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Abstract. Coordinated campaigns frequently exploit social media plat-
forms by artificially amplifying topics, making inauthentic trends ap-
pear organic, and misleading users into engagement. Distinguishing these
coordinated efforts from genuine public discourse remains a significant
challenge due to the sophisticated nature of such attacks. Our work fo-
cuses on detecting coordinated campaigns by modeling the problem as
a graph classification task. We leverage the recently introduced Large
Engagement Networks (LEN) dataset, which contains over 300 networks
capturing engagement patterns from both fake and authentic trends on
Twitter prior to the 2023 Turkish elections. The graphs in LEN were
constructed by collecting interactions related to campaigns that stemmed
from ephemeral astroturfing. Established graph neural networks (GNNs)
struggle to accurately classify campaign graphs, highlighting the chal-
lenges posed by LEN due to the large size of its networks. To address this,
we introduce a new graph classification method that leverages the density
of local network structures. We propose a random weighted walk (RWW)
approach in which node transitions are biased by local density measures
such as degree, core number, or truss number. These RWWs are encoded
using the Skip-gram model, producing density-aware structural embed-
dings for the nodes. Training message-passing neural networks (MPNNs)
on these density-aware embeddings yields superior results compared to
the simpler node features available in the dataset, with nearly a 12% and
5% improvement in accuracy for binary and multiclass classification, re-
spectively. Our findings demonstrate that incorporating density-aware
structural encoding with MPNNs provides a robust framework for iden-
tifying coordinated inauthentic behavior on social media networks such
as Twitter.

Keywords: Random weighted walks · Coordinated campaigns · Graph
density

1 Introduction

Social media platforms like Twitter (now X) provide a space for people to ex-
press their opinions and stay informed about trending topics. However, like other
social media platforms, Twitter is vulnerable to manipulation by malicious ac-
tors. These actors often engage in coordinated attacks that artificially amplify
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trends using fake accounts and bots. They can operate in a synchronized manner
while concealing their identities, misleading users, journalists, and policymakers
about what is genuinely trending. Such tactics also coerce users into engaging
with fabricated trends, making it increasingly difficult to distinguish between
organic trends and those driven by manipulation. Prior research has shown that
coordinated campaigns are prevalent in several countries, including Turkey, Pak-
istan, and India [10,20,21].

Gopalakrishnan et al. [16] recently introduced a new graph classification
dataset, LEN, consisting of engagement networks including some coordinated
campaigns within Turkey’s Twitter sphere during the 2023 Turkish elections. To
identify ground-truth campaign graphs, they focus on ephemeral astroturfing, a
tactic where a coordinated network of bots rapidly generates a large volume of
tweets to manipulate Twitter’s trending list, only to delete them shortly after-
ward. In each engagement graph, nodes represent users, while edges represent
user interactions in the form of retweets, quotes, or replies.

The problem of coordinated campaign detection can be considered as a graph
classification task, making it well-suited for message-passing neural networks
(MPNNs) [18,22,36,40]. However, Gopalakrishnan et al.’s analysis using estab-
lished MPNNs highlights the challenges posed by LEN due to its large network
sizes. MPNNs are often designed for domains with significantly smaller graphs,
such as molecular structures. In contrast, LEN contains approximately ten times
more edges, on average, than typical datasets of graphs, such as ogbn-ppa, one
of the largest biological graph datasets.

Present work. In this paper, we exploit the fact that campaign-related en-
gagement graphs tend to be denser. We aim to accurately identify coordinated
campaigns using our method, called DEnsity-aware walks for COordinated cam-
paign DEtection (DECODE). We incorporate network density into node em-
beddings by leveraging node-level density properties, such as degree, core num-
ber, and truss number, using random weighted walks (RWWs). For the RWW,
we sample a new node using the current node’s density, ensuring that each node
maintains a similar local density throughout the walk. These RWWs are con-
verted to density-aware embeddings embeddings using Skipgram [26]. We then
train a message-passing neural network (MPNN) using these embeddings as in-
put features, enabling the model to leverage density awareness for improved
classification. Figure 1 provides a descriptive diagram of our framework. The
key contributions of our work can be summarized as follows:

– We leverage multiple density measures, namely degree, core numbers and
truss numbers, to distinguish campaign and non-campaign networks based
on local density.

– We introduce DECODE, which uses RWWs to encode each node such that
its embedding closely resembles those of neighboring nodes with similar den-
sities.

– We train MPNNs on the LEN dataset using the the density-aware embed-
dings to identify campaigns and their subtypes. To evaluate their effective-
ness, we compare our models with the baselines from [16].
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Fig. 1: An overview of DECODE. Density-based random weighted walk captures
the local densities around a node. This representation is then concatenated with
the input node feature available in the dataset. The concatenated embedding
is encoded using an MPNN and subsequently aggregated to form the graph
embedding, which is used for downstream classification.

The rest of the paper is structured as follows. In Section 2, we review re-
lated work, while Section 3 introduces the dataset and essential terminologies.
In Section 4, we present our methodology, including the random weighted walk
algorithm and its density-awareness encoding using degrees, core numbers, and
truss numbers. We verify and discuss the performance improvements using the
density-aware embeddings to demonstrate their importance in Section 5. Fi-
nally, we conclude by summarizing our findings and addressing potential limita-
tions and future directions in Section 6. The code for DECODE is available at
https://github.com/erdemUB/ECMLPKDD25.

2 Related Work

In this section we discuss related work in the domain of structural and positional
encoding and its relevance in MPNNs and graph transformers (Section 2.1), and
coordinated campaigns on social media platforms (Section 2.2).

2.1 Structural and Positional Encoding

Structural encoding is the process of ensuring that nodes with similar struc-
tural roles in a graph have similar embeddings. Positional encoding captures
the proximity between two nodes in a graph. Both of these encodings can be

https://github.com/erdemUB/ECMLPKDD25
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obtained using random weighted walks. In Deepwalk, random walks are gener-
ated for each node [30]. These walks are converted to node embeddings using
Skipgram [26]. Node2Vec biases the random walks to preserve both local (BFS)
and global structure (DFS) [17]. Struct2Vec constructs similarity graphs using
time-warping as the similarity function [33]. Random-walks are performed on
the similarity graphs to generate node embeddings. Modularized non-negative
matrix factorization (M-NMF) preserves community structure by using a com-
munity embedding matrix and community modularity score in addition to ran-
dom walk embeddings [38]. Random walk features have also been used to improve
structural awareness of MPNNs [43,44] and graph transformers [6,7,32]. Other
commonly used structural and positional encoding include heat kernel [13, 23],
subgraphs [3,4], shortest distance [24], and node degree centralities [41]. In this
work, we devise a new random-walk that captures the local density around nodes.

2.2 Coordinated Campaigns on Social Media

The process by which users on a social media platform coordinate in large groups
to engage in malicious behavior is known as a coordinated campaign (also known
as influence operations) [29]. These coordinated campaigns are often designed
to mislead users by disseminating misinformation or by propagating falsified
ideologies. Examples of coordinated campaigns include, using advertisements
and influencers to dominate trends [27], deploying bots to boost user popular-
ity [8,9], and state-sponsored influence operations, such as Russia’s interference
in the 2016 US elections [42] and alleged coordinated attacks by the Chinese
Communist Party to sway public opinion [19]. Our work leverages coordinated
campaigns driven by ephemeral astroturfing, where bots flood Twitter with ran-
dom tweets to bypass filters and then delete them immediately [10, 16]. Since
Twitter updates trends in windows, deleted tweets remain unaccounted for until
the next update, allowing adversaries to exploit the illusion of organic engage-
ment.

Over the years, methods have been developed to counter coordinated efforts
on Twitter. These include techniques such as tweet and hashtag similarity [25,28],
temporal methods focusing on tweet frequency [28,37], shared URLs and articles
[15], and detecting other coordination signals [12, 31, 39]. Recent approaches
have explored centrality-based node pruning on similarity networks [25], and
graph neural networks [11,15] for detecting these attacks. Our work attempts to
identify coordinated campaigns by modeling it as a graph classification problem.
Additionally, we encode density-based properties using RWWs. Incorporating
density-aware embeddings into MPNN training leads to improved performance
in classification compared to using only the raw node features from the dataset.

3 Preliminaries

In this section, we describe our dataset and the key terminologies required for
this work. We first provide details on the LEN dataset in Section 3.1. Then we
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Table 1: Statistics of the engagement networks for LEN, containing 314 networks.

Sub-types # G # nodes # edges Explanation
Max Min Avg Max Min Avg

C
am

pa
ig

n

Politics 62 50,286 100 6,570 71,704 203 10,210 Political content including slogans, and misinformation camps.
Reform 58 19,578 131 1,229 1,105,918 540 25,268 Organized movements advocating political changes.
News 24 54,996 581 10,368 80,784 942 15,582 News amplified through bot and troll activity.
Finance 14 9,976 273 1,802 10,725 243 2,334 Financial promotions, primarily cryptocurrency-related.
Noise 9 55,933 454 12,180 48,937 473 10,882 Content that does not fit into any specific category.
Cult 6 7,880 313 2,303 11,615 637 3,431 Slogans from a cult leveraging bots.
Entertainment 3 4,220 678 2,237 132,013 3,806 48,767 Celebrities using bots for self-promotion.
Common 3 9,974 3,487 5,919 9,470 2,818 7,066 Frequently used phrases forming trends organically
Overall 179 55,933 100 5,157 1,105,918 203 16,006

N
on

-C
am

pa
ig

n

News 52 95,575 818 24,834 213,444 709 43,201 Coverage of news not sourced from Twitter.
Sports 30 75,653 469 9,530 101,656 403 12,948 Discussions around major sports events.
Festival 17 119,952 885 35,466 199,305 803 55,947 Trends related to holidays, festivals, and special occasions.
Internal 11 87,720 4,188 33,061 196,103 4,374 54,442 Events primarily generated within Twitter’s ecosystem.
Common 10 64,320 1,214 17,079 99,306 1,270 24,869 Frequently used phrases forming trends organically.
Entertainment 8 20,060 1,477 7,289 45,211 1,712 12,578 Engagement with popular TV shows and online videos.
Announ. cam. 4 26,358 6,650 13,382 50,864 14,362 24,817 Officially launched political campaigns.
Sports cam. 3 4,661 2,880 3,654 7,367 4,451 5,534 Hashtags initiated by professional sports teams.
Overall 135 119,952 469 20,632 213,444 403 33,765

give a brief overview of the notation, the density metrics used (degree, k-core,
k-truss) and message passing neural networks in Section 3.2.

3.1 Large Engagement Networks (LEN) Dataset

Large Engagement Networks (LEN) is graph dataset that contains coordinated
campaigns related to Turkish Twitter. It focuses on the 2023 elections in Turkey
when this issue was prevalent. The campaign graphs in the dataset are an out-
come of ephemeral astroturfing. The dataset comprises of 314 engagement net-
works, where each network is associated to a trend. There are 179 campaign
graphs and 135 non-campaign graphs. These graphs are further divided into
sub-types such as politics, news, finance and more, as shown in Table 1. The
nodes represent users and edges represents engagements between the users. A
directed edge from node X to Y , signifies that X engaged with (retweeted,
replied to, or quoted) Y . The graphs also consist of node and edge features.
The features used for the node attributes include user description (bio), follower
count, following count, user’s total tweet count, and user’s verification status.
The edge attributes include the type of engagement (retweet, reply, or quote),
engagement count (e.g., number of retweets), impression count, text, number of
likes, whether the tweet is labeled as sensitive or not, and the timestamp of the
tweet. Gopalakrishnan et al. provides three benchmarks for the LEN dataset: (1)
binary classification to classify the networks into campaign and non-campaign
networks; (2) multi-class classification to categorize campaigns into one of the
7 sub-types as shown in Table 1; and (3) binary classification of news networks
into campaign and non-campaign. We use the LEN dataset as it is the only
ground-truth graph classification dataset that identifies if a trend’s popularity
is driven by coordinated campaigns.
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3.2 Notation, Density Metrics, and MPNNs

A graph is a collection of vertices and edges. It is depicted as G = (V,E), where
V is the number of vertices and E is the number of edges. A graph can also be
represented as G = (A,X, y), where A is the adjacency matrix, X is the feature
matrix for the nodes, and y is the graph’s label.

Degree, k-core and k-truss: The degree of a node is the number of edges
connected to it, providing a simple measure of its local connectivity [14]. A
k-core is a subgraph in which every node has at least k connections within
the subgraph [35]. The core number of a node represents the largest k-core to
which it belongs. Computing core numbers of all the nodes in a graph has a
linear cost, O(|E|). Similarly, a k-truss is defined as a subgraph where each edge
is part of at least k − 2 triangles within the subgraph [5]. The truss number
of an edge indicates the highest k-truss to which it belongs. Computing truss
numbers is a bit costly, O(|E|1.5), but is still polynomial and practical for large
networks. Since truss numbers are edge-based, we compute a node’s truss number
by averaging the truss numbers associated to the connected edges. Degree, core
number, and truss number all measure graph density, with degree indicating
direct connections, and core and truss numbers reflecting a node’s role in dense
substructures.

We use three local density measures for a node: (1) degree of the node, (2)
core number of the node, and (3) average truss numbers of all edges incident to
the node (we simply refer them as degree, core, and truss number of a node in
the rest of the paper). Note that we ignore the edge directions in the engage-
ment networks, hence we use the original definitions of k-core and k-truss for
undirected graphs.

Message Passing Neural Networks: MPNNs consist of two steps, aggre-
gate and update, as shown in Equation 1, where N (v) is used to represent the
neighborhood of node v.

h(l+1)
v = UPDATE

(
h(l)
v , AGGREGATE

(
{h(l)

u | u ∈ N (v)}
))

(1)

In the aggregate step, each node gathers information from its neighbors.
This typically involves summing, averaging, or applying more complex functions
(e.g., attention mechanisms) to the neighbors’ feature vectors. In the update
step, the aggregated information is combined with the node’s own features to
update its representation. To do so, a neural network (example, an MLP) or a
simple transformation (example, a weighted sum) is applied. Therefore, the nodes
refine their representations based on the information received. MPNNs generally
differ in the aggregation strategy used. GCN uses dual-degree normalization to
account for the varying number of neighbors each node may have [22]. GAT uses
attention weight to assign varying weights to each neighbor [36]. GIN uses an
MLP to perform aggregation using a trainable parameter (ϵ) to determine the
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Table 2: Descriptive statistics to indicate the average degree, core number and
truss numbers of the nodes across different sub-types spanning campaign and
non-campaign graphs. Overall, campaign graphs exhibit higher local densities
than the non-campaign ones.

Sub-types Mean Degree Mean Core number Mean Truss number

C
am

pa
ig

n

Politics 3.108 ± 1.483 1.635 ± 0.872 0.384 ± 1.595
Reform 16.258 ± 12.118 9.067 ± 7.067 17.104 ± 10.545
News 3.015 ± 0.990 1.598 ± 0.481 0.172 ± 0.365
Finance 2.590 ± 1.512 1.414 ± 0.823 0.287 ± 0.977
Noise 2.080 ± 0.790 1.214 ± 0.342 0.261 ± 0.370
Cult 2.981 ± 0.690 1.580 ± 0.409 0.569 ± 0.919
Entertainment 11.477 ± 0.264 6.180 ± 0.171 2.311 ± 1.920
Common 2.391 ± 1.586 1.380 ± 0.793 0.572 ± 0.751
Overall 3.941 ± 10.459 2.120 ± 6.083 5.057 ± 7.933

N
on

-C
am

pa
ig

n

News 3.443 ± 0.845 1.778 ± 0.412 0.179 ± 0.106
Sports 2.718 ± 0.581 1.428 ± 0.242 0.155 ± 0.150
Festival 2.867 ± 0.501 1.526 ± 0.239 0.245 ± 0.157
Internal 3.293 ± 0.901 1.705 ± 0.438 0.184 ± 0.110
Common 2.913 ± 0.650 1.529 ± 0.305 0.109 ± 0.068
Entertainment 3.453 ± 0.941 1.816 ± 0.471 0.651 ± 0.491
Announced Camp. 3.711 ± 1.135 1.925 ± 0.588 1.309 ± 0.970
Sports Camp. 3.029 ± 0.191 1.590 ± 0.100 0.037 ± 0.012
Overall 3.210 ± 0.81 1.672 ± 0.387 0.219 ± 0.261

amount of importance given to the ego node, as compared to its neighbors [40].
GraphSAGE is an inductive graph representational learning model that has the
ability to generalize to unseen nodes, unlike transductive models [18]. This is
done by learning a message-passing model on a sampled set of nodes in the
given graph.

4 Methodology

We propose DECODE, a random weighted walk (RWW) approach for learning
density-aware node embeddings. Here, node densities are used to determine tran-
sition probabilities in the RWWs. This emphasis on density is because campaign
graphs in LEN are denser than non-campaign graphs. Specifically, we use degree,
core number, and truss number as density metrics due to their widespread use
and computational efficiency [2,34]. Table 2 provides detailed statistics showcas-
ing the density metrics across campaign and non-campaign graphs. Notably, the
densest campaign graphs belonged to the reform sub-type, which constitutes a
large portion of the dataset, as shown in Table 1.

Algorithm 1 provides a formal overview of DECODE. In our algorithm, ϕ
represents the density function, where ϕ(v) returns the normalized density of a
given node v. The function ϕ is defined based on the chosen density metric for



8 A.A. Gopalakrishnan et al.

Algorithm 1 Density-aware random weighted walk (DECODE)
Input: Graph G = (V,E), walk length L, density func. ϕ : V → [0, 1], threshold τ
Output: List of walks W
Initialize W ← []
for each node v ∈ V do

Initialize walk w ← [v]
for t = 1 to L do

vt = Top (w)
Let N(vt)← {u ∈ V | (vt, u) ∈ E}
if N(vt) ̸= ∅ then

if ϕ(vt) > τ then
Set wu = ϕ(u) for all u ∈ N(vt)

else
Set wu = 1− ϕ(u) for all u ∈ N(vt)

end if
Sample vt+1 ∼ P (u) = wu/

∑
u′∈N(vt)

wu′

Push vt+1 to w
end if

end for
Append w to W

end for
return W

RWWs. It can be set to return the degree, core number, or truss number of a
node.

Additionally, we introduce τ , a scalar threshold parameter that differentiates
between high and low-density nodes in RWWs. The threshold is set to one of
the following values: 0.5, the median node density in the graph, or the midpoint
of node densities, as detailed in Section 5.1. The steps for collecting RWWs in
our algorithm are as follows:

1. At each step of the RWW, the next node is selected based on the density of
the current node.

2. If the current node’s density exceeds the threshold τ , transitions to higher-
density neighbors are preferred, with sampling weights defined as (wu =
ϕ(u)), where wu represents the weight assigned to node u

3. Conversely, if the current node’s density is below τ , transitions to lower-
density neighbors are favored by inverting the sampling weights (wu = 1 −
ϕ(u)).

4. The transition probabilities for the neighbors are obtained by normalizing
the sampling weights and new nodes are sampled using them at each step.

5. Once we obtain the RWWs, we use Skipgram to encode them, following prior
methods [17,30].

These density-aware embeddings and node feature are fed into the MPNNs
for downstream classification. The MPNNs used in this paper include GCN,
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GAT, GIN, and GraphSAGE. In the following section we discuss the experimen-
tal setup used in this paper and discuss our results for binary and multiclass
classification by comparing our method to the results provided in [16].

5 Experimental Evaluation

We evaluate the performance of DECODE on the LEN dataset using two tasks:
(i) campaign vs. non-campaign classification in engagement networks (binary
classification) and (ii) campaign sub-type classification, where the sub-types are
provided in Table 1 (multi-class classification). Section 5.1 details the experi-
mental setup. Sections 5.2 and 5.3 present the experimental results for binary
and multi-class classification, respectively.

5.1 Experimental Setup

We run our model on two input configurations: (i) density-aware embeddings and
(ii) a concatenation of density-aware embeddings with the input node features
available in the dataset. We consider each of the three density-based features
in our random walks—degrees, core numbers, and truss numbers—and provide
comparisons. To contextualize the empirical results of DECODE, we compare
our method against four baselines: GCN, GAT, GIN, and GraphSAGE. These
models are trained solely on the input node features available in the dataset. This
comparison allows us to evaluate the importance of density-aware embeddings
over existing node features. To construct the RWW embeddings, we set the walk
length to 100. For encoding the nodes using Skipgram, we use a window length of
4, meaning each node is encoded using its four neighboring nodes in the random
weighted walks. The walk embedding size is set to 128. We set the threshold
parameter (τ) to the following values:

– 0.5: A fixed value of 0.5.
– Median: The median of the list of the density-based features in a graph.
– Mid-point (abbreviated as mid): This value is calculated as the aver-

age of the smallest and largest values of the density-based feature under
consideration.

For MPNNs, we perform hyperparameter tuning over hidden layer sizes, h ∈
{128, 256, 512, 1024}, and learning rates, l ∈ {0.001, 0.0001, 0.00001} as done
in [16]. We also use mean pooling to produce graph embeddings.

5.2 Results for Campaign vs Non-campaign Classification

LEN consists of 179 campaign graphs and 135 non-campaign graphs. The results
for accuracy and F1-score are presented in Tables 3 and 4, respectively. We
observe the following key insights:
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Table 3: Accuracy for binary classification. NF denotes the MPNN trained with
node features and RWW denotes the one that used random-weighted walks.
Best in each group is in bold. Underlined value denotes the best overall accuracy.

Input Degree Core Numbers Truss Numbers
τ Accuracy τ Accuracy τ Accuracy

GCN
NF - 0.702 ± 0.018 - 0.702 ± 0.018 - 0.702 ± 0.018

RWW mid 0.810 ± 0.013 0.5 0.787 ± 0.010 median 0.800 ± 0.019
NF + RWW mid 0.784 ± 0.006 median 0.805 ± 0.018 0.5 0.803 ± 0.019

GAT
NF - 0.735 ± 0.015 - 0.735 ± 0.015 - 0.735 ± 0.015

RWW median 0.795 ± 0.015 mid 0.808 ± 0.022 median 0.836 ± 0.016
NF + RWW median 0.792 ± 0.022 0.5 0.785 ± 0.010 median 0.792 ± 0.030

GIN
NF - 0.633 ± 0.065 - 0.633 ± 0.065 - 0.633 ± 0.065

RWW 0.5 0.756 ± 0.005 median 0.766 ± 0.014 0.5 0.771 ± 0.006
NF + RWW 0.5 0.751 ± 0.005 mid 0.792 ± 0.014 mid 0.782 ± 0.019

SAGE
NF - 0.729 ± 0.006 - 0.729 ± 0.006 - 0.729 ± 0.006

RWW 0.5 0.852 ± 0.010 mid 0.774 ± 0.025 0.5 0.834 ± 0.052
NF + RWW median 0.758 ± 0.010 0.5 0.790 ± 0.017 0.5 0.813 ± 0.018

Table 4: F1-score for binary classification. NF denotes the MPNN trained with
node features and RWW denotes the one that used random-weighted walks.
Best in each group is in bold. Underlined value denotes the best overall F1-
score.

Inp. Degree Core Numbers Truss Numbers
τ F1 τ F1 τ F1

GCN
NF - 0.687 ± 0.021 - 0.687 ± 0.021 - 0.687 ± 0.021

RWW mid 0.839 ± 0.004 median 0.814 ± 0.008 median 0.806 ± 0.021
NF + RWW median 0.805 ± 0.011 median 0.838 ± 0.017 0.5 0.824 ± 0.017

GAT
NF - 0.765 ± 0.018 - 0.765 ± 0.018 - 0.765 ± 0.018

RWW median 0.825 ± 0.012 mid 0.840 ± 0.015 median 0.853 ± 0.011
NF + RWW median 0.820 ± 0.020 0.5 0.824 ± 0.006 median 0.824 ± 0.030

GIN
NF - 0.710 ± 0.037 - 0.710 ± 0.037 - 0.710 ± 0.037

RWW 0.5 0.807 ± 0.005 median 0.800 ± 0.013 0.5 0.790 ± 0.003
NF + RWW mid 0.782 ± 0.006 mid 0.816 ± 0.012 mid 0.795 ± 0.019

SAGE
NF - 0.713 ± 0.008 - 0.713 ± 0.008 - 0.713 ± 0.008

RWW 0.5 0.877 ± 0.010 mid 0.789 ± 0.020 0.5 0.857 ± 0.031
NF + RWW median 0.803 ± 0.007 0.5 0.820 ± 0.016 0.5 0.834 ± 0.011

– Pairing GraphSAGE with degree-based RWW achieves the best performance,
yielding an accuracy of 0.852 ± 0.010 and an F1-score of 0.877 ± 0.010, sur-
passing the best baseline in [16] by 0.117 and 0.112 for accuracy and F1-score,
respectively. The value of τ is set to 0.5 in this case.

– RWW features consistently outperform LEN node features, achieving higher
accuracy and F1-score in most cases.

– Embeddings learnt from degree-based RWW generally outperforms other
density-aware variants, achieving the highest AUROC scores across all mod-
els. The only exception is when GCN and GraphSAGE are trained on embed-
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Fig. 2: Receiver Operating Characteristic (ROC) curves for campaign vs. non-
campaign classification for degree, core-number and truss-number based random
weighted walks. The best performing input format and threshold are taken into
consideration for each model.

dings obtained from k-core-based RWW, where the AUC scores are identical.
The results are illustrated in Figure 2.

– The best-performing threshold varies depending on the model used. Median
serves as the best threshold for GCN and GAT, while 0.5 is optimal for GIN
and GraphSAGE.

The above insights suggest that RWW based methods yield improvements in
performance for both accuracy and F1-score. Additionally, degree-based RWW
generally outperforms core or truss-based RWWs. However the choice of thresh-
old is model-dependent.

5.3 Results of Campaign-type Classification

The goal here is to classify campaign graphs into one of the seven sub-types
described in Table 1. Among these, the most common categories are Politics (62
graphs) and Reform (58 graphs). The results for accuracy and macro F1-scores
are provided in Tables 5 and 6, respectively.

From these results, the following inferences can be made:

– Pairing GIN with degree-based RWW achieves the best performance, with
an accuracy of 0.679 ± 0.001, surpassing the baseline in [16] by 0.045.

– The model accuracies benefit the most when input node features from the
dataset are combined with density-aware embeddings, outperforming all the
other setups in a majority of the scenarios.

– The best-performing thresholds are mid for GCN, 0.5 for GAT, and median
for GIN and GraphSAGE, yielding the highest accuracy for each model.

– The highest macro-F1 score obtained by our work is 0.338 ± 0.051 (for GIN
with truss-based RWW and τ set to 0.5) which is 0.013 less than the best
performing baseline provided in [16]. We believe this happens due to label
imbalance. Several campaign-type labels (example, finance, entertainment,
cult) have very few samples, making them harder to classify.
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Table 5: Accuracy results for multiclass classification. NF denotes the MPNN
trained with node features and RWW denotes the one that used random-
weighted walks. Best in each group is in bold. Underlined value denotes the
best overall accuracy.

Inp. Degree Core Numbers Truss Numbers
τ Acc. τ Acc. τ Acc.

GCN
NF - 0.533 ± 0.041 - 0.533 ± 0.041 - 0.533 ± 0.041

RWW median 0.619 ± 0.019 0.5 0.614 ± 0.011 0.5 0.628 ± 0.000
NF + RWW 0.5 0.647 ± 0.009 mid 0.665 ± 0.011 mid 0.651 ± 0.015

GAT
NF - 0.567 ± 0.033 - 0.567 ± 0.033 - 0.567 ± 0.033

RWW 0.5 0.647 ± 0.009 mid 0.670 ± 0.037 mid 0.623 ± 0.017
NF + RWW 0.5 0.628 ± 0.025 0.5 0.674 ± 0.001 mid 0.633 ± 0.027

GIN
NF - 0.633 ± 0.067 - 0.633 ± 0.067 - 0.633 ± 0.067

RWW mid 0.679 ± 0.001 median 0.647 ± 0.009 mean 0.637 ± 0.024
NF + RWW median 0.670 ± 0.009 median 0.656 ± 0.017 median 0.679 ± 0.023

SAGE
NF - 0.583 ± 0.053 - 0.583 ± 0.053 - 0.583 ± 0.053

RWW 0.5 0.637 ± 0.01 0.5 0.656 ± 0.027 median 0.660 ± 0.011
NF + RWW 0.5 0.665 ± 0.011 median 0.665 ± 0.065 median 0.651 ± 0.001

Table 6: Macro F1-score results for multiclass classification. NF denotes the
MPNN trained with node features and RWW denotes the one that used random-
weighted walks. Best in each group is in bold. Underlined values denote the best
overall Macro-F1 score.

Inp. Degree Core Numbers Truss Numbers
τ Macro-F1 τ Macro-F1 τ Macro-F1

GCN NF - 0.251 ± 0.022 - 0.251 ± 0.022 - 0.251 ± 0.022
RWW median 0.249 ± 0.009 0.5 0.247 ± 0.018 0.5 0.250 ± 0.001

NF + RWW mid 0.249 ± 0.004 mid 0.260 ± 0.007 mid 0.259 ± 0.006

GAT NF - 0.264 ± 0.014 - 0.264 ± 0.014 - 0.264 ± 0.014
RWW 0.5 0.255 ± 0.003 mid 0.298 ± 0.024 median 0.233 ± 0.006

NF + RWW mean 0.227 ± 0.01 mean 0.255 ± 0.028 median 0.247 ± 0.015

GIN NF - 0.351 ± 0.09 - 0.351 ± 0.09 - 0.351 ± 0.09
RWW 0.5 0.317 ± 0.053 mean 0.260 ± 0.003 0.5 0.272 ± 0.030

NF + RWW median 0.305 ± 0.03 0.5 0.280 ± 0.028 mid 0.338 ± 0.051

SAGE NF - 0.320 ± 0.061 - 0.320 ± 0.061 - 0.320 ± 0.061
RWW 0.5 0.266 ± 0.03 median 0.282 ± 0.025 mid 0.274 ± 0.019

NF + RWW 0.5 0.295 ± 0.011 median 0.267 ± 0.026 median 0.254 ± 0.003

– We also provide confusion matrices for the models across various RWW
methods in Figure 3, where we display the confusion matrix for the best-
performing configuration of each model-RWW pair. From this, we again
observe that models struggle to accurately classify labels with fewer graphs.

The insights above suggest that RWW-based methods improve performance
in terms of accuracy. Additionally, we find that degree is an effective parameter
for random weighted walks, and the median is a suitable threshold. However,
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Fig. 3: Confusion matrices for multi-class classification. The best performing con-
figuration is considered for each model and density pair is displayed here.

we observe a drop in F1-scores, likely due to the models’ difficulty in classifying
graphs associated with labels that have fewer samples.

6 Conclusion

We propose DECODE, a density-based random weighted walk (RWW) approach
that leverages local density metrics such as degree, core number, and truss num-
ber to detect coordinated campaigns in engagement networks. We prioritize
density over other structural properties, as campaign graphs are consistently
denser than non-campaign graphs, exhibiting higher mean degree, core number,
and truss number. DECODE learns density-aware embeddings using RWWs,
where node transitions are guided by local density, ensuring that neighboring
nodes have similar density characteristics. These RWWs are then converted into
density-aware embeddings using Skipgram. We train an MPNN using these em-
beddings on the LEN dataset and observe performance improvements, surpassing
the accuracy of [16] by 11% and 4.5% in binary and multiclass classification, re-
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spectively. Additionally, we outperform their F1-score for binary classification
by 0.112. However, our highest macro-F1 score for campaign type classification
is 0.013 lower than the best-performing baseline from Gopalakrishnan et al. This
is due to the label disparity issues in the campaign classification problem. For
future work, we aim to explore alternative RWW methods, such as nearest-
neighbor RWW, instead of thresholding approaches. Additionally, we plan to
incorporate other structural properties, such as betweeness centrality and clus-
tering coefficient, to further refine the RWW process.
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