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Abstract. When the available data for a target domain is limited, trans-
fer learning (TL) methods leverage related data-rich source domains to
train and evaluate models, before deploying them on the target domain.
However, most TL methods assume �xed levels of labeled and unlabeled
target data, which contrasts with real-world scenarios where both data
and labels arrive progressively over time. As a result, evaluations based
on these static assumptions may not re�ect how methods perform in prac-
tice. To support a more realistic assessment of TL methods in dynamic
settings, we propose an evaluation framework that (1) simulates varying
data availability over time, (2) creates multiple domains via resampling
of a given dataset and (3) introduces inter-domain variability through
controlled transformations, e.g., including time-dependent covariate and
concept shifts. These capabilities enable the systematic simulation of a
large number of variants of the experiments, providing deeper insights
into how algorithms may behave when deployed. We demonstrate the
usefulness of the proposed framework by performing a case study on a
proprietary real-world suite of card payment datasets. To support repro-
ducibility, we also apply the framework on the publicly available Bank
Account Fraud (BAF) dataset. By providing a methodology for evaluat-
ing TL methods over time and in di�erent data availability conditions,
our framework supports a better understanding of model behavior in
real-world environments, which enables more informed decisions when
deploying models in new domains.
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1 Introduction

Machine learning (ML) models often require large volumes of labeled data to
achieve strong predictive performance. However, in many real-world applications,
obtaining su�cient labeled data can be di�cult and costly. Transfer learning
(TL) addresses this challenge by leveraging knowledge from one or more source
domains to improve performance on a target domain with limited data. Most
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TL methods and evaluation protocols assume �xed conditions regarding the
availability of labeled and unlabeled data, such as having a large labeled source
dataset and only unlabeled target data. However, in many real-world industry
settings, these conditions are not permanent, as data from the various domains
is progressively collected and labeled over time.

One example of this setting is �nancial fraud detection. This task involves
monitoring streams of �nancial transactions from di�erent �nancial institutions,
domains in the TL terminology, and classifying each transaction as fraudulent or
legitimate. New institutions may initially lack historical data, but typically the
volume of �nancial transactions quickly increases over time. However, labeling
a transaction as fraudulent often depends on customer complaints and/or man-
ual reviews by analysts, leading to a delay between the moment a transaction
is recorded and when it is labeled. This delay can range from several days to
a few months, a�ecting the training and evaluation of ML models. While TL
can in principle help mitigate the issues of having insu�cient data at the onset,
and insu�cient labeled data at a later stage, the evolving nature of the data
availability itself presents an additional challenge. TL methods are designed for
�xed conditions and their performance is expected to change signi�cantly when
those conditions are violated. However, they are typically evaluated under those
�xed (and favorable) conditions, which would lead to unrealistic expectations
concerning their performance in real world settings. The problem therefore re-
mains on how to evaluate TL methods in a way that re�ects these dynamic data
constraints, such as those encountered in fraud detection.

To address this challenge, we propose an evaluation framework that cap-
tures the dynamic nature of data streams in real-world applications. Our frame-
work provides three key capabilities: (1) creating multiple domains from a given
dataset through resampling, enabling systematic TL evaluation even when few
datasets are available; (2) applying transformations to the data, hence repro-
ducing realistic data shifts over time and across domains, while also introducing
controlled variability across experiments; and (3) simulating the gradual arrival
of data and labels over time, mimicking the evolving nature of industry environ-
ments. These combined features enable our framework to systematically generate
a large number of experiments, making it possible to assess TL methods across
a wide range of realistic scenarios.

We perform a case study using our framework on a suite of proprietary real-
world datasets containing payment events from multiple �nancial institutions.
This case study demonstrates how insights derived from our evaluation frame-
work can inform practical decisions, such as model selection, deployment timing,
and the prioritization of data collection e�orts. Given the con�dential nature of
the case study dataset, we perform a similar analysis on the publicly available
Bank Account Fraud (BAF) dataset [13], which consists of synthetic examples of
account opening applications. The source code that implements the evaluation
framework, along with the con�gurations used for the experiments on the public
dataset, are available at https://github.com/feedzai/tred.
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The remainder of this paper is structured as follows: Section 2 formalizes our
problem setting and compares it with traditional TL setups studied in academia;
Section 3 introduces the design of our evaluation framework and its key com-
ponents; Section 4 describes how we apply the framework in practice, detailing
the datasets, experimental setup, and TL methods evaluated; Section 5 presents
the results and their practical implications in an industry setting; and Section 6
summarizes our contributions and highlights the broader impact of our work.

2 Background and related work

In this section, we formalize the problem setting and introduce the notation used
throughout the paper (Section 2.1). We then review traditional TL paradigms,
highlighting their assumptions and di�erences from our use case (Section 2.2).
Finally, we discuss common evaluation strategies for TL and motivate the need
for a new framework that better captures real-world data dynamics (Section 2.3).

2.1 Problem de�nition

We consider the machine learning setting where data is collected from multiple
domains over time, with labels becoming available after a delay. This is a com-
mon scenario in many real-world applications, such as fraud detection, where
instances (e.g., transactions) are initially unlabeled and only later con�rmed as
fraudulent or legitimate. To formalize this problem, we assume there arem source
domains DS1 , . . . ,DSm and a target domain DT . Each domain Dd (including the
target) is associated with a dataset Dd = {(xi, yi, txi , t

y
i ) | i = 1, . . . , nd}, where

xi ∈ Xd is a feature vector, yi ∈ Yd is the label, txi is the timestamp when xi is
collected, and tyi ≥ txi is the timestamp when yi becomes available.3 At any given
time t, Dd can be decomposed into a labeled dataset DL

d (t) = {(xi, yi) | t
y
i ≤ t}

which consists of all instances that have already received their labels by time t,
and an unlabeled dataset DU

d (t) = {xi | txi ≤ t < tyi } which consists of instances
that have been observed but their labels are still unavailable at time t.

Eventually, at some time ta, the target domain DT is introduced, initially
without any data (DL

T (ta) = DU
T (ta) = ∅), and target domain data and labels be-

gin to be collected from that point on. Our goal is to leverage DS1 , . . . , DSm and
DT to learn a predictive function fT : XT → YT that approximates PT (Y |X).
Over time, as more data and labels become available, fT can be updated to
improve its approximation of PT (y | x).

2.2 Transfer learning paradigms

Di�erent TL paradigms have been explored, each making di�erent assumptions
about the datasets used to train the ML models. All these paradigms assume

3 To simplify notation, we will sometimes use the letter i to index the entries of the
dataset without explicitly stating i = 1, . . . , nd.
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that a large volume of labeled data is available from the source domains. Their
main di�erence relates to the available target domain data at training time.

In Domain Generalization (DG) [24, 28], the goal is to use the source domain
datasets to learn a predictive function f that generalizes to the target domain
without access to any data from DT . As such, at training time, DL

T = DU
T = ∅.

In Unsupervised Domain Adaptation (UDA) [26], in addition to the source
domain datasets, there is an unlabeled target domain dataset that can be used
to adapt the predictive function fT to the target domain DT . This means that,
at training time, |DU

T | > 0 while DL
T = ∅. In Supervised Domain Adaptation

(SDA) [25], in addition to the source domain datasets, there is both a large
unlabeled dataset and a small labeled dataset from the target domain, which
are used to adapt the predictive function fT to the target domain DT . As such,
at training time, |DU

T | � |DL
T | > 0. In Multi-Domain Learning (MDL) [27],

the goal is to use datasets from multiple domains to learn a single predictive
function f that performs well across all observed domains simultaneously. Here,
at training time, labeled data is available from all domains, i.e., ∀d, |DL

d | � 0.

Each of these paradigms operates under speci�c assumptions about data
availability, but none of them account for the progressive collection of data and
possible label delay. In contrast, our problem setting requires a framework that
can systematically model the evolving availability of data and labels over time.

2.3 Evaluation of TL methods

Various datasets have been used to evaluate TL methods, under the di�erent
paradigms discussed in the previous section. Most TL benchmarks focus on im-
age classi�cation, including datasets such as O�ce-31 [21], O�ce-Caltech10 [8],
O�ce-Home [23], DomainNet [19], and PACS [17]. Beyond computer vision, the
Amazon Reviews dataset [1] is often used for sentiment analysis.

Another common strategy is to evaluate TL methods across di�erent datasets
of the same task. Examples include: digit classi�cation (USPS [12], MNIST [16],
SVHN [18]); large-scale image recognition (ImageNet [5], Caltech [9], CiFAR [15]);
and semantic segmentation (CityScapes [4], GTA5 [20]).

Additionally, some tools have been developed to facilitate the evaluation
of TL methods in speci�c �elds. One example is DomainATM [10], an open-
source MATLAB package for domain adaptation in medical data analysis. It
provides dataset management functionalities, visualization tools, and a collection
of domain adaptation methods with built-in evaluation capabilities.

However, both DomainATM and traditional TL benchmarks assume a static
evaluation setting, where data availability conditions remain �xed. This assump-
tion overlooks the temporal dynamics present in real-world applications, such as
fraud detection, where data and labels arrive progressively over time. As a re-
sult, existing evaluation strategies are insu�cient for assessing TL methods in
dynamic environments. Addressing this gap requires a framework that systemat-
ically models the evolving availability of data and labels, enabling more realistic
evaluations that re�ect real-world deployment scenarios.
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Fig. 1. The evaluation framework is composed of three sequential components: do-
main sampler, transformations, and scheduler. The number of domains depicted in the
diagram is just an example.

3 Method

Our evaluation framework consists of three components (Figure 1). First, the
domain sampler builds multiple domains from a single dataset, enabling sys-
tematic TL evaluation even when few datasets are available. Next, the transfor-

mations introduce controlled variations to each domain, to reproduce real-world
data shifts over time and across domains. Finally, the scheduler simulates the
progressive arrival of data and labels, enabling the evaluation of TL methods un-
der diverse data availability conditions. We describe each component with more
detail in the following subsections.

3.1 Domain Sampler

The domain sampler creates domains from a dataset by randomly selecting an-
chor instances, followed by resampling the events according to the distance to
these anchors, as illustrated in Figure 2.

More formally, the domain sampler is a stochastic process that receives a
dataset D = {(xi, yi, txi , t

y
i )}, a distance function δ, a real number λ, and a posi-

tive integer k, and outputs a set of datasets {D1, . . . , Dk} where Dd ⊆ D for all
d ∈ {1, . . . , k}. To extract each Dd, the domain sampler �rst selects an instance
xanchor. Then, each instance xi is assigned a probability of being included in this
domain, which decreases exponentially with its distance to xanchor,

P (xi|xanchor) = e−λδ(xi,xanchor) .

The decay rate of the exponential is controlled by the scaling factor λ, which
regulates the expected domain size. Finally, instances are sampled randomly
according to their respective probability.
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Fig. 2. Toy example of sampling a domain from dataset. First, an anchor instance is
selected (purple point). Then, the distances to all other instances are computed. Lastly,
the instances are sampled with probability decreasing as distance increases.

3.2 Transformations

The transformations apply controlled modi�cations to the datasets. These trans-
formations are de�ned by the user to better suit their setting. For example,
transformations that may make sense in the image domain would not be suit-
able for tabular data and vice-versa. Each transformation should ideally be pa-
rameterized di�erently for each domain, provoking some level of domain shift.
Furthermore, they can be designed to depend on the timestamp of the instance,
which e�ectively simulates data drift over time or seasonalities.

Each transformation can be described as a function Φθ : (x, y, tx, ty) 7→
(x′, y′, t′x, t′y), parameterized by θ. This general formulation allows the instan-
tiation of various types of changes, for example:

� covariate shift (change in P (X)): x′ = φ(x; θ);
� concept shift (change in P (Y |X)): y′ = φ(x, y; θ);
� data drift (change in P (X) over time): x′ = φ(x, tx; θ).

If the transformations are parameterized di�erently for each experiment, the
results will express a distribution of each methods' performance on related set-
tings, increasing the robustness of the results. We describe a set of transforma-

tions for tabular data in detail in Section 4.3 (as well as making them available
with our code) and provide a toy example in Figure 3.

3.3 Scheduler

The scheduler orchestrates two processes: (1) the progressive arrival of instances
and labels over time and (2) the performance estimation over time.

The �rst process (progressive data arrival) is achieved by discretizing the time
range of the target dataset in contiguous periods. At each step, the test period
advances, while the training set expands to include all data up to that point.
More formally, the scheduler receives datasets DS1

, . . . , DSm
, DT and a sequence

of user-de�ned timestamps t1, . . . , tl s.t. min(txi ) ≤ t1 < . . . < tl ≤ max(txi ) for
txi ∈ DT . At each time step ta for a = 1, . . . , l − 1, it decomposes all source and
target domain datasets Dd into D

L
d (ta) and D

U
d (ta), as described in Section 2.1.

The second process (performance estimation) is achieved by leveraging the
data splits that result from the �rst process to train the TL methods under study
and evaluate them on the target domain instances s.t. ta ≤ txi < ta+1.

4

4 Notice that the label delay is ignored for the purpose of evaluating the methods.
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Fig. 3. Toy example showing how applying the same transformation with di�erent
parameters a�ects the same feature of datasets from two domains.

Since this process is repeated for each time step ta, every model is evaluated
multiple times throughout the evolving target dataset. This allows for an analysis
of performance trends over time, highlighting how di�erent TL methods adapt
to increasing data availability. Figure 4 presents an example of this scheduling.

4 Experimental Setup

In the previous section, we introduce the general architecture of the framework,
which is designed to be broadly applicable to many real-world scenarios. In this
section, we detail how we apply this framework to our speci�c use case, including
a description of the datasets that we use, the methods that we test and other
design decisions that are speci�c to our experimental setup.5

4.1 Datasets

In this section, we provide details about the dataset used in our case study,
but due to con�dentiality constraints, we can only share general metrics. The
Acquirers is a real-world proprietary dataset, containing payment events from 4
di�erent �nancial institutions (domains) over a period of 41 weeks (≈ 9 months).
Each domain has ≈ 5M events, but their fraud rates (relative frequency of the
positive class) vary between ≈ 0.01% and ≈ 0.4%. Each instance has 58 features
(52 numerical and 6 categorical), the event timestamp and the fraud label.

Because the above dataset is con�dential, we also perform experiments on
the publicly available Bank Account Fraud (BAF) dataset [13]. BAF is a pub-
licly available synthetic bank account fraud dataset.6 It contains one million
examples of account opening applications, some of which are fraudulent, from
February through September. Each instance has 28 features (24 numerical and
4 categorical), the time information and the label.

5 Implementation details and code are available at https://github.com/feedzai/tred.
6 In fact, the authors published 6 di�erent variations of this dataset, but we just use
the "Base" variant without device_fraud_count and device_os features.
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In both experiments, each numerical feature from each domain is standard-
ized to have 0 mean and 1 standard deviation. Also, each categorical feature is
label encoded [2], i.e. each category is mapped to an integer starting from 0,
to enable the use of embedding layers. Furthermore, to address class imbalance,
we oversample the minority class during training by constructing batches with
a �xed 10% positive class ratio. For evaluation, the original proportion is used.

4.2 Domain Sampler

The BAF dataset does not contain any explicit separation of domains. As such,
in our experiments, we use the domain sampler to the create 4 domains: 3
sources and 1 target. Since the domains are randomly sampled, without loss of
generality, we always select the �rst one to be the target. Given that BAF is a
tabular dataset, we de�ne a distance function δ to compare rows containing a
set of numerical features N and a set of categorical features C. For numerical
features, we compute the squared di�erence between their standardized values.
For categorical features, we use an indicator function that returns 0 if the values
are the same, and 1 otherwise. The distance function is then given by

δ(xi, xj) =
∑
f∈N

(
xi,f − xj,f

σf

)2

+
∑
f∈C

I[xi,f 6= xj,f ] ,

where xi,f is the value of feature f in the feature vector xi and σf is the standard
deviation of feature f computed over the dataset from which samples are drawn.

The Acquirers dataset already contains 4 distinct domains, so we decided not
to use the domain sampler. However, a user may decide to apply it even when
multiple domains are available, to simulate a wider variety of settings.

4.3 Transformations

We de�ne three types of operations that can be applied to features of tabular
datasets:

� φ1 rescales numerical features by a time-dependent factor, with scaling pa-
rameter α ∈ R+,

φ1(xi,j , t
x
i ; θ) = xi,j · ατ(t

x
i ), where θ = (α, τ) . (1)

� φ2 computes a weighted average between a numerical feature and a certain
anchor value β, with β ∈ R and a mixing coe�cient γ ∈ [0, 1],

φ2(xi,j , t
x
i ; θ) = (1− γ · τ(txi )) · xi,j + (γ · τ(txi )) · β, where θ = (β, γ, τ) . (2)

� φ3 resamples values of a categorical feature, approximating its relative fre-
quencies to some marginal distribution P (X ′j),

φ3(xi,j , t
x
i ; θ) ∼ (1− τ(txi ))P (Xj)+ τ(txi )P (X

′
j), where θ = (τ, P (X ′j)) . (3)
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Here, τ is a user-de�ned function that controls the magnitude of the transfor-
mation as a function of txi . We use three versions of τ (not in a one-to-one
correspondence with the transformations): (1) a constant function equal to 1,
simulating �xed changes between domains (e.g., currency changes); (2) a linear
function that goes from 0 to 1 over the dataset's time span, simulating gradual
drifts (e.g., in�ation e�ects); (3) a sinusoidal function with a con�gurable period,
simulating seasonal patterns (e.g., weekly �uctuations in consumer behavior).

We combine these three types of transformations with the di�erent τ func-
tions to implement various transformations based on domain knowledge rele-
vant to our use case. Each transformation is applied to a subset of features,
and we de�ne sensible ranges for the parameters θ to ensure that the resulting
transformations are plausible. For each domain in each experiment, we indepen-
dently sample the transformation parameters from their respective ranges. This
approach ensures that the resulting shifts mimic realistic behavior while also
introducing controlled variability across experiments, and thus increasing the
robustness and generality of our conclusions.

4.4 Scheduler

For each experiment, given a set of source and target datasets with time span
[ts, te), we de�ne tα and tβ as the start times for using source and target domain
data respectively in the experiment, and tγ as the end time of the experiment,
such that ts ≤ tα < tβ < tγ ≤ te. The target domain data in the interval [tα, tβ ]
is ignored to ensure that the �rst training split contains only source domain
data, mimicking real-world deployment scenarios where historical target data is
unavailable at launch. We de�ne the time interval between model updates ∆t,
which is also the duration of each test split. Lastly, since neither dataset contains
a label timestamp, we de�ne a �xed label delay ∆l such that tyi = txi + ∆l.
Using these parameters, the scheduler simulates the progressive arrival of data
as described in Section 3.3, generating a sequence of timestamps t1, . . . , tl s.t.

t1 = tβ , ta+1 = ta +∆t, for a = 1, . . . , l − 1

where tl it the largest timestamp satisfying tl ≤ tγ .
For the Acquirers dataset, we use the time unit of one week, with timestamps

indexed in the range [0, 41), and set ∆t = 2 and ∆l = 4. In each experiment, tα
is randomly selected from {0, . . . , 7} to introduce variability while ensuring the
framework leverages the entire data range. Then, tβ is set as tα + 16, ensuring
16 weeks of available source domain data before the target appears, and tγ is set
as tα + 34, resulting in 9 contiguous test periods.

For the BAF dataset, we use the time unit of one month with timestamps
indexed in the range [0, 8). We set tα = 0, tβ = 3, tγ = 8 and ∆t = ∆l = 1. The
resulting schedule for this dataset is depicted in Figure 4.
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Fig. 4. Schedule of the splits used for the BAF experiments.

4.5 TL Methods

We implemented and tested representative methods from each of the four TL
paradigms discussed in Section 2.2: Multi-Task Autoencoder (MTAE) [7] for
DG; Domain Adaptation Neural Networks (DANN) [6] for UDA; Minimax En-
tropy (MME) [22] for SDA; and Multinomial Adversarial Networks (MAN) [3]
for MDL. We selected these well-established methods, which represent a variety
of modeling techniques, not to conduct an exhaustive benchmark but to illus-
trate how our framework enables the comparison of diverse TL algorithms under
evolving data availability conditions. Additionally, we tested three MLP base-
lines, di�ering only in their training data: BL-S is trained only with labeled
source domain data; BL-T is trained only with labeled target domain data; and
BL-A is trained using all labeled data available.

We also tested Kernel Mean Matching (KMM) [11] to reweight labeled train-
ing data for a LightGBM [14] classi�er. The training data is obtained by sampling
(with replacement) an equal number of labeled instances from each available do-
main, which means it may or may not include target domain instances, depending
on their availability at that point in time. Due to the computational complexity
of solving the optimization problem of the KMM method, the size of the training
set was tuned to match the training time of the deep learning methods.

4.6 Evaluation

For all deep learning methods, we use the latest 30% of the labeled training
data from each domain as a holdout validation set for early stopping. To ensure
a consistent stopping criterion, even when labels are scarce, we measure the
average predicted performance across all domains, measured as Recall at 1%
False Positive Rate (FPR), which is a standard metric in fraud detection tasks.

For each experiment, we compute paired t-tests for each pair of methods at
every data split, to assess the statistical signi�cance of the observed performance
di�erences. Given the substantial number of comparisons, we controlled the False
Discovery Rate (FDR) at 1% using the Benjamini-Hochberg procedure, which
reduces the risk of identifying spurious e�ects.
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4.7 Pre-training and hyperparameter tuning

Many TL methods use pre-trained state-of-the-art models to initialize the pa-
rameters of their deep learning components. In our experiments, we pre-train
an MLP-based autoencoder using the �rst three months of source domain data,
using a typical encoder-decoder architecture with reconstruction loss de�ned
per feature type: we use mean squared error for numerical features (after stan-
dardization) and cross-entropy loss for categorical features. This self-supervised
learning phase enables the networks to learn robust feature representations be-
fore applying speci�c transfer learning methods.

To optimize the autoencoder architecture, we conduct a hyperparameter
search over 200 randomly sampled con�gurations. The search space includes
variations in the number and size of hidden layers, the size of the latent space,
the learning rate, regularization techniques (dropout, normalization), and the
inclusion of skip connections. For method-speci�c hyperparameters, we primar-
ily followed the values recommended in the respective papers. The details of the
search space and best hyperparameters are provided in the code repository.

The encoder block of the best-performing autoencoder, selected based on
validation loss, is then used to initialize the feature extractors of the TL meth-
ods. For their classi�er components, we used a simple architecture with a single
hidden layer followed by the output layer.

5 Results

In this section, we �rst present the results from our case study on the proprietary
Acquirers dataset, and then the results on the publicly available BAF dataset.
Finally, we discuss the practical implications of these �ndings and describe how
industry practitioners could use them to guide their decision-making process.

5.1 Acquirers dataset case study

We conducted 64 experiments on the Acquirers dataset, following the schedule
described in Section 4.4. Figure 5 depicts the results of these experiments, show-
ing the evolution of predictive performance over time for various baselines and
TL methods. The x-axis represents the time elapsed since the target domain
appeared, while the y-axis depicts the recall percentage at 1% FPR, which is a
standard evaluation metric for the fraud detection problem.

There is a clear distinction between methods that leverage labeled target
domain data and those that do not. As such, we identify three groups of methods:

� MTAE, DANN and BL-S, which do not use any target domain labels to train,
maintain relatively stable performance throughout, but are consistently sur-
passed by the other methods.

� MAN, BL-A and BL-T, despite requiring target labels before their initial
deployment, immediately outperform the other methods, and continue to
improve as more data becomes available, with an average gain of approxi-
mately 4 percentage points of recall per model update.
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Fig. 5. Predictive performance (recall at 1% FPR) of each method over time on the
Acquirers dataset. The left panel shows the median recall per method across exper-
iments (solid lines) and their interquartile ranges (shaded). The right panel presents
statistical comparisons at each time step, where each point represents the average re-
call across experiments, and brackets group methods that are not signi�cantly di�erent,
after correcting for multiple comparisons.

� KMM and MME initially follow the trend of the previous group, but plateau
earlier. We hypothesize that the sampling we use to run KMM limits the
training of LightGBM, while the semi-supervised approach of MME o�ers
diminishing returns as more labels become available.

The statistical tests con�rm that, as soon as labeled target domain data becomes
available, the methods that leverage it achieve signi�cantly better performance.
Furthermore, these tests help to identify the point in time when MME and KMM
methods are overtaken by the second group.

5.2 BAF dataset

We conducted 128 independent experiments on the BAF dataset. In each exper-
iment, we sampled four domains from the dataset, applied domain transforma-
tions (described in Section 4.3), and followed the schedule depicted in Figure 4 to
train and evaluate the methods. Figure 6 depicts the results of these experiments,
in the same format of Figure 5.

Similar to the previous experiments, the statistical tests allow us to identify
three groups of methods:
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Fig. 6. Predictive performance (recall at 1% FPR) of each method over time on the
BAF dataset. The left panel shows the median recall per method across experiments
(solid lines) and their interquartile ranges (shaded). The right panel presents statistical
comparisons at each time step, where each point represents the average recall across
experiments, and brackets group methods that are not signi�cantly di�erent, after
correcting for multiple comparisons.

� MTAE, DANN, BL-A and BL-S show similar levels of recall, maintaining a
stable distribution of predictive performance over time. This suggests that
there is a limited bene�t from the additional target domain data and labels.

� MAN and BL-T begin to perform signi�cantly worse than the previous group
of methods, but they improve steadily over time (gaining on average 2 per-
centage points of recall per model update) and eventually reaching the same
level of performance. This improvement is not surprising, since both methods
use exclusively labeled data from the target domain to train their classi�ers.

� KMM and MME are consistently surpassed by the other methods. While
MME maintains a relatively stable performance throughout, KMM is im-
proving at the same rate as the previous group.

Furthermore, we observe that the performance of methods such as MTAE
and BL-S, which do not use any target data during training, is similar to the
performance of BL-T, which follows the traditional ML approach of only using
in-domain data to train. This suggests that the source and target domains in
the BAF dataset are relatively similar, which means that there is great potential
for sharing knowledge across domains. Alternatively, we could adapt the trans-
formation ranges to simulate a setting with more di�erences between domains.
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Fig. 7. Predictive performance (recall at 1% FPR) of each method over time. These
panels show the results from two speci�c experiments (one from each dataset) that
con�ict with the general insights derived from the general analysis.

5.3 Practical implications

Our experimental results highlight how the performance of di�erent TL meth-
ods is a�ected by the evolving data availability conditions. In general, methods
that do not require target domain labels maintain stable but potentially limited
performance, while methods that leverage target labels tend to noticeably im-
prove as more data becomes available. However, the extent and timing of this
improvement vary across settings, meaning that both the e�ectiveness of these
methods and the value of target labels depend on the speci�c characteristics of
the dataset. Recognizing these trends is essential for guiding real-world deploy-
ment decisions, helping practitioners select methods that align with their speci�c
constraints and assess the cost-bene�t of target labeling e�orts.

For example, as seen in our Acquirers case study, practitioners may observe
a clear performance gap between methods that leverage labeled target data and
those that do not. This gap suggests signi�cant domain drift, making it di�cult
to share knowledge between domains. In such cases, ML practitioners may de-
cide to conduct a thorough exploratory data analysis to detect potential issues
in the data collection pipeline. They may also explore data pre-processing tech-
niques, such as feature normalization, to mitigate domain discrepancies. If the
performance gap persists, deploying a DG-based solution initially can be a viable
approach, but obtaining labeled target domain data should remain a priority to
improve model performance.

Additionally, our results from Acquirers show that MDL methods (such as
MAN and BL-A), which optimize performance across multiple domains simulta-
neously, perform comparably to domain-speci�c solutions. In those cases, prac-
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titioners can bene�t from these centralized solutions by minimizing the number
of models that need to be developed and maintained. Conversely, as seen in
the BAF dataset experiments, practitioners may �nd that models trained exclu-
sively on source domain data achieve performance levels similar to traditional
in-domain models. In those scenarios, DG methods can be con�dently deployed
for new domains without requiring immediate target domain labels, signi�cantly
reducing early labeling e�orts and accelerating model deployment timelines.

Finally, we highlight the importance of repeating multiple variants of the
experiments to ensure robust conclusions. Figure 7 illustrates two speci�c cases
that deviate from the general trends observed in our main analysis. In the left
panel, the results show that methods leveraging labeled target domain data, such
as MAN and BL-A, only begin to outperform the other methods 12 weeks after
the target domain appears, which is twice as long as observed in Section 5.1.
In the right panel, the results show that MAN and BL-T improve steeply over
time, eventually surpassing all other methods, whereas the aggregated results
in Section 5.2 indicate no signi�cant performance advantage for these methods.
These inconsistencies demonstrate the risk of drawing misleading conclusions
from isolated experiments, which our evaluation framework helps to mitigate.

Beyond predictive performance, robustness over time is crucial for real-world
deployment. Some methods may maintain more stable performance, while others
can exhibit a larger variance. In high-risk applications such as fraud detection,
consistency may be preferable to occasional peaks in performance. Another im-
portant factor when comparing ML methods is computationally e�ciency, as
highlighted by the KMM method. Evaluating methods in terms of training time
or resource usage could provide further insights, and integrating such metrics into
the framework is a promising direction for future work. Other practical trade-
o�s, such as model update complexity or explainability, may also be considered
when selecting a TL method for real-world use.

6 Conclusion

In this paper, we introduce an evaluation framework designed to assess transfer
learning methods under evolving data availability conditions. Unlike traditional
static benchmarks, our framework simulates the progressive arrival of data and
labels, allowing for a more realistic and comprehensive evaluation of TL ap-
proaches in dynamic settings. Additionally, by generating multiple realistic do-
main variations from the same dataset and applying controlled transformations,
the framework enables systematic testing across diverse and realistic scenarios.
We demonstrate the capabilities of our framework through a case study on a pro-
prietary dataset of card payment transactions, and perform an analogous study
on the publicly available BAF dataset for reproducibility. Our results illustrate
how practitioners can leverage the framework to analyze TL performance trends
over time, identify promising methods under varying data availability scenarios,
and make informed decisions regarding deployment.
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A natural concern with evaluation methodologies is how much the observed
results depend on speci�c design decisions. To address this, we use the framework
to systematically conduct a large number of experiments with diverse and real-
istic variations, and report distributions of performance metrics and statistical
signi�cance to highlight trends that are consistent across the di�erent settings.
Nonetheless, we do not claim that our results generalize to all possible real-world
conditions. Rather, the framework is designed to support this type of studies:
by modifying transformation types, parameter ranges, or scheduling strategies,
users can tailor experiments to re�ect domain-speci�c assumptions and assess
method performance under conditions relevant to their application. Future work
may extend this by systematically analyzing sensitivity to each design compo-
nent or by exploring generalization across broader use cases.

Overall, our framework improves upon traditional evaluations to address
practical industry needs, providing a valuable tool for developing robust and
adaptable machine learning solutions in dynamic real-world environments.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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