally, let [p1, p2, ..., pn] be the array representing the predicted distribution and
[e1, e2, ..., en] be the array representing the expected distribution. The distance
D calculation is formalized in Equation 1.

D =

n∑
i=1

|pi − ei| (1)

Benchmarking Results Table 3 presents the results on our benchmark.
Interestingly, we observe that the best performing MLP models (e.g., MLP

10M) according to Table 2 exhibit poor simulation capabilities despite achieving
the best performance in token prediction. Their distance scores are significantly
higher than small models, indicating a divergence between token-level accuracy
and the ability to generate realistic match outcomes. On the other hand, smaller
models exhibit the best overall simulation performance. These models show a
good balance between token-level accuracy and generative capacity. Further-
more, the results suggest that, in some cases, earlier training epochs can yield
better simulation results than later epochs. This might be because earlier epochs
retain more “uncertainty” or stochasticity in their predictions, which can be ben-
eficial for generating diverse and realistic sequences of events.
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Table 3. The simulation error of MLP models at their best epochs. The error is
measured as the distance between simulated and actual soccer match outcomes. Lower
distances indicate better simulation accuracy, reflecting a closer alignment.

Goal Delta Home Goal Away Goal Total
Model Epoch Distance Distance Distance Distance

MLP 100k 3 0.081 0.057 0.050 0.188

MLP 300k 3 0.076 0.022 0.067 0.165

MLP 1M 1 0.061 0.082 0.034 0.177
2 0.088 0.045 0.136 0.269

MLP 3M 3 0.067 0.079 0.084 0.230

MLP 10M 1 0.117 0.354 0.322 0.793

Figure 4 visualizes the distribution of goal differences for real matches and
compares it to the simulated distributions. We observe a close alignment be-
tween almost all distributions, indicating that any model can generate realistic
simulations of events in soccer matches.
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Fig. 4. Comparison of goal difference distributions between real matches and MLP
simulations across different epochs (in order epoch 1, 2, 3, and 4). Each bar represents
the number of simulations ending with the respective goal difference.

5 Applications of Large Events Models

The potential of LEMs lies in their broad applicability to various problems in
soccer analytics. This section demonstrates applications, showcasing how LEMs
can provide novel insights. All applications presented here utilize the MLP 100k
model, the smallest fully-trained model introduced in this paper. These examples
demonstrate that even a relatively small LEM can offer significant value.

5.1 Measuring Performance

Estimating Shot Efficiency While xG models have become common in foot-
ball analytics, they primarily focus on a single aspect of the shot. LEMs offer a
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more granular approach, allowing us to analyze more aspects of shots, like the
shot efficiency. This metric assesses how effectively players convert their involve-
ment in the game into shots taken, providing a complementary perspective to
traditional expected goals analysis.

We mask the e and subsequent variables (x, y, t, and a) to estimate the
probability of each event being a shot. By attributing this probability to each
event, we calculate the chance of each event being a shot. Note that no fine-
tuning is required in this approach. We are using the simulator to ask, "What
is the probability that this situation leads to a shot?" for all actions in a soccer
match. The answer contains a probability calculated using the average behaviors
of our training set. To measure the behavior of specific players, we aggregate the
probabilities across all events where the player was involved and compare it with
the actual number of shots taken. These results are presented in Table 4, which
analyzes individual player shot efficiency, contrasting the expected shot count
with the actual shots taken during the 2023/24 Portuguese First League season.
Jota Silva and Pedro Gonçalves exhibit the most significant positive deviations,
with a delta of +35.38 and +32.97, suggesting an exceptionally high propensity
to take shots. Similarly, V. Gyökeres takes approximately 16 more shots than
anticipated, which is particularly noteworthy given his high line for expected
shots. In opposition, players such as Pepê Aquino and João Mário have negative
deltas of -11.34 and -13.01, respectively. This could indicate a more selective
approach to shooting, possibly prioritizing higher-quality opportunities or re-
flecting a tendency to opt for passes or dribbles over shots in certain situations.
It may also be associated with a lack of confidence in their finishing abilities.

Table 4. Player shot data for the 2023/24 season of the Portuguese First League. The
delta column represents the difference between actual shots taken and the expected
number of shots based on LEM predictions. A positive delta (highlighted in blue) sug-
gests a player is taking more shots than expected, given their involvement in the game,
potentially indicating a shoot-first mentality. Conversely, a negative delta (highlighted
in red) could suggest a more hesitant approach to shooting.

Team Name Player Name Expected Shots # Shots Delta

Sporting CP V. Gyökeres 86.18 102 15.82
Porto Francisco Conceição 70.70 76 5.30

Benfica Rafa Silva 66.34 83 16.66
Benfica Á. Di María 65.00 92 27.00

Porto Pepê Aquino 62.34 51 -11.34
Porto Galeno 56.20 75 18.80

Vitória Guimarães Jota Silva 55.62 91 35.38
Sporting CP Pedro Gonçalves 54.03 87 32.97

Benfica João Mário 54.01 41 -13.01
Vízela S. Essende 51.81 76 24.19
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Quantifying Accumulated Pass Risk Traditional pass accuracy metrics of-
ten fail to capture the true value of a player’s passing ability. A player can achieve
high pass accuracy by playing safe passes in his half that contribute little to ad-
vancing the team’s attack. Metrics like ball possession have been criticized as
poor indicators of proactive or effective play.

LEMs offer a way to quantify pass risk by estimating the probability of success
for each pass based on its contextual factors. This allows us to calculate a player’s
Expected Passes Completed (EPC), representing the number of passes a player
is expected to complete successfully, given the difficulty of the passes attempted.
By comparing a player’s actual completed passes to their EPC, we obtain a
more informative measure of their passing ability and risk-reward assessment
that accounts for the risk and value associated with each pass.

Table 5. EPC results for the 2023/24 season of the Portuguese First League. EPC
represents the number of passes a player is expected to complete, given the difficulty
of their attempts. Delta highlights the difference between accurate passes and EPC.

Player Name Team Name EPC Accurate Passes Delta

João Neves Benfica 1550 1688 138
A. Varela Porto 1326 1446 120

António Silva Benfica 1403 1519 116
João Mário Benfica 1279 1395 116

João Moutinho Sporting Braga 1299 1410 111
Gonçalo Inácio Sporting CP 1920 2022 102

Diogo Nascimento Vizela 1030 1132 102
N. Otamendi Benfica 1456 1555 99

F. Aursnes Benfica 1346 1440 94
O. Diomandé Sporting CP 1425 1513 88

Table 5 presents the EPC and delta for players in the 2023/24 Portuguese
League season. Players in this table consistently exceed their EPC, indicating
they are completing more passes than expected for the risk they are taking. For
instance, João Neves of Benfica has a delta of +138, demonstrating his ability
to successfully execute passes on a risk-adjusted basis. The metric offers a more
nuanced and insightful approach to evaluating passing performance, highlighting
players who effectively balance risk and reward in their passing game.

5.2 Game Simulation

As introduced in the original proposal [11], a key application of LEMs is the
simulation of soccer matches. We distinguish between two primary types of sim-
ulations: short-term and long-term. Short-term simulations focus on predicting
events within a limited horizon, such as forecasting the likelihood of a goal within
the following ten events. Conversely, long-term simulations aim to model an en-
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tire match from a specific point until its conclusion, enabling the estimation of
match outcomes like the final score or the probability of a win.

Short-term Short-term simulations allow for a granular analysis of game dy-
namics by predicting the immediate consequences of specific in-game situations.
At the most basic level, we can simulate a single subsequent event to understand
the likely progression of play. By simulating the specified number of subsequent
events numerous times and calculating the percentage of simulations in which
a goal was scored, we can calculate the probability of a goal in the short term.
Figure 5 demonstrates this capability by visualizing the short-term goal-scoring
probability throughout a match. Note that these probabilities are crucial for
action valuation methods such as VAEP [4].

Short-term scoring chance (k=10) in the game Porto 5 - 0 Benfica
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Fig. 5. Short-term probability forecasting, i.e., the chance of scoring within 10 events
during the Porto - Benfica, 5 - 0, March 3, 2024.

Long-term LEMs can simulate full matches by iteratively feeding the model’s
output as input, allowing it to generate the next event in the sequence until a
terminal state (e.g., the end of the match or a certain number of events). This
opens a wide range of analytical possibilities. The generated event sequences
are fully compatible with existing event data analysis workflows, provided they
operate within the feature space encompassed by LEMs. A key application of
long-term simulations is the real-time estimation of match outcome probabilities.
In Figure 6, we present examples of such estimations for three different matches.
For each game, we initialized 10,000 simulations from each event. Each point in
the plot represents the probability of each outcome at the time of each event.

6 Conclusion

We introduced a unified LEM framework that advances soccer analytics by
replacing the original chain-of-classifiers approach with a tabular autoregres-
sive model. Our framework delivers superior predictive accuracy and simulation
quality. Key findings show that our unified LEM not only outperforms its pre-
decessor in event prediction and simulation fidelity but also achieves an optimal
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Long-term result probability in the game Vitória Guimarães 2 - 3 Sporting Braga
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Fig. 6. Real-time long-term probabilities of home, draw, and away win outcomes for a
selection of matches, generated using long-term simulations with LEMs. Vertical lines
indicate the timing of goals. Vitória Guimarães - Sporting Braga, 2 - 3, May 11, 2024.

balance of performance and computational efficiency. The versatility of this ap-
proach shines through its practical applications, enabling real-time match out-
come prediction, detailed player performance analysis and game simulations. By
addressing previous limitations like synchronization and scalability with a sin-
gle, flexible model, the unified LEM lays a robust foundation for the future of
soccer analytics. Its adaptability suggests potential applications beyond soccer,
extending to other sports or sequential event-driven domains. Future research on
transformer-based architectures for further performance gains, and developing
fine-tuning techniques to tailor the model to specific tasks or teams will increase
the use cases of LEMs even more. This work marks a significant step forward in
creating scalable, impactful tools for data-driven sports analysis.
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