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Abstract. Concurrent trends of urbanization and population growth in
Brazil can exert high pressure on the (already degraded) environment. In
the city of São Paulo, in particular, there is a clear trend towards vertical-
ization of real estate, increasing population density. To attend demands
due to this rapid change in a particular area, water consumption, it is
necessary to understand the aspects related with domestic water demand.
The main objective of this study is to analyze the monthly water con-
sumption in high-rise residential properties, and investigate the descrip-
tive power of building related variables using machine learning. For such,
real consumption data from the past three years (provided by the water
and sewage company Sabesp) were obtained, along with two databases
containing detailed information on high-rise apartment buildings in the
city of São Paulo. After a meticulous integration of these databases, re-
liable information were obtained for 3,299 high-rise buildings, totalizing
276,670 apartments, described by 21 variables. One potential weakness
in commonly used estimates (e.g., demographic, financial) is that they
may be outdated or biased. In contrast, the physical characteristics of
buildings are easily verifiable, and simple to obtain. The study’s hypoth-
esis is that relying solely on the building features may preserve a similar
descriptive power, while eliminating uncertainties and biases. A contribu-
tion of this study is the estimation of the monthly consumption per unit,
which can be used for modeling urban water distribution systems. In the
experiments carried out, fourteen different regression algorithms for con-
sumption prediction are investigated, and the predictive performance of
the induced models is comparable with similar studies that use building
characteristics alongside population estimates and water/sewage features
in the building, partially confirming the research hypothesis.

Keywords: Water Consumption · Urban Infrastructure · Urban Ver-
ticalization · Machine Learning

1 Introduction

The rational management of natural resources is crucial for humanity. The
United Nations1 estimates that the global population reached 8 billion in 2022,
1 UN-Habitat report - 2022.

https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf
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with projections of nearly 10 billion by 2050 25% increase in just 28 years.
According to the report, approximately 58.3% of the global population, includ-
ing 54.3% in less developed regions, is expected to live in cities by 2025. These
proportions are projected to rise to 68.4% and 65.6%, respectively, by 2050.

Additionally, according to the 2023 SNIS report2, national water losses reached
37.8%, with São Paulo reporting a loss rate of 27.9%3. In this context, accurate
consumption estimates are essential for realistic system modeling and simulation.
These tools can support loss reduction efforts through improved leak detection.

Regarding water distribution (WD) in Brazil, demographic trends signifi-
cantly influence water consumption patterns, as demonstrated in the Section
4.1. This study is part of a preliminary investigation supporting the revision of
the Technical Standard for Residential Building Design by Sabesp, the water and
sewage company that serves the city of São Paulo, in São Paulo state, Brazil.
The study includes a diagnostic assessment of the current predictors performance
and presents preliminary results on the development of a new regressor.

1.1 Urbanization and its Effects on Water Consumption
The relationship between water consumption and urban density has been verified
in the city of Barcelona, Spain [6], due to population shifts from the central to
peripheral areas. Urban areas in the city of Hawassa, Ethiopia [13], increased
from 7.2% of the territory in 1991 to 26.5% in 2021, estimated to reach 45.9% by
2051. This expansion is expected to drive a 20% increase in water consumption.

A simulation of land-use changes in Brazil [3] projects an urban area expan-
sion of over 4 km2 in the city of Campina Grande, Brazil (an 8% increase) at the
expense of rural areas. This transformation is expected to lead to a 7% rise in
water consumption in the city between 2020 and 2050. In Tehran, Iran [30], de-
teriorated areascharacterized by structurally unstable buildings and streets with
limited accessibilityshow a negative correlation with water consumption, which
may be attributed to outdated and inefficient distribution infrastructure.

Another factor that can affect urban WD, without increasing built-up areas,
is the retrofitting of abandoned buildings into affordable housing, as studied by
[7] in São Paulo. The city also has a housing policy of creating apartments of up
to 50m2 for social housing, and its 2014 Directive Plan promotes densification
near public transport, driving the population to live closer to their working
places, which is highly concentrated around the city center.

Since 1929, the city of São Paulo has seen a fast increasing number of high-rise
apartment buildings (verticalization) [2] which accelerated during the 1960s and
1970s, and, since the 2000s, has seen an average of more than 250 new high-rise
apartment buildings launched per year. By looking at the relationship between
affordability and urban verticalization in the city, [18], it also be observed a
paradigm shift in the recent constructions: a transition from low-to-mid-rise
buildings to mid-to-high-rise developments, influencing both property prices and
housing affordability.
2 Sistema Nacional de Informações sobre Saneamento
3 Sabesp report on water losses

https://www.gov.br/cidades/pt-br/acesso-a-informacao/acoes-e-programas/saneamento/snis/produtos-do-snis/diagnosticos-snis
https://www.sabesp.com.br/site/interna/Default.aspx?secaoId=37
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1.2 Main Contributions

The main contribution from this study is to characterize the consumption of
large consumers, defined as high-rise residential buildings. Water consumption
data from the past three years in São Paulo was obtained with the support
of Sabesp, and 21 building characteristics are integrated. The dataset includes
3,299 buildings, covering 276,670 apartments. The results may support WD sim-
ulations, with potential Smart City applications such as leakage detection and
monitoring population density shifts and their impacts on water consumption.

The research hypothesis is that building characteristics provide strong de-
scriptive and predictive power, reducing reliance on population, demographic,
and income estimates, which may carry uncertainties and potential biases. After
data integration and preprocessing, the most relevant variables for the water
consumption in São Paulo are explored. An estimation of the consumption in
high-rise buildings is presented, along with an analysis of the prediction errors.

2 Related Work

2.1 Related Studies on Water Comsumption

The related studies found by the authors investigate the demand profile of
whole cities [10,13,14], explore and define consumption profiles, based on ei-
ther hourly/daily patterns [13,15,16,20,22,24] or appliance usage [17,19,27,34].
Other works explored the average consumption of dwellings [4,11,21,31] or per
building [5,9,29], with the latter being the focus of this study.

Regarding the techniques used, identification of statistical correlation, dis-
tribution analysis, and significance tests are employed to identify relevant vari-
ables. To estimate consumption, multiple linear regressions are commonly used
[6,11,13,24,29,31,33]. The use of this easily explainable models is particularly
interesting, as they provide coefficients that help assess the contribution of
each variable to water consumption. GIS techniques [3,4,13,15,16,21,23,24,30]
were also widely used, particularly considering Moran’s I statistic and Spatial
Lag/Correlation, in order to analyze spatial dependencies.

2.2 Variables used to Explaining Urban Water Consumption

The selected variables are grouped into different domains. A subset of the vari-
ables proposed in the literature was used, since some of them are difficult to
collect and may be unfeasible to collect, such as considering the type of plants
in gardens [6]. Other variables may be biased, such as differentiating foreigners
from residents [30,33] or considering religion [1].

Climatic Variables: In the context of climate data usage, it is common
to find studies that investigate relationships with temperature, humidity, wind,
and precipitation [10,14,22,31,12,16], as well as indirect influences through the
presence of rainwater reuse systems [34] or alternative water supply systems [8].
Correlations with thermal sensation have also been observed [10,31].
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Analyzing data from 38 Chinese cities [16], it was concluded that availabil-
ity, tariff pricing, and the adoption of water-saving technologies become more
significant compared to climatic factors. Notably, when consumers were grouped
and a regression was performed [22], building characteristics and consumption
related variablessuch as hourly consumption, previous week’s consumption at
the same hour, and day of the weekwere more influential than temperature.

Variables Related to Appliances: There are uncertainties regarding the
consideration of equipment consumption (e.g., faucets, showers). Different us-
age habits [6,8,11,17,19,20,27,34] have been observed, aiming to define hourly
consumption profiles. Some influencing factors include the age of residents [6],
habits such as cooking at home versus dining out [20], the presence of efficient
appliances [34], or the use of water reuse systems [8,17].

A challenge in considering appliance consumption is the need for in loco mea-
surements [19,34] by residents, or the use of estimatives. Additionally, cultural
specificities exist, such as in India (the most populous country), where 67% of
the population uses traditional bucket baths instead of showers [25].

Population Variables: Common considerations include population esti-
mates [10,19,20,12,23,31,33], the urban/rural resident ratio [13,16,31], and pop-
ulation density [13,24,30,31,33]. The distinction between daytime and nighttime
inhabitants [26] and the proportion of people per household, room, or bathroom
[24,29] are also used. A potential limitation is the necessity of conducting surveys
and questionnaires, which restricts both reach and the number of observations.

A widely recognized finding is that the higher the number of residents in a
household, the lower the per capita water consumption [6,8,11,26,27,31,33,34].
This is expected, as the property itself remains the same, and when more people
share it, the "maintenance cost" is distributed among them [26,27,31].

Census data is commonly used, although it is sometimes outdated [3,33].
A notable observation, as pointed out by [32] for Spain’s coastal region, is that
cities with high tourism influx, seasonal population variations, or large number of
short-term rental properties, can distort data. Only [15,32] consider this factor,
which can present challenges and limitations in certain locations.

Consumption as a Variable: The variability of consumption depending
on temporal factors, such as the day of the week and time of day, has been
observed [14,15,20,22], as well as a reduction in consumption during nighttime
hours [14,15,20]. Regarding the inclusion of property-related variables, [22] ar-
gues that they are not highly effective, but it is important to note that their
approach relies on smart metering for determining hourly consumption.

In Brazil, [5] identifies the regression components that most contribute to
estimating consumption as sewage collection and alternative water sources (for
estimating property-level consumption), with piped water access also being con-
sidered [4,23]. The effects of water supply interruptions have been recognized as
an important variable [4,8,24] in studies conducted in Mexico City, Mexico.

Demographic Variables: These are widely considered [6,8,15,25,26,27]. Al-
though they represent universal characteristics, gender, age, type of employment
among adults, and level of formal education exhibit different distributions de-
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pending on the level of development of a city or country. More developed regions
face an aging population and generally provide higher levels of formal education.

Additionally, there is evidence of potential negative bias propagation, such
as the questionable use of the female gender to explain increased consumption.
There is assumptions that women spend more time at home [6], caring for the
household and children [11]. Arguing that areas with a higher male-to-female
ratio tend to have higher income levels, [31] uses gender as a proxy for income.

Financial Variables: The integration with the financial domain is widely
explored, with the most common approach being the use of residents’ income
[4,6,8,11,19,20,25,26,27,31,34]. The value of the tariff charged for consumption is
also considered [6,15,16,31], as well as property ownership [27,8], Gross Domestic
Product (GDP) [16,12,24,31], and property prices [22,25,29].

In Brazil, [3] conducts a spatial analysis in Campina Grande, finding differ-
ences of more than 10% between low- and high-income neighborhoods. A similar
approach is used by [21], on a national level, focusing on the city of Fortaleza.
Both studies conclude that income inequality is reflected in water consumption,
with wealthier areas consuming more.

In Aveiro, Portugal, [27] observes a statistical difference between the lowest
income group and others, particularly in households with 3-4 people, where con-
sumption in the lowest income group is approximately 37% lower. Finally, in
Seville, Spain, [33] uses the property tax as a proxy for income. It is observed
that high-income populations revitalize areas previously occupied by low-income
groups, specifically in central regions, while the poor move further away. This
situation affects the dynamics of the WD within the city.

Building Variables: Various studies aim to relate the characteristics of
buildings to explain water consumption by their residents. The most commonly
explored conditions include the number of rooms, especially bedrooms and bath-
rooms [6,8,11,25,29], presence of a swimming pool [6,8,29], constructed area
[11,22,29,30,33], age of the building [8,22,27,29], and building type (single-story
or vertical) [8,26,29,33].

According to [8,11,30], built area is typically associated with higher consump-
tion levels, and [26] finds a difference of over 30% between properties larger than
100m2 and those smaller than 50m2. Also, the number of bedrooms and bath-
rooms figures as two of the most important variables [6,8,11,25,29]. The first
reflects an estimate of how many people occupy the property, and the second is
one of the areas linked to water consumption.

Regarding building characteristics, [27] finds no impact on consumption when
considering the age of the building in Aveiro, Portugal. However, in Joinville,
Brazil, [8] concludes that older buildings tend to have higher consumption, a
hypothesis related to damaged pipes, lack of sustainable technologies.

In summary, the variables considered and the focus of the research are
compiled in Table 1. The themes of the research include Per Capita Consump-
tion (Cpc), Household Water Consumption (HWC), Water Demand Profiling of
Cities (WDP-C), Consumption Profiling of Households (CP-H), Consumption
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Profiling per Capita (CP-pc), Water Demand Distributions (WD-D), and Water
End Use (WEU).

Table 1: Taxonomy of Studies on Water Consumption and Socio-Economic Fac-
tors. The highlighted variables are the most important in the study. Exploratory
analysis are highlighted in purple, while regression tasks are highlighted in green.
Smp Sample size; Domains: Clm Clima, Dem Demographic, Bld Building, Ppl
Populational, Eqp Equipment, Fnn Financial, Cns Consumption

Ref Focus Smp Source Clm Dem Bld Ppl Eqp Fnn Cns
[25] WEU 248 Survey ✓ ✓ ✓ ✓
[30] WD-D - BD ✓ ✓ ✓
[14] WDP-C - Meter ✓ ✓
[10] WDP-C - Meter ✓ ✓
[12] WDP-C - BD ✓ ✓ ✓
[23] WDP-C - BD ✓ ✓
[15] WDP-C - BD ✓ ✓ ✓
[22] CP-H 90 Meter ✓ ✓ ✓
[31] Cpc - BD ✓ ✓ ✓ ✓ ✓ ✓ ✓
[6] Cpc 532 Survey ✓ ✓ ✓ ✓
[34] Cpc 151 Survey ✓ ✓ ✓
[26] Cpc 900 Survey ✓ ✓ ✓ ✓
[8] HWC 108 Survey ✓ ✓ ✓ ✓
[19] WEU 36 Survey ✓ ✓ ✓
[17] WEU 48 Survey ✓ ✓
[24] WD-D - BD ✓ ✓ ✓
[3] WD-D - BD ✓ ✓ ✓ ✓ ✓
[20] CP-pc 36 Survey ✓
[33] Cpc - BD ✓ ✓ ✓
[27] Cpc 53 Survey ✓ ✓ ✓ ✓
[21] Cpc - BD ✓
[16] Cpc - BD ✓ ✓ ✓ ✓ ✓
[4] Cpc - BD ✓ ✓ ✓
[11] HWC* 380 Survey ✓ ✓ ✓ ✓
[9] HWC 394 Survey ✓ ✓ ✓ ✓ ✓
[29] HWC 78 Survey ✓ ✓ ✓
[5] HWC 89 Survey ✓ ✓ ✓
Ours HWC 3299 BD ✓ ✓*

In the present analysis, data characterizing vertical residential buildings are
obtained. The reason for the asterisk in the Financial domain in Table 1 is due to
the consideration of the price and construction standards of the apartments and
land, which can serve as a proxy variable for the residents’ purchasing power.

There is a predominance of the financial domain (18) and building construc-
tion characteristics (15), indicating good coverage in the literature on related



Urban Verticalization and Water Consumption in São Paulo 7

topics. Despite this, few recent studies focus on estimating urban domestic wa-
ter consumption. Some distinguishing aspects of the present study include the
number of collected observations and its specific focus on high-rise buildings.

3 Water consumption and buildings characteristics

3.1 Data Acquisition and Integration

With the support of Sabesp, consumption data for the last three years in the city
of São Paulo is obtained. Integration is performed with public municipal property
tax data (IPTU) and data from Embraesp (Empresa Brasileira de Estudos de
Patrimônio). The Embraesp database contains building characteristics such as
the number of blocks, elevators, penthouses, apartment types, and floor levels.
It also includes unit attributes such as the number of bedrooms, bathrooms,
parking spaces, square footage, and price (adjusted to December 2024 values).
From the IPTU database, data on land size and price, built area, and price per
square meter, as well as the building quality standard, are obtained.

The lack of standardization between adresses is a challenge. The Sabesp data
includes the provisional address of the building, the Embraesp data is the result
of data collection, and the IPTU database contains official data. Furthermore,
there are cases (Figure 1) that more than one numbering was adopted, for con-
venience or practicality. Given the name of a street or ZIP code, variations in
numbering are accepted within a margin (related to the land frontage).

Diffe
rence in
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e

number o
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oors

Fig. 1: Problematic case in database integration - Google Earth/Maps

To validate the data, the building’s age, number of floors, number of apart-
ments, and land size with street frontage are cross-referenced. Finally, a web-
scraping approach using Google Maps is implemented to resolve discrepancies
in cases with multiple possibilities, using the building’s name (when available).
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3.2 Challenge in Consumption Estimation

It is assumed that large consumers, such as vertical residential buildings, have a
non-negligible impact on the urban water distribution. In this scenario, data from
the municipal tax database is used to assess the trend of the built area of new
apartments in São Paulo, Brazil. Consumption estimation (m3/month/building)
is performed using Equation 1 from Sabesp’s technical standard NTS181 [28].
The Mean Absolute Error (MAE) between the estimative and the real consump-
tion is calculated, as shown by the dashed line in Figure 2.

Consumption = −21.1+0.0177 ·A+2.65 ·B+3.97 ·D− 50.2 ·PD +46 ·VG (1)

The monthly Consumption (m3/month/building) is related to the Constructed
Area A, number of Bathrooms B, and Bedrooms D, where PD is 1 if D > 3,
and 0 otherwise, as well as the number of Garage Spaces per apartment VG.
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Fig. 2: Relationship between Real Estate Developments and Concept Drift in
Sabesp’s Regressor Building Data (IPTU) and Consumption Data (Sabesp)

In 2014, the city master plan started encouraging the construction of small-
sized apartaments near public transport. In 2016, the local government issued a
decree that altered the classification of these properties, which in turn affected
the taxes paid. This legislative change gave rise to a new class of properties with
up to 50m2 of constructed area, that affects the consumption estimation.

Analyzing the consumption estimation error from Sabesp (dashed line), it
is evident that, alongside the emergence of the new class, the average annual
errors increase dramatically. This analysis allows for the identification of the
effect (explosion in error) and the cause (new class) of a Concept Drift. This
scenario motivates the search for a regression model that better explains water
consumption using only building-related variables, as in the Sabesp model. The
results of this study will support the revision of the NTS181 technical standard.
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4 Experiments

For the experiments, a preliminary treatment of the consumption data was
carried out. Based on experimental results, thresholds were adopted for the
data preprocessing. Outliers corresponding to exceptionally high deviations (18
times) from a clients moving average were removed. To avoid strong variations,
a smoothing technique was applied to consumers with a minimum consumption
of 2m3/month. A smoothing operator was applied using median values over the
last five months when consumption exceeds five times the limit.

Regarding outliers in the building features, automating the process and re-
moving them using standard deviation seemed to lose valuable information.
Therefore, manual removal was performed on the long tails distributions. For in-
stance, entries with more than 400m2 (<1% of cases), values above U$1,000,000.00
(<2%) or U$4,000.00/m2 (<2%) are removed. These are exceptions in the dataset,
and the estimation of high-end properties may be a subject for future studies.

4.1 Exploratory Analysis

To illustrate the relationship between variables and consumption by unit, an
experiment using the UMAP is conducted. This technique transforms the data
from a high-dimensional space into a lower-dimensional (latent) space. Its key
feature is the preservation of neighborhood relationships, meaning points that
were close in the original space tend to be neighbors in the latent space.

The attributes selected include the number of bathrooms/bedrooms/garage
spaces, the value per square meter of the land, the number of apartments per
floor, and the area of the apartments. For comparison, Principal Component
Analysis (PCA) is also used, and the results are shown in Figure 3. A good sep-
aration between different consumption levels is observed, and taking advantage
of this observation, regression techniques are trained in the latent space.

Fig. 3: Latent space - UMAP Latent space - PCA
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To analyze the relationship between multiple variables and consumption, par-
allel coordinate visualization is used. Min-Max normalized values are employed,
meaning values close to 1 represent the maximum and values close to 0 represent
the minimum for each variable. As shown in Figure 4, for the top 25% highest
consumers, there is an almost direct relationship between consumption and the
number of bedrooms, bathrooms, and garage spaces, as well as the area and
price of the apartment. It is worth noting that the land area and units per floor
are associated with the bottom 20%. In other words, the larger consumers are
buildings with relative few units, large square footage, and small plots of land.

Fig. 4: Relationship between consumption and 7 selected variables

In the distributions shown in Figure 5, the situation is similar to what has
been observed in the literature, with a positive correlation between water con-
sumption and the size of the residence [8,11,26,30] as well as the number of
bathrooms [6,8,11,25,29]. This characterization is important because, as already
observed, changes are occurring in the real estate market of São Paulo. It is
noteworthy that apartments up to 50m2 have significantly lower consumption.
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Fig. 5: Consumption distributions related to different variables

Furthermore, the financial variable related to the construction standard (CS)
shows that units with CS 1 and 2 (more modest) have a consumption of around
10m3/month, while units with high standards consume nearly three times as
much. A positive correlation between consumption and income has been observed
[3,8,21], and the CS may serve as a proxy for the residents’ purchasing power.
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4.2 Apartment Consumption Estimation

The dataset is splited into training and testing sets in an 80-20 ratio, and the
data is normalized using the MinMax technique. The only categorical variable is
the Construction Standard of the property, with 5 distinct classes, and Ordinal
Encoding is applied. All implementations used are from the Sklearn library.

Different variable sets are tested, ranging from 4 to 21 variables. For feature
selection, Recursive Feature Elimination (RFE) is used. In this method, the
importance of each variable in the set is calculated, and the least important
variables are recursively eliminated until the desired number is reached.

Fourteen different algorithms are tested, including Linear Regression and
the regularized variants Ridge and Lasso Regression. Also tested are cases that
transform the data into a new latent space and then apply regression, such
as Principal and Independent Component Regression. The first uses Principal
Component Analysis (PCA) to create the latent space, while the second uses
Independent Component Analysis (ICA). One difference of ICA is the relaxation
of the orthogonality condition of PCA when creating new components.

Various tree-based strategies are chosen, including Decision Tree (DT) and
ensemble tree methods such as Random Forest and Extremely Randomized
Trees. The use of DT with boosting strategies is employed with Gradient Boost-
ing and AdaBoost. Finally, algorithms that use distances, such as K-Nearest
Neighbors, or hyperplanes, such as Support Vector Machine, are also chosen.

Hyperparameter optimization is performed using grid search. Instead of split-
ting the training set into training and validation sets, 5-fold cross-validation is
used for optimization, with Negative Mean Absolute Error adopted as the scoring
parameter (the implementation always aims to maximize the score).

To illustrate the methodology, Figure 6 compares four cases: (i) without
data preprocessing, outlier removal, feature selection and regressor optimization
(Baseline); with preprocessing the consumption data (anomaly detection and
smoothing) and (ii) using only the Sabesp model variables (Sabesp) or (iii) us-
ing all available features (All feats); and (iv) with preprocessing and manually
removing outliers, feature selection using RFE and hyperparameter optimization
using GridSearch (Optimized).
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Fig. 6: Comparisson between regressors and methods
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Preprocessing yields benefits mainly for linear regressors (PCR and ICR).
Notably, Sabesp variables have good prediction power, but there is improvement
when all features are included. Manual outlier removal, combined with feature
selection and hyperparameter optimization, leads to considerable gains across
all cases. Sensitivity analyses on outlier removal will be explored in future work.

The evaluation of the results is carried out using 10-fold cross-validation.
The metrics considered, aiming for comparability with previously cited studies,
include Mean Absolute Percentage Error (MAPE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Rš. The regression algorithms used
are listed in Table 2, along with the evaluation metrics.

Table 2: Regression Results. Highlighted in green the Tree models and in purple
the Linear Regression models - limited to the top 5
Model MAE MAPE RMSE Rš

Gradient Boosting (GB) 1.80± 0.52 0.22± 0.08 2.31± 0.91 0.68± 0.25
Principal Component (PC) 1.89± 0.72 0.21± 0.09 2.54± 1.02 0.61± 0.33
Independent Component (IC) 1.89± 0.72 0.21± 0.09 2.54± 1.02 0.61± 0.33
Support Vector Machine 1.90± 0.57 0.23± 0.08 2.59± 0.82 0.62± 0.27
Random Forest 1.91± 0.51 0.25± 0.10 2.60± 0.86 0.59± 0.36
Huber Regression 1.92± 0.80 0.22± 0.10 2.54± 1.06 0.61± 0.33
Extr. Trees 1.93± 0.66 0.24± 0.11 2.67± 1.12 0.59± 0.33
Ridge Regression 1.94± 0.73 0.23± 0.09 2.58± 1.04 0.61± 0.32
Bayesian Ridge Reg. 1.95± 0.81 0.22± 0.10 2.60± 1.10 0.60± 0.36
AdaBoost 1.96± 0.45 0.25± 0.11 2.63± 0.79 0.59± 0.33
K-Nearest Neighbors 2.02± 0.49 0.25± 0.09 2.83± 0.85 0.57± 0.23
Linear Regression 2.03± 0.86 0.23± 0.11 2.71± 1.09 0.57± 0.35
Lasso Regression 2.09± 0.57 0.25± 0.07 2.83± 0.91 0.57± 0.28
Decision Tree 2.17± 0.76 0.27± 0.09 2.80± 0.89 0.51± 0.38

The use of trees and boosting showed better performance, as well as the
strategy of creating a latent space and then performing linear regression. Signifi-
cance testing between GB and PC/IC is conducted pairwise using the Wilcoxon
Signed-Rank Test. A statistical difference (p-value < 0.01) is found for MAE,
RMSE, and Rš, indicating that GB outperformed the others.

A residual analysis is performed. Normality tests are conducted using the
Kolmogorov-Smirnov and Shapiro-Wilk tests, and homoscedasticity is assessed
using the Breusch-Pagan Test. At a 5% significance level, normality and ho-
moscedasticity are confirmed. By selecting the largest errors (Figure 7), it is
observed that they are related to apartments with few bathrooms and small
built areas, but with high density (total number of units in the building).

It is worth noting the transformation applied to the target variable. To esti-
mate total building consumption and compare it with the Sabesp regressor MAE,
better performance was achieved by modeling consumption per unit rather than
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Fig. 7: Relationship between regression residuals and selected variables

for the entire building. In older buildings without individual metering, only total
consumption is available, and average per-unit consumption is estimated. Where
individual measurements exist, the mean of actual unit consumption is used for
estimation. For comparison with Sabesp’s regressor, individual units errors are
summed, and the Mean Absolute Error is computed at the building level.

5 Discussion

The careful cross-referencing of datasets allows the data from Sabesp to be linked
with property characteristics with a high degree of reliability, given the checks
described. In this context, integrating data from IPTU and Embraesp proves
extremely fruitful, providing important variables related with consumption.

The relative ease of obtaining reliable data is considered an advantage for this
approach and is thus adopted in this research. This statement can be justified
by the ease of accessing real estate registry databases, such as those used in
the present study, or even collecting data through questionnairesmeasuring the
number of rooms/area is considered simpler than measuring the flow rate of
individual appliances (faucets, showers, etc.) for each use.

It is noted that selected variables create latent spaces in which the Consump-
tion per unit (in m3/month) have representations of the classes in well-defined
regions for each class. It is observed that variables such as the number of bed-
rooms and bathrooms, as well as the unit area and land size, are good descriptors
of consumption. Naturally, these are attributes correlated with the number of
occupants in the property and the number of sanitary appliances, considering
that maintenance and cleaning are proportional to the unit and land area.

Across the top five modelsGB, PCR, ICR, SVM, and RFseven features were
consistently selected: number of Bedrooms, Bathrooms, and Garage Spaces; Unit
Area; Units per Floor; Building Age; and Land Price per m2. These variables
appear to be the most informative building characteristics for predicting water
consumption. Notably, the first four are also included in Sabesps regressor.

Estimating monthly consumption in Brazil, [9] uses Univariate Regression
Trees with acceptable results, achieving an RMSE of 5.90 m3/month/household,
whereas the present study reached values of 2.31 m3/month/household. Using
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multiple linear regressions, [5] reports a MAPE of 16.78%, considering population
variables and the availability of water and sewage services. This may explain why
their results were better than the 22% obtained. However, it should be noted
the heterogeneity among 3,299 buildings considered in this study.

Also using linear regression, [29] achieves a MAE of 1.23 m3/month, a value
comparable to the 1.80 m3/month obtained in the present study. Regarding
Sabesp’s regressor, for the entire building, it presents an average MAE of 620
m3/month (considering concept drift). Even before the emergence of the new
class, the MAE values were around 350-400 m3/month, and the strategy of
estimating the consumption per apartment and then estimating the total con-
sumption resulted in an MAE of 202.46 m3/month.

6 Conclusion
Population growth puts pressure on the (already degraded) environment. Fur-
thermore, another aspect to consider is the transition of rural populations to
urban centers, adding stress to the infrastructure of cities. In this scenario, with
the increase in population and the expected concentration of people in urban
centers over the coming decades, it is imperative to seek solutions that promote
quality of life while preserving natural resources.

Focusing on large water consumers, represented by vertical residential build-
ings, three datasets are integrated, with real consumption data provided by Sabe-
spthe largest sanitation company in Latin America. Data from 3,299 buildings,
encompassing approximately 276,670 apartments, with 21 variables describing
the properties, are gathered from the city of São Paulo. A possible concept drift
is detected in Sabesp’s model, potentially related to changes in the city’s master
plan and subsequent impacts on real estate development.

The research hypothesis is that only variables describing the characteristics
of the buildings are sufficient to generate a good estimate of urban residential
consumption in vertical buildings. This is partially verified, with performance
similar to models that use population-related variables (population estimates,
residents per household, etc.), financial variables (income estimates, GDP, etc.),
or demographic variables (age, gender, educational level, etc.).

To confirm this, it is necessary to quantify the impact of considering the vari-
ables described above. Additionally, the influence of neighbors can be explored
using GIS, and the impact of seasonality and the percentage of vacant units can
be examined. These are relevant considerations that could improve models for
estimating monthly water consumption, which are topics of ongoing work.
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