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Abstract. Subclinical mastitis (SCM) in dairy sheep is a significant
challenge in the agricultural and veterinary sectors, leading to substan-
tial financial losses for farmers and negatively impacting overall dairy
sheep productivity. It often goes unnoticed due to the absence of clin-
ical signs, making early diagnosis particularly difficult. However, early
identification of SCM is critical, as it allows for timely intervention that
can prevent disease progression, reduce economic losses, and minimize
the need for costly treatments. This work focuses on detecting SCM
in dairy sheep using a non-invasive thermal imaging approach. A ma-
jor limitation in this field is the lack of available datasets, as acquiring
such data presents several challenges. Capturing clear thermal images of
dairy sheep udders is hindered by factors such as animal movement, en-
vironmental conditions, and variability in breed, health, and udder size.
Furthermore, large, diverse sample sizes are required, making data ac-
quisition resource-intensive. Ethical concerns regarding animal welfare
and the high cost of thermal imaging equipment add to the complexity.
These challenges hinder the use of data-driven techniques, such as deep
learning models, which require large datasets. In this paper, our con-
tributions are two-fold: first, we introduce a novel dataset, TIDS, along
with an explanatory analysis supported by domain expertise. Second, we
apply deep learning models to detect SCM in dairy sheep and provide a
comprehensive methodology, marking a novel approach in this area.

Keywords: Subclinical Mastitis, Thermal Images, Convolutional Neu-
ral Networks, Deep Learning

1 Introduction

Mastitis is defined as inflammation of varying degrees of severity of the mam-
mary gland, and constitutes a crucial pathological condition for dairy ruminants,
including lactating ewes [1,2,3]. The two primary types of mastitis encountered
are clinical and subclinical. Clinical mastitis has symptoms that can be perceived
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macroscopically during clinical examination of the animal and/or is associated
with alteration, visible with the naked eye, in the characteristics of the milk. It
is severe and requires treatment. However, the majority of cases encountered in
sheep belong to the subclinical type of the disease, where there are no visible
symptoms or observable changes in the macroscopic characteristics of the ob-
tained milk [1,4]. However, inflammation and histological lesions are present [5].
Therefore, in animals with SCM, a decrease in the milk production, milk yield,
and cheese-making properties is documented.

Moreover, the prevalence of the disease in dairy flocks is estimated at 5-30%,
or even more [4,6]. Through this considerable reduction in productivity and
quality, significant economic losses are caused in sheep farms worldwide [7,8,9],
while animal welfare concerns are also considerable [3,10]. Finally, public health
and food safety concerns regarding SCM are not negligible, since pathogens with
zoonotic potential are regularly implicated in SCM cases and the production of
enterotoxins in milk is possible [4,11].

Identification of SCM is challenging, due to the total absence of any de-
tectable clinical changes and requires specific tests in milk. As a result, it is
regularly underdiagnosed. The tool currently utilized most for screening is the es-
timation of somatic cell count in milk using the California Mastitis Test (CMT).
However, the gold standard for identification of the etiologic agents of SCM,
which are usually bacteria, is aerobic culture. This approach has certain limita-
tions and requirements, mostly regarding cost and time. Therefore, evaluation
and establishment of new fast and non-invasive diagnostic tools is considered
beneficial [1,2].

Infrared thermography (IRT) is a technology with numerous potential appli-
cations in both human and veterinary medicine, since it provides real-time and
non-invasive measurements of body temperature through converting infrared ra-
diation emitted by the heat source into respective pixel intensity [12,13]. Promis-
ing implementations have been described in literature and adopted in various
medical fields, that mainly concern its evaluation as a diagnostic tool through
the detection of increased temperature values, as a result of pyrexia or localized
inflammation in variable pathological conditions [14]. Similarly, in veterinary
medicine, infrared thermography has been investigated for the detection of body
temperature variations of the examined animals, with promising results in vari-
ous fields, like bovine mastitis [12]. Besides, in mastitis, inflammatory processes
occurring in the mammary gland increase the udder’s inner and surface tem-
peratures [13,15]. This allows for the employment of IRT for the detection of
these variations, even in cases of SCM [15,16,17]. In that regard, it has also been
examined in ovine mastitis with promising results [18,19,20,21], but current data
are rather limited yet.

Deep learning has been applied to predictive tasks using IRT [22]. Specifically,
computer vision-based learning models analyze patterns in thermal images to
classify them accordingly. However, in our study of thermal imaging for SCM
detection in dairy sheep, several challenges arise. To the best of our knowledge, no
publicly available datasets exist for training and testing deep learning models in
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this domain. Consequently, there is also a lack of related research leveraging deep
learning for SCM prediction in dairy sheep. This leads to our central research
question: “Can we develop a high-quality thermal image dataset with input from
domain experts to enable the creation of effective deep learning models?”.

To address this question, we collected thermal images from 16 dairy sheep
farms and carried out extensive manual work to classify the images as healthy
or affected by SCM, using somatic cell count (SCC) measurements conducted
in laboratories. The dataset was carefully curated, and various preprocessing
steps were performed to ensure compatibility with our deep learning models.
Since this dataset is newly introduced, we also conducted an exploratory analysis
with domain experts to extract relevant features. This analysis highlighted the
challenges of addressing the classification problem using statistical or traditional
machine learning approaches. Finally, several deep learning models were applied
as baselines for evaluation. Our results are promising, while the dataset also
presents several challenges that the research community can further explore.

Figure 1 provides an overview of the workflow presented in this paper. Specif-
ically, we first collected thermal images and milk samples from sheep farms to
construct the TIDS dataset. This dataset was then used both for in-depth anal-
ysis and for training and evaluating classification models using machine learning
and deep learning techniques.

Classification

Healthy
SCM

Thermal Imaging

Milk Samples - Annotation

Dataset Model Training

Fig. 1. Schematic overview of the creation of TIDS, combining thermal images and
annotated milk samples to support the classification of healthy and SCM cases.

The remainder of this paper is organized as follows. Section 2 provides a
detailed description of the dataset, including the acquisition process conducted
by domain experts, the preprocessing steps required for data preparation, and
the exploratory analysis. Section 3 outlines the baseline models used and the
learning process and presents the results along with a discussion of key findings.
Section 4 reviews related work, Section 5 discusses the results in detail, and
Section 6 concludes the paper with suggestions for future research.
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2 The Dataset

In this section, we introduce the TIDS (Thermal Imaging Dataset for Subclin-
ical Mastitis in Dairy Sheep)3. We first outline the dataset acquisition process,
detailing the camera used, its settings, the selected farms, and the criteria for
image collection. Next, we describe the preprocessing steps applied to prepare
the images for classification. Given that this dataset is newly introduced, we also
conducted an exploratory analysis to examine key statistical insights related to
SCM. With guidance from domain experts, we defined relevant features and
trained various machine learning classifiers on the features produced.

2.1 Acquisition

Farms and animals included in this study A total of 16 dairy sheep farms
located in central Greece were selected for this study according to the following
criteria: breeding Lacaune sheep (crossbred or purebred), having an automatic
milking system, documentation and availability of detailed history of every previ-
ous pathological condition and treatment of the selected animals, and vaccination
for contagious agalactia. All ewes were examined prior to the sampling by the
same experienced personnel, to ensure that they are phenotypically healthy, free
of clinical mastitis and other systemic diseases. Moreover, to achieve uniformity
regarding the lactation stage and reduce its effect in the obtained results, each
selected animal was between the 2nd and the 4th month of its lactation period
at the moment of the sampling. The number of animals included from each farm
ranged from 25 to 66.

Collection of milk samples A single visit was carried out to each farm and
milk samples were collected during routine morning milking. All the relevant
procedures were carried out according to the guidelines provided by the Na-
tional Mastitis Council. In particular, pledgets and 70% ethyl alcohol solution
were used to thoroughly scrub both teats of each udder. Initially, CMT was per-
formed. The first three streams were discarded, and then the necessary quantity
of milk was added to the paddle disc for the test. Subsequently, two sterile vials
with preservative (0.1 g sodium azide, Merck KGaA, Darmstadt, Germany) were
aseptically filled with approximately 40 mL of milk for the SCC test with Lac-
toscan SCC counter. Each vial was labeled with the date, animal code, and side
of the udder half and milk samples were transported to the laboratory within
two hours. All the procedures mentioned above were performed by the same
experienced personnel to reduce the subjectivity of CMT assessment and ensure
similar sampling conditions.

Thermal Imaging Thermal images were received from each animal, just before
obtaining milk samples, using a FLIR E96 24◦ camera (Teledyne FLIR LLC.,
3 The dataset can be accessed at https://doi.org/10.5281/zenodo.15619247

https://doi.org/10.5281/zenodo.15619247
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Fig. 2. Thermal imaging examples showing paired full and cropped ROI images. Sam-
ples 1-2 (columns 1-2) are healthy, while Sample 3 (column 3) is affected by SCM. Top
row shows full thermal images, bottom row shows corresponding cropped regions of
interest. Thermal intensity is displayed with white indicating higher temperatures and
black indicating lower temperatures.

Wilsonville, OR, USA). Initially, environmental conditions (temperature and
humidity) were recorded using a COMET U3120 Datalogger (COMET SYSTEM
s.r.o., Roznov pod Radhostem, Czech Republic) and the obtained measurements
were evaluated in the corresponding camera settings fields. Emissivity was set to
0.98. Then, images were taken at a distance of 70 cm from the posterior surface
of the udder. All procedures were carried out before milking and in the milking
parlor to avoid the effects of climatic conditions (wind, rain, etc.). Examples of
thermal images are shown in Figure 2.

Somatic Cell Count 4 A direct fluorescent image low-magnification micro-
scopic recognition method was utilized for the SCC, using a LACTOSCAN SCC
counter and the compatible kit, according to the guidelines provided by the man-
ufacturer (Milkotronic Ltd., Nova Zagora, Bulgaria). This technique enables the
detection and quantification of somatic cells in milk by fluorescent staining of
cellular DNA, followed by low-magnification microscopic recognition, providing
a rapid and reliable assessment of udder inflammation, while it has been previ-
ously employed in dairy sheep [23], demonstrating reliability for SCM detection.
4 the number of somatic cells found in a millilitre of milk
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Before the test, milk samples were heated to 40◦C using a water bath, cooled
to 20◦C and vortexed for 15-20 sec to distribute fat uniformly. Then each milk
sample was diluted with water at a ratio of 1:1 ratio immediately before testing,
as recommended by the manufacturer, since ovine milk typically contains >5%
fat. A quantity of 100µl of the diluted samples was inoculated in microtubes
containing SOFIA GREEN lyophilized dye and they were vortexed for approxi-
mately 10 sec. Subsequently, 8µl were received from the microtubes and added
in a predefined chamber of a four-chamber disposable chip that was inserted in
the analyzer. All udder halves were classified in five categories according to the
number of somatic cells per ml of the respective milk sample (1: <250,000; 2:
250,000–500,000; 3: 500,000–1,500,000; 4: 1,500,000–5,000,000; 5: >5,000,000),
based on the results obtained from the Lactoscan SCC counter. Thresholds sug-
gested in literature for discrimination of subclinical mastitis from healthy udder
halves[1,4,24] and the empirical SCC ranges corresponding to positive CMT re-
sults were used in this categorization, to further classify SCM cases according
to the severity of the inflammation process. All samples of the categories 3, 4
and 5 were defined as SCM-positive, while samples of the categories 1 and 2,
as healthy. The classification was performed at the udder half level; however,
for the purposes of model development and evaluation, the health status was
assigned at the animal level. Specifically, animals with at least one udder half
classified as category 3, 4, or 5 were labeled as SCM, while animals with both
udder halves in categories 1 or 2 were considered healthy. All animals included
in the analysis had high-quality thermal images with clear visibility of the udder
surface, ensuring consistent input quality across cases.

2.2 Preprocessing

The dataset consists of 418 thermal images, each corresponding to a different
dairy sheep - 207 images from sheep affected by SCM and 211 from healthy sheep.
The dataset was further preprocessed, as this is a crucial step in training deep
learning models to enhance their generalization ability and robustness. A number
of preprocessing steps taken are explained, alongside various transformations
meant to help the model given the limited amount of samples.

The udder region was manually cropped from each thermal image to remove
irrelevant areas outside the region of interest. The cropped images were then
resized to 224 x 224 pixels to standardize input dimensions for further processing.
Resizing was performed by adjusting the largest dimension to 224 pixels while
maintaining the original aspect ratio. In experiments involving deep learning,
padding was then applied as necessary to achieve the final square dimensions.
Figure 2 shows some examples before and after cropping.

2.3 Exploratory analysis

Thermal imaging analysis for SCM detection has received limited attention in
the literature. Exploratory data analysis was performed to examine the patterns
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and characteristics in the thermal data, which can support the later development
of predictive models.

Feature Extraction Key features for thermal image classification were iden-
tified through a comprehensive review of relevant literature. A set of features
was extracted, encompassing statistical measures such as average (mean) tem-
perature, maximum (hottest) temperature, and temperature variation (standard
deviation) within the thermal image. To better understand how temperatures are
spread out in the thermal image, percentiles (25th, 50th, and 75th) were used,
along with the interquartile range (IQR), which shows the range where most
temperatures fall. The difference between the highest and lowest temperatures
(maximum and minimum intensity) was also measured to show the full range
of temperature variation in the area. Shape characteristics were described using
skewness and kurtosis, which provide insight into the asymmetry and peakedness
of the temperature distribution, respectively. Information entropy was calculated
to assess the complexity and variability of the pixel intensity patterns, with
higher values indicating more diverse temperature distributions. Morphological
features were derived by applying image erosion, and the mean pixel value of
the eroded images was used to capture the structural characteristics and spatial
distribution of high-temperature regions.

Although it might appear self-evident that feature distributions differ be-
tween healthy and affected udders, Mann-Whitney U tests were employed to
rigorously quantify these differences. Significant differences (p < 0.05) were ob-
served in mean and percentile intensities, IQR, skewness, kurtosis, and eroded
mean, indicating that these features capture meaningful physiological variations
and serve as effective discriminators. In contrast, standard deviation, tempera-
ture range difference, and entropy did not show significant differences, suggesting
limited discriminatory power when considered individually.

Figure 35 illustrates the distributions of several image-derived features across
healthy and mastitis-affected groups. The mean intensity for healthy samples
shows a bimodal distribution, suggesting possible subgroups within the class,
while the mastitis group is more unimodal and shifted toward lower values. The
percentile features (25th, 50th, and 75th) consistently exhibit leftward shifts in
the mastitis group, reflecting reduced thermal intensity. All percentile histograms
show sharply peaked central bins, likely due to value rounding or discrete mea-
surement effects. The IQR distribution is narrower and more concentrated in
healthy samples, whereas mastitis samples show higher variability and a long
tail. In terms of shape, skewness is more negative in healthy samples, while kur-
tosis is slightly higher, indicating heavier tails. Both features again show pro-

5 The histograms generated using Seaborn’s [25] histplot function with the default
binning strategy (bins=’auto’). This method automatically determines the number
and width of bins based on the data distribution, optimizing the balance between
resolution and smoothness. This adaptive binning allows each feature’s histogram to
best represent the underlying data characteristics without manual bin width speci-
fication.
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nounced central peaks, indicating non-Gaussian behavior. The eroded mean is
higher in healthy cases and displays more symmetry, while mastitis samples show
a slight leftward skew. Temperature range difference is heavily right-skewed with
a dominating spike near 1.0 for both groups, suggesting a ceiling effect. Entropy
is tightly distributed around 6.5–7.0 with little variation, but mastitis samples
trend slightly lower.

Fig. 3. Distribution of the Features for Healthy and SCM-Affected Udders. Histograms
show the count distribution for each feature, with separate distributions for healthy
and mastitis cases

Finally, the standard deviation of intensity is among the most normally dis-
tributed features, with healthy samples slightly more peaked and centered. These
patterns highlight not only differences between the two classes but also the non-
normal and often discretized nature of several features, which has implications
for statistical modeling and classifier choice.

Classification Various machine learning models were trained and optimized.
The dataset (418 thermal images) is split into training and testing sets using
an 80-20 split. We excluded temperature range difference feature from the set
of features, since we observed extremely low variance across both healthy and
mastitis samples. Feature scaling is applied using z-score normalization to stan-
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Table 1. Best Parameters for Different Models

Model Best Parameters

SVM C: 1, Gamma: 0.01, Kernel: RBF
XGBoost Learning Rate: 0.1, Max Depth: 4, Estimators: 300
Logistic Regression C: 0.01, Penalty: L2
Random Forest Max Depth: 5, Min Split: 5, Estimators: 200
KNN Neighbors: 9, Weights: Uniform
Gradient Boosting Learning Rate: 0.2, Max Depth: 5, Estimators: 300
AdaBoost Learning Rate: 0.01, Estimators: 200

dardize the features, which is critical for models sensitive to input scale, such as
SVM and K-Nearest Neighbors (KNN).

Hyperparameter tuning is performed for each model with a grid search in a
5-fold cross-validation manner in the training set. The models evaluated include
SVM, XGBoost, Logistic Regression, Random Forest, KNN, Gradient Boosting,
AdaBoost, Naive Bayes and Linear Discriminant Analysis (LDA). Most of these
models were implemented using the scikit-learn library6, a widely used Python
toolkit for machine learning that provides efficient and user-friendly tools for
model training, evaluation, and validation. The XGBoost model was integrated
separately using its dedicated Python package due to its specialized implementa-
tion for gradient boosting7. For each model, a predefined grid of hyperparameters
is explored to identify the optimal configuration. The best hyperparameters are
used to train the final models, and predictions are made on the test set.

For the models where parameter tuning was conducted the best performing
parameters found are presented in Table 1.

The resulting classification performance metrics for each model are presented
in Table 2. Accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
.

The F1 score is the harmonic mean of precision and recall:

F1 = 2× Precision × Recall
Precision + Recall

,

where precision and recall are given by

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

Here, TP , TN , FP , and FN denote true positives, true negatives, false pos-
itives, and false negatives, respectively. All metrics were calculated using the
default classification threshold of 0.5 on predicted probabilities. Feature impor-
tance analysis revealed that entropy, skewness, 25th percentile and Kurtosis were
the most significant features for the model’s predictive performance.
6 https://scikit-learn.org/
7 https://pypi.org/project/xgboost/

https://scikit-learn.org/
https://pypi.org/project/xgboost/
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Table 2. Performance metrics for different models. The highest F1-score is shown in
bold.

Model F1 Score Precision Recall Accuracy

SVM 0.5823 0.6571 0.5227 0.6071
XGBoost 0.7010 0.6415 0.7727 0.6548
Logistic Regression 0.5526 0.6562 0.4773 0.5952
Random Forest 0.6667 0.6744 0.6591 0.6548
KNN 0.5600 0.6774 0.4773 0.6071
Gradient Boosting 0.6875 0.6346 0.7500 0.6429
AdaBoost 0.6990 0.6102 0.8182 0.6310
Naive Bayes 0.5789 0.6875 0.5000 0.6190
LDA 0.5385 0.6176 0.4773 0.5714

The feature importance of models which support their identification are
shown in Table 3. The feature importance analysis reveals that skewness and
entropy are consistently among the top three most important features across
all models, highlighting their strong predictive power for SCM detection. No-
tably, AdaBoost places an exceptionally high importance on skewness (0.5129),
making it the most dominant feature in any model. Feature importance analysis
indicates that statistical properties such as skewness and entropy tend to have
higher importance scores compared to other features, suggesting a relatively
greater influence on the models’ predictions.

Table 3. Top 3 Most Important Features for Each Model with Importance Scores

Model Feature Importance Score
Skewness 0.1111

XGBoost Entropy 0.1072
25th Percentile 0.1040
Skewness 0.1324

Random Forest Entropy 0.1205
Kurtosis 0.1060
Entropy 0.2168

Gradient Boosting Skewness 0.1509
Kurtosis 0.1272
Skewness 0.5129

AdaBoost Entropy 0.2965
25th Percentile 0.1907
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3 Experimental Design and Results

3.1 Baseline Models

As baselines to this dataset we used the ResNet-18 [26], DenseNet-121 [27] and
EfficientNet B0 [28]. These models are widely used and have demonstrated strong
generalization across a variety of vision tasks [29,30,31]. They present an excel-
lent balance between computational efficiency, accuracy, and implementation
simplicity. They have extensive pretrained weights and stable implementations
available in libraries like PyTorch [32] and TensorFlow [33], which is especially
useful in small-data regimes. The models, pretrained on ImageNet, were used
with their original classification heads replaced by a binary classification head.
Due to the small sample size only the final layers were finetuned. The dataset
was split into training, validation, and test sets in a 60-20-20 ratio. The train-
ing set was used for model optimization, the validation set for hyperparameter
tuning and model selection, and the test set for final performance evaluation.

To augment the dataset and improve the model’s generalization ability, a
series of transformations were applied. First, a random horizontal flip was used
with a probability of 50%, enabling the model to become invariant to horizontal
orientations. A small random rotation, within a range of ±10 degrees, was ap-
plied to help the model handle minor variations in object orientation without ex-
cessive distortion. Additionally, a random affine transformation was performed,
translating the image by up to 10% of its width and height in both directions.
This introduced slight shifts in object position, enhancing the model’s robust-
ness to positional changes. A random resized crop was also employed, where the
image was cropped to between 80% and 100% of its original size, ensuring that
the model could adapt to different object scales. Finally, a mild Gaussian blur
with a kernel size of 5 and a random sigma value between 0.1 and 3.0 was ap-
plied to simulate varying focus levels, while maintaining sufficient image clarity.
These transformations collectively increased the diversity of the dataset, aiding
in the development of a more robust model capable of handling variations in
orientation, position, scale, and focus.

The hyperparameter search space for the optimization process was tuned
using Optuna [34]. Each model was trained with the Tree-structured Parzen
Estimator (TPE) search algorithm executed for 50 trials. The optimization tar-
get set is the maximization of validation F1-score. To accommodate the specific
challenges of training on a small dataset, we carefully defined the search space to
include both core training parameters and regularization strategies. The learning
rate, a parameter controlling update magnitude during training, was logarith-
mically sampled between 1e-5 and 1e-2. This wide range was chosen to allow
exploration from cautious to aggressive updates, particularly important when
fine-tuning on small datasets where large updates can easily lead to overfitting
or instability. For batch size, we explored discrete values (16, 32, 64) to bal-
ance between training stability (smaller batches) and computational efficiency
(larger batches). We tested both Adam and SGD optimizers. Adam offers adap-
tive learning rates and typically converges faster, while SGD provides a useful



12 G. Botsoglou et al.

Table 4. Optimal training parameters for each model

Model Optimizer Learning Rate Weight Decay Batch Size Dropout

ResNet-18 SGD 2.60e-4 (FC), 7.79e-4 (Conv.) 1.30e-3 32 0.06
DenseNet-121 Adam 8.5e-4 2.9e-4 16 0.13
EfficientNet B0 SGD 8.98e-4 (FC), 2.15e-5 (Conv.) 4.68e-3 16 0.40

contrast in update dynamics and is known for strong generalization in some con-
texts. Weight decay—a form of L2 regularization—was sampled from a log scale
between 1e-5 and 1e-2. It helps prevent overfitting by penalizing large weights,
which is useful in settings with limited data. We also varied the number of
unfrozen layers (1 or 3) to control the degree of fine-tuning. Unfreezing more
layers allows the model to adapt more to the new data, but increases overfit-
ting risk—especially in data-scarce scenarios. Finally, dropout rates between 0.0
and 0.5 were explored as a regularization method to improve generalization. For
each run, binary cross-entropy loss was the optimization target and F1-score was
monitored per epoch for train and validation sets. Experiments were set to run
for 100 epochs with early stopping set, having a patience of 20 epochs.

The best-performing configuration for each architecture involved different
fine-tuning strategies. For ResNet-18, unfreezing the final convolutional layer
along with the fully connected layer resulted in the highest validation perfor-
mance. For DenseNet-121, optimal results were achieved by training only the
fully connected layer. In the case of EfficientNet B0, unfreezing just the last
convolutional layer led to the best generalization. Table 4 presents the optimal
parameters for each model.

3.2 Results

The hyperparameter optimization (Table 4) revealed architecture-specific prefer-
ences: DenseNet-121 favored the adaptive learning of Adam, while ResNet-18 and
EfficientNet-B0 benefited from SGD’s fine-grained control. Notably, EfficientNet-
B0 required a markedly lower learning rate for its convolutional layers (2.15e-5)
compared to its FC layer (8.98e-4), highlighting the importance of preserving
pretrained feature extractors while adapting task-specific heads.

The experimental results offer a baseline for the novel dataset provided.
DenseNet-121 achieved the highest overall performance, with an F1-score of
0.6575 and accuracy of 63.77%. Its precision was 63.16%, and recall was 68.57%.
EfficientNet-B0 exhibited the highest recall 74.29%, indicating superior sensitiv-
ity to positive cases, but suffered from lower precision 56.52%, reflecting a higher
rate of false positives. ResNet-18 delivered intermediate results, with moderate
precision 56.82% and the lowest accuracy 57.97% among the models.

The moderate performance ceiling (best F1 < 0.66) likely reflects fundamen-
tal challenges in SCM detection.
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Table 5. Comparison of Model Performance Metrics

Model F1 Score Precision Recall Accuracy

ResNet-18 0.6329 0.5682 0.7143 0.5797
DenseNet-121 0.6575 0.6316 0.6857 0.6377
EfficientNet B0 0.6420 0.5652 0.7429 0.5797

4 Related Work

Subclinical mastitis detection is crucial in livestock management. IRT offers a
non-invasive method by detecting udder temperature changes indicative of in-
flammation [35,36].

Early studies showed strong correlations between udder skin surface temper-
ature (SST) and CMT scores in cows [16]. Subsequent research validated the
use of IRT for mastitis diagnosis in sheep [18], Girolando and Jersey cows [37],
and Holstein Friesian cows [38], demonstrating its diagnostic capabilities com-
parable to traditional methods like CMT and SCC. Studies also explored IRT’s
use in detecting E.coli-induced mastitis [39] and in various environmental con-
ditions [40,41].

Various algorithms have been designed and implemented for the automated
analysis of thermal images [42,43,44], and IRT’s utility has been extended to
dairy goats [45] and buffaloes [46]. These studies consistently highlight IRT’s
potential for early subclinical mastitis detection across species, showing strong
correlations with CMT and SCC.

A similar approach utilizing SVMs and stochastic neighbor embedding was
recently published [19]. While the results are promising, achieving 84% accuracy,
the dataset is not publicly available, and the test set is highly imbalanced.

This paper contributes a novel sheep udder thermal image dataset and a
perspective of using deep learning models for detecting SCM, establishing a
baseline for future research.

5 Discussion

The feature analysis revealed distinct thermal patterns between healthy and
SCM-affected udders. Statistically significant differences were observed in fea-
tures describing overall temperature (mean intensity) and distribution shape
(skewness, kurtosis). Features related to central tendency, such as mean inten-
sity and percentiles (25th, 50th, 75th), exhibited statistically significant differ-
ences. Standard deviation, and entropy, showed limited univariate discriminative
power though entropy’s inclusion in machine learning models training hinted at
complementary roles in combination with other features.

Among traditional machine learning models, ensemble methods such as Ad-
aBoost, XGBoost, and Random Forest demonstrated a relatively balanced per-
formance. XGboost achieved the highest F1-score (0.701) while the AdaBoost
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achieved the highest recall (0.8182) indicating stronger sensitivity to SCM cases,
though at the cost of precision (0.6102). Random Forest exhibited comparable
F1-scores (0.6667), with feature importance rankings highlighting skewness, en-
tropy, and percentile values as key contributors. Skewness, in particular, emerged
as a prominent feature across models, potentially reflecting its ability to encode
asymmetric thermal patterns linked to inflammation. Linear models, such as lo-
gistic regression, lacked in performance, likely due to their limited capacity to
model non-linear relationships in the data.

Experiments with neural networks, involving DenseNet-121, ResNet-18 and
EfficientNet-B0, resulted in lower performance compared to traditional mod-
els. DenseNet-121 achieved the highest F1-score (0.6575) and accuracy (63.77%)
among the evaluated architectures, though its performance remained slightly
lower than XGBoost. Notably, traditional machine learning models achieved
moderately higher performance compared to neural networks in this study. This
observation may reflect the advantages of handcrafted features, which incorpo-
rate domain-specific knowledge and reduce reliance on large-scale data. Neural
networks, faced limitations due to the small number of samples, which was pro-
hibitive for the effective learning of discriminative feature extraction from the
images.

The overall performance ceiling observed across all models highlights the
inherent challenges involved in detecting SCM through thermal imaging. One of
the key difficulties stems from the complex nature of the dataset itself, which
presents several factors that complicate the classification of udders as either
healthy or affected by mastitis.

Firstly, the thermal images contain various sources of noise, such as the pres-
ence of sheep hair, which can interfere with accurate temperature measurements.
These irregularities can introduce distortions in the image data, making it harder
to reliably differentiate between healthy and SCM-affected udders. Additionally,
thermal images often suffer from occlusions, where parts of the udder may be
obscured by the animal’s body or other factors, reducing the amount of visible
data available for analysis.

Furthermore, environmental conditions significantly influence the tempera-
ture of the udders, adding another layer of complexity to the task. Factors such
as ambient temperature, humidity, and sunlight can cause variations in the ther-
mal readings, making it difficult to distinguish between healthy udders and those
affected by SCM. This environmental variability introduces a degree of uncer-
tainty, as the temperature difference between a healthy and an SCM-affected
udder may be subtle and heavily influenced by external conditions.

6 Conclusions and Future Work

Detecting SCM using thermal imaging and artificial intelligence is a challenging
task due to the absence of visible clinical symptoms and the need for high sen-
sitivity and specificity in detection algorithms. Nevertheless, overcoming these
challenges is crucial, as early and accurate detection of SCM can significantly im-
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prove animal welfare, reduce economic losses in the dairy industry, and enhance
milk quality and herd health management.

This paper tackles these challenges by introducing a new, expert-validated
dataset to the research community, which, to the best of our knowledge, is the
first of its kind for dairy sheep. This makes it a significant contribution to the
field. Additionally, the paper presents initial baseline results on this dataset.
To our knowledge, no other researchers have applied deep learning for SCM
detection using thermal imaging in dairy sheep, emphasizing the novelty and
importance of this work.

In future work, we should focus on expanding the dataset by collecting more
thermal images from diverse environments and improving annotation methods
based on confirmed inflammation. Closer-range imaging could enhance resolu-
tion and detection accuracy. Exploring advanced models like Vision Transformers
and leveraging transfer learning could further improve performance, if a larger
dataset is available. Enhancing model interpretability through better visualiza-
tion techniques is also crucial. Additionally, long-term studies tracking individual
sheep could help develop predictive models, improving early detection and dis-
ease management in real-world farm settings.
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