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Abstract. Deep learning excels in time-series data mining, yet offline-
trained models often degrade when faced with dynamic marine observa-
tion data. To address this, we propose a brain-inspired online learning
and replay framework for efficient marine time-series data prediction.
The proposed framework tackles concept drift not only by updating the
parameters of its internal modules but also by employing an attention
mechanism to adaptively assign importance to these modules, and in-
corporating a neuroscience-inspired memory replay mechanism for rein-
forcing past knowledge. Unlike traditional deep learning models reliant
on extensive historical data, our framework enables cold-start learning
and inference, making it ideal for environmental monitoring stations with
limited data where offline models struggle to generalize. We further intro-
duce the first marine data prediction benchmark dataset MarineDrift-1.0,
covering key marine environmental indicators with natural conecpt drift.
Experiments on this dataset demonstrate the model’s superior perfor-
mance over state-of-the-art methods. Notably, the framework is model-
independent, allows seamless integration with various models, delivering
strong results even with simple architectures.

Keywords: ocean · time series · concept drift · online deep learning ·
variational auto-encoders

1 Introduction

In recent years, the rapid expansion of Internet of Things (IoT) systems has
driven the real-time generation of massive time-series data from sensors and
devices, particularly in environmental monitoring such as ocean observation.
Ocean buoys equipped with multi-parameter sensors continuously collect critical
marine data including water temperature, salinity, wind speed, and pollution
levels. Forecasting such data provides technical support for monitoring dynamic
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marine ecosystem evolutions, early environmental risk warnings, and scientific
decision-making.

Though Deep learning (DL) models have demonstrated effectiveness in time
series data forecasting[1,2]. These models require sufficient training data and
assume static input-output relationships. In contrast, marine sensor time series
data often exhibits fluctuating patterns with evolving underlying distributions
(Concept Drift or Distribution Shift) [3,4,5]. As shown in Figure 1, a marine sen-
sor time series consists of segments with distinct distributions. The drift disrupts
the assumption of stationarity, Thus current Deep Learning approaches face the
challenge of Stability-Plasticity Dilemma [6]. As data evolves unpredictably,
static forecasting models experience a decline in performance.

Fig. 1. Conceptual drift occurs in a marine time-series data stream, which can be
divided into 18 distinct segments with ADWIN algorithm, each exhibiting a different
distribution.

This challenge has sparked extensive research into methods for addressing
concept drift in time series analysis [7]. There are two distinct but interconnected
approaches: Online Learning (active mode) and Incremental Learning (lazy
mode). Online learning relies on scalable and efficient algorithms to sequentially
process training instances from a data stream, one by one, to learn the model
[8,9,10]. On the other hand, incremental learning updates the model when a
batch of data instances arrives[11]. In this paper, we focus methods in the context
of active mode. There is still room for improvement in active mode methods
specific to marine time series data, the motivation of this work is as follows:

– Motivation 1 (Enhancing Model Adaptability): Existing online models pri-
marily adjust hidden layer parameters while overlooking structural adaptation.
Given numerous marine variables and monitoring scenarios, customized model de-
signs are impractical, necessitating self-evolving architectures that autonomously
balance model capacity with environmental demands.

– Motivation 2 (Catastrophic Forgetting Prevention): MLP-based models in-
herently suffer from catastrophic forgetting [12], where new knowledge acquisition
overwrites previous patterns [13]. Many existing approaches rely on storing and
ensembling historical models to incorporate past knowledge. However [14], storing
intermediate models can quickly become unmanageable on resource-constrained
marine observation devices.

– Motivation 3 (Cold Start Learning): In under-monitored environments, the
lack of sufficient historical data hampers the development of deep learning (DL)-
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based online learning models, as they typically require pre-existing data to warm
up the model, followed by online learning and inference on the data stream (e.g.,
FSNet [15] and OneNet [16]). We prefer a ‘Cold Start’ learning paradigm that
can be applied directly to the stream, quickly adapting to target time series data
without initial training.

To address these challenges, we propose a Brain-inspired Replay Adaptive
Incremental Network built on a Variational Autoencoder (BRAIN-VAE). The
model integrates two neuro-inspired strategies: A modular attention mechanism
that emulates functional specialization in brain regions, where distinct neural
modules dynamically reconfigure their contributions for specific temporal pat-
terns, akin to how visual and auditory cortices process separate patterns. A
generative memory replay system that mitigates catastrophic forgetting by syn-
thesizing pseudo-experiences of historical patterns through latent space gener-
ation, mirroring hippocampal-neocortical interactions in memory consolidation.
Furthermore, we introduce the MarineDrift-1.0 dataset—the first open-source
dataset specifically designed for ocean data mining with natural concept drift.
Experimental results on this dataset show BRAIN-VAE significantly outperforms
all baselines in cold-start settings.

2 Backgrounds and Related Works

2.1 Learning on Time Series with Concept Drift

Concept drift is prevalent in sensor time - series data due to unpredictable fac-
tors like environmental changes and pollutant accumulation. Some prior studies
have tackled this issue from the Domain Adaptation perspective in Transfer
Learning, e.g., the ADARNN model [17]. However, these methods are limited
to offline training of pre-available time series data. Online Learning methods
include the Dynamically Scalable Network (DEN) [18], Deep Evolutionary De-
noising Autoencoder (DEVDAN) [19] and Neural Networks with Dynamically
Evolved Capacity (NADINE) [12], which evolves the structure dynamically and
adjust the representational capacity; the HSN-LSTM [20], the first to embed an
Adaptive Hybrid Spike (AHS) module in LSTM for stream-based prediction in
concept-drift environments; and the FSNet [15] and OneNet [16] models employ
a dynamic adaptive mechanism and enhance the effectiveness of online learning
through a complementary learning paradigm, representing the most advanced
methods in the current field of time-series online learning.

2.2 Catastropical Forgetting and Brain Memory Replay

Deep neural networks (DNNs) excel in diverse tasks but suffer from catastrophic
forgetting during sequential learning, losing previously acquired knowledge [13].
For example, LSTM/RNN models experience exponential decay of long-term
memory, degrading performance as critical temporal patterns are rapidly forgot-
ten [21]. Conventional replay-based approaches mitigate forgetting by ensembling
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past learned models [14], but these methods are computationally inefficient and
impractical for real-time IoT systems due to storage constraints. In contrast, the
human brain employs scalable Memory Replay during sleep/awake SWR events,
where the hippocampus coordinates neocortical reactivation to stabilize mem-
ories [22,23]. The Complementary Learning Systems (CLS) Theory posits that
this process consolidates experiences via hippocampal-neocortical interactions
[24]. Notably, brain replay abstract representations of learned patterns
rather than raw data [25], suggesting no need for full historical data
storage. Inspired by this mechanism, we propose a generative replay neural net-
work for marine time-series forecasting. Our model enables efficient continuous
learning in resource-constrained IoT environments.

3 Methodology

3.1 Problem Definition

Online learning algorithms feature instantaneous forecasting and learning. The
model iteratively updates parameters using per-data-point loss and gradients.
Let X = x0, x1, ..., xt, ..., xT denote real-time time-series data from a sensor,
where T is unbounded. Under the online setting, data arrives sequentially: for
forecasting at time t, only historical data x0, x1, ..., xt−1 are available. The model
generates predictions x̂t using this past window, then updates parameters with
the loss computed from the observed xt. For multi-step forecasting with horizon
h > 1, the target sequence {x̂t, x̂t+1, ..., x̂t+h} is predicted, and loss is computed
once the entire window is observed.

Fig. 2. The proposed online learning framework for dynamic marien time series data
forecasting.
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3.2 Overall Structure of the BRAIN-VAE

The BRAIN-VAE model integrates several key functions, including VAE-based
generative learning mechanism, attention mechanisms, online learning mecha-
nism, and brain-inspired replay mechanism. Accordingly, the BRAIN-VAE model
is structured into three pathways, are shown in Figure 2:
– The VAE-based encoder-decoder pathway for capturing latent repre-

sentations of time series data and generating reconstructions.
– The Attention-based forecasting fusion pathway, which dynamically

weights the contributions of different layers for real-time prediction.
– The Brain-inspired memory replay pathway, which implement a gener-

ative replay mechanism to retain previously learned experience and prevent
catastrophic forgetting

3.3 VAE based Encoder-Decoder Pathway

The BRAIN-VAE model is built upon the Variational Autoencoder (VAE) struc-
ture, a generative model that is capable of learning distribution parameters
(mean and variance) of latent factors and generating data based on learned
distributions.

– Encoder: Given an input sequence x = {xi, xi+1, . . . , xT }, the encoder out-
puts the mean (µ) and variance (σ2) of the latent variables. These latent
variables z are sampled from a Gaussian distribution:

h =

K∑
k=1

αkhk

µz = fµ
linear(h)

σz = fσ
linear(h)

(1)

Let h denote the concatenated hidden representations derived from the in-
ternal encoders. The attention weight α for the concatenation operation is
computed through the proposed attention-based forecasting fusion pathway,
which will be elaborated in the subsequent section.

– Reparameterization Trick: To enable backpropagation during training,
the reparameterization trick is employed. Instead of directly sampling z from
N (µz, σ

2
z), a random noise vector ε is sampled from a standard normal dis-

tribution, and z is sampled by:

z = µz + σz · ε, ε ∼ N (0, 1) (2)

This reparameterization allows the latent space to remain differentiable, thus
facilitating gradient-based optimization.

– Decoder: The decoder reconstructs the input data by generating x′ from
the sampled latent variables:

x′ = fdecoder(z) (3)

The reconstruction loss is minimized to ensure that the latent space captures
meaningful information.
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3.4 Attention-based Forecasting Fusion Pathway

Dynamic representational capacity adjustment is vital for time-series forecasting
under concept drift [26,19]. Specifically, we aim to develop a model capable of
performing efficient inference with a ‘cold start’ fashion while dynamically adapt-
ing its representational capacity to the evolving stream. We realize it through
a complementary inference pathway integrating internal encoders’ information
and dynamically balancing contributions via an attention mechanism.

The BRAIN-VAE model supports integrating multiple time-series encoders
as internal modules, thereby enhancing the learning capability of temporal repre-
sentations. The BRAIN-VAE model synthesizes its forecast by assigning weighted
importance to the predictions generated at each module. Modules contributing
less relevant information to the current forecast receive lower weights, resulting
in a final prediction that aggregates the forecasts from all internal modules as a
weighted sum, formulated as:

hk = fk
encoder(x)

ykpred = fk
pred(hi)

ypred =

K∑
k=1

αiy
k
pred

(4)

, fencoder(∗) and fpred(∗) transforms the original sequence x into intermediate
representation and localized forecasts, and hi represents the hidden representa-
tion of the ith module. The weight αi is recalculated dynamically through the
following re-weighting mechanism. To update the model iteratively, we incorpo-
rate the re-weighting operation, which is implemented based on an feed forward
neural network based Attention Network, formulated as:

αk = fattention(hk) (5)

This dynamic attention mechanism adaptively adjusts module contributions via
softmax-normalized weights, quantifying their importance in capturing time-
varying patterns. Unlike fixed-weight architectures, this enables rapid cold-start
convergence while allowing modules to dynamically specialize based on input
characteristics, enhancing adaptability to evolving data distributions and im-
proving prediction accuracy.

3.5 Brain-inspired Memory Replay Pathway

Drawing on cognitive neuroscience, we incorporate a brain-inspired replay mech-
anism into the BRAIN-VAE model. Instead of replaying or generating the orig-
inal raw data, it internally replays high-level hidden representations. This con-
cept stems from the discovery in human brain hippocampal memory reactivation
process that reactivating abstract representations tied to past experiences. Im-
portant components related to the replay strategy is described as follows:
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Experience Replay Buffer Define the replay buffer D = {ei}Ti=1 where each
stored experience ei contains:

– Experience index i ∈ R
– Latent mean µ

(i)
z ∈ RZdim

– Latent variance σ
(i)
z ∈ RZdim

– loss L(i)
BRAIN_V AE

Priority Scoring Function Define the priority network θpriority : Rdϕ →
R with input feature vector, the feature vector is built based on the stored
experience:

ϕ(i) =
[
µ(i)
z , σ(i)

z , µ(t)
z , σ(t)

z ,L(i)
BRAIN_V AE ,L

(t)
BRAIN_V AE , ∆d(i,t)

]
(6)

The temporal difference is calculated by ∆d(i,t) = t−i, it reflects the influence of
the past experience in time i to data in current time t. Priority score (expected
reward) is calculated on the feature:

R
(i)
expected = θpriority(ϕ

(i)) (7)

Selection Strategy The z selection and replay policy is as follows:

Pselect(ei) =

1, if i = argmax
j

R
(j)
expected

0, otherwise
(8)

Inspired by reinforcement learning, we introduce the reward-based optimiza-
tion strategy that leverages the experience feature ϕ(i) to compute a performance-
based reward signal. This reward quantifies the prediction performance enhance-
ment achieved through experience replay of the selected experience ei This strat-
egy ensures that the model consolidates both new and previously learned infor-
mation to enhance online prediction with a low-cost fashion.

3.6 Loss functions and Parameter Optimization

For the BRAIN-VAE, the most important learning objective is to minimize the
forecast bias, hence we need first define the forecast bias in objective function.
The Forecast Loss function include the forecast loss of each module and the
ensemble forecast loss, as follows:

LPj
=

H∑
h=1

MSE
(
yj,h

′
, yj,h

)
LP =

H∑
h=1

MSE

(
K∑

k=1

αky
′
k,h, yk,h

) (9)
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In addition to the loss function of forecast, the training of the BRAIN-VAE
model also needs the guidance of two other loss functions. One of them is the
Kullback-Leibler divergence loss (KL loss), which serves to measure the difference
between the posterior distribution q(z|x) and the standard normal distribution
p(z). The KL-loss is defined as:

LKL = −0.5 ∗
Zdim∑
m=1

(1 + log(σ2
m)− µ2

m − σ2
m) (10)

The other is Reconstruction loss, which can be L1 or L2 Loss, as follows:

LRec = MSE(x, x′) (11)

Finally, in order to optimize the BRAIN-VAE model, we need to minimize
the above four losses simultaneously, namely:

LBRAIN_V AE =

K∑
k=1

LPj + LP + LKL + LRec (12)

For the Priority Network, we introduce the reward-based optimization strat-
egy, the reward signal is based on prediction improvement. The larger the loss
decrease after replay, the higher the reward assigned, as follows:

R
(i)
actual = L(i)

BRAIN_VAE︸ ︷︷ ︸
pre-replay

−L(i)
BRAIN_VAE︸ ︷︷ ︸
post-replay

(13)

The Priority Network loss Priority Loss is as follows:

Li
priority =

(
R

(i)
expected −R

(i)
actual

)2
(14)

The The training process is illustrated as follows:

Algorithm 1 Optimization Procedure for BRAIN-VAE Model
1: Initialize main model θmain and priority network θpriority

2: for each time step t = 1 to T do
3: Generate prediction yt and latent zt
4: Compute loss Lt

BRAIN−V AE before replay and store experience et in D
5: if t mod K = 0 and |D| > 0 then
6: Build feature vector on D and compute priority scores (expected reward) for

the stored experiences R
(i)
expected = θpriority(ϕ

(i))
7: Select experience ei from D with top priority score
8: Replay the selected experience and compute loss of the replayed experience,

and update the main model θmain.
9: Recompute the loss Lt

BRAIN−V AE for current time t after replay, get the
actual reward (prediction improvement) R

(t)
actual

10: Compute the reward loss of the Priority Network, and update the the model
θpriority;

11: end if
12: end for
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In practice, we can set the replay frequency K = 1, and at the end of each
round of forecast, the model adjusts itself based on the instantaneous loss before
the coming rounds. The error derivatives of BRAIN-VAE model are backpropa-
gated to each of the internal module to adjust the corresponding parameters.

4 Experiments

4.1 Experimental Data, Metrics and Environment

The MarineDrift-1.0 dataset is constructed using in-situ near-real-time marine
observation data from buoy networks under the MO category of the Copernicus
Marine Service4.This dataset currently contains six critical physical and bio-
geochemical parameters essential for monitoring marine environmental dynam-
ics: sea temperature (TEMP), salinity (PSAL), dissolved oxygen concentration
(DOX1), turbidity (TUR4), chlorophyll-a concentration (CPHL), and horizon-
tal wind speed (WSPD). To ensure data representativeness, we implement a
two-stage concept drift detection framework. First, the ADWIN (Adaptive Win-
dowing) algorithm dynamically identifies concept drift phase through adaptive
time window adjustments. Second, the Wasserstein distance metric quantifies
the magnitude of detected drifts, providing an interpretable measure of distri-
butional divergence between sequential data segments.

Table 1. Statistics Information of Selected Experimental Data from MarinShift-1.0

Dataset Domain # Time Series Min Length Mean Length Max Length Total Observations Forecast Horizon

CPHL BGC 5 6376 46391.6 70000 231958 {1,24,48}
DOX1 BGC 5 14524 38249.4 79046 191247 {1,24,48}
PSAL Physical oceanography 5 11701 17179.8 28987 85899 {1,24,48}
TEMP Physical oceanography 5 12796 19321.2 34361 96606 {1,24,48}
TUR4 BGC 5 4398 9214.8 15542 46074 {1,24,48}
WSPD Meteorological 5 8045 34417 75595 172085 {1,24,48}

In this work, for experimental validation, we curated challenging subsets from
the MarineDrift-1.0 dataset exhibiting substantial distributional shifts. These
subsets provide a rigorous testbed for evaluating model adaptation capabilities
under realistic marine environmental non-stationarity conditions. Each time se-
ries was split into warm-up (30%) and online-inference (70%) phases. The warm-
up data serves to train traditional offline models and several online learning mod-
els that need warm-up phase, also used to normalize the online-inference data.
The online-inference data is used for performance validation across all methods.

4 https://data.marine.copernicus.eu/product/INSITU_GLO_PHYBGCWAV_
DISCRETE_MYNRT_013_030/files?subdataset=cmems_obs-ins_glo_phybgcwav_
mynrt_na_irr_202311--ext--history

https://data.marine.copernicus.eu/product/INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030/files?subdataset=cmems_obs-ins_glo_phybgcwav_mynrt_na_irr_202311--ext--history
https://data.marine.copernicus.eu/product/INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030/files?subdataset=cmems_obs-ins_glo_phybgcwav_mynrt_na_irr_202311--ext--history
https://data.marine.copernicus.eu/product/INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030/files?subdataset=cmems_obs-ins_glo_phybgcwav_mynrt_na_irr_202311--ext--history
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Fig. 3. Representative examples of concept drift in 6 key types of marine observational
time series data.

4.2 Experimental Settings

Settings for BRAIN-VAE: The BRAIN-VAE model employs a three-module
architecture, each adopts the encoder structure of TS2Vec, as follows:

Module 1 (Global Feature Extraction Module): This module is dedicated to
extracting global contextual information from the entire historical time series
window. By encoding the input sequence as a holistic entity, it aims to capture
long-term dependencies and macroscopic patterns that span the entire segment,
such as trends and seasonality. The module synthesizes and refines feature rep-
resentations across all time steps to generate a single, fixed-dimensional context
vector. This vector is subsequently fed into a linear regressor to produce predic-
tions from a macro-level perspective.

Module 2 (Local Feature Extraction Module): This module focuses on cap-
turing local patterns within the original univariate time series. It employs a
TS2Vec framework with an input dimensionality of 1 to process the raw univari-
ate time series, leveraging hierarchical dilated convolution operations to extract
multi-scale temporal features. For prediction, this module exclusively extracts
and utilizes the output feature vector from the final time step of the sequence.
Finally, this feature vector is mapped to the prediction space via a linear regres-
sor.

Module 3 (Temporal Feature Enhancement Module): This module integrates
additonal 7-dimensional timestamp features (minute, hour, day of week, day of
month, day of year, month, and week of year) and concatenates them with the
original time series data to form an 8-dimensional input. Significantly improv-
ing the model’s ability to capture periodic, seasonal, event-driven patterns, and
complex temporal dependencies across scales in ocean.

The dimensionality of latent variable z is set to 8. In terms of the Attention
Network and Priority Network, we both set up 2 hidden layers with 50 neurons
in each layer.

Settings for Baselines: Considering that BRAIN-VAE is fundamentally a
deep learning model, we compared it with several representative deep learn-



Dynamic Ensemble and Replaying Model for Marine Data Prediction 11

ing models for time series data prediction. This includes models without online
learning capabilities, as well as models designed for online learning. The detailed
settings for the baselines are shown in Table 2.

Offline Learning Models includes: 1) RNN-LSTM [27]; 2) Transformer
[28] and its variants 3) Informer [29], 4) FEDFormer [30], and 5) Autoformer
[31]; 6) NBeats [32], the M-Competition 2020 champion; Pre-trained time se-
ries model 7) PatchTST [33]; and 8) AdaRNN [34], a domain adaptation
framework employing Temporal Distribution Matching.

Online Learning Models includes: 1) HSN-LSTM [20], which integrates
an Adaptive Hybrid Spike module and dual attention mechanisms into LSTM for
concept drift-aware stream prediction; 2) NADINE [12], a dynamic neural net-
work that evolves its architecture by pruning/growing hidden units/layers based
on drift detection; 3) FSNet [15], inspired by Complementary Learning Systems
theory to combine fast learning with slow adaptation via temporal pattern mem-
ory; and 4) OneNet [16], which dynamically combines temporal/cross-variable
dependency models using reinforcement learning within an online convex pro-
gramming framework. FSNet and OneNet are state-of-the-art (SOTA) models
that serve as strong baselines in online time-series forecasting.

Settings for Ablation Study: To evaluate the brain replay mechanism’s im-
pact, we designed three variants: BRAIN-VAE-RER (random experience re-
play), BRAIN-VAE-WRE (without experience replay), and BRAIN-VAE-
PER (priority experience replay via PriorityNetwork that we adopt). Abla-
tion experiments were also conducted to assess encoder architecture sensitivity
by substituting the original three Ts2Vec-based encoders with TCN (BRAIN-
VAE-TCN). Additionally, we tested the model’s performance without attention
mechanisms, referred to as BRAIN-VAE-woAttn.

4.3 Experimental Results and Discussion

We conducted a comparative evaluation of the BRAIN-VAE model against base-
line methods. As shown in Table 3 and Figure 4, the BRAIN-VAE model not only
excels in prediction accuracy but also demonstrates remarkable stability across
different prediction horizons and diverse data types, showcasing a clear advan-
tage over the baseline methods.. These results highlight the model’s robustness in
handling marine time series data, particularly in addressing distributional shifts.
Notably, our approach was rigorously validated under cold-start settings with-
out any warm-up data. In contrast, all other methods, including state-of-the-art
baselines such as FSNet and OneNet, rely on warm-up data for initialization.
Furthermore, our analysis reveals that FSNet exhibits less robustness compared
to OneNet and, in some cases, fails to outperform even offline methods.

In the ablation study, as illustrated in Figure 5, the choice of replay mecha-
nism significantly impacts the performance of the BRAIN-VAE model. Specifi-
cally, the BRAIN-VAE-PER variant, which employs Prioritized Experience Re-
play, performs better than other models in the vast majority of cases. Mean-



12 Xiang Li et al.

Table 2. Parameter Settings for Comparison Methods

Offline Methods

RNN-LSTM
dimension of LSTM hidden layer: 200
number of LSTM layers: 2
use of bias in LSTM: True

NBeats
stack types: {H-1: generic}, {H-24,H-48: [trend, seasonality]}
number of blocks per stack: 3
hidden layer units: 256

{Transformer
Informer
Autoformer
FEDformer}

model dimension: 512
feedforward network dimension: 2048
number of attention heads: 8
number of encoder layers: 3
number of decoder layers: 1
attention factor: 3

PatchTST

model dimension: 128
feedforward network dimension: 256
number of encoder layers: 3
number of attention heads: 8
patch length: 16
stride: 8

AdaRNN

RNN hidden layer dimension: 64
number of RNN layers: 2
number of domains: 2
data model: TDC
distribution distance function: adversarial distance

Online Methods

HSN-LSTM

membrane potential time constant, τu: 64
spike time constant, τa: 32
initial threshold, c0: 4e-2
dynamic range control parameter, d0: 1.8
time step, dt: 0.01(10ms)

NADINE

network type: stacked
initial hidden layers: 1
stabilization period: 20
anomaly threshold 1: chi2inv(0.99, 168)
chi2inv(0.999, 168)
forgetting factor: 0.98
drift detection error thresholds: {0.001 (drift), 0.005 (warning)}

FSNet

feed-forward network dimension: 2048
model hidden layer dimension: 512
number of decoder layers: 1
number of encoder layers: 2
number of attention heads: 8
sparse attention factor: 5
test batch size: 1
online learning model: full
training method: fsnet

OneNet

model dimension: 32
feed-forward network dimension: 128
number of attention heads: 8
number of encoder layers: 2
number of decoder layers: 1
sparse attention factor: 5
test batch size: 1
online learning model: full
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Table 3. Performance of the BRAIN-VAE model and baseline models.

Model CPHL DOX1

H=1 H=24 H=48 H=1 H=24 H=48
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

BRAIN-VAE 0.1200 0.0348 0.2752 0.1303 0.3561 0.1744 0.1284 0.2431 0.3233 0.1835 0.4143 0.2493
RNN-LSTM 1.2129 0.7007 1.2791 0.7697 1.2873 0.7759 1.5160 1.0581 1.7229 1.2775 1.8434 1.3923
NBeats 0.3128 0.1357 0.5346 0.2595 0.6535 0.3253 0.3593 0.2442 0.6490 0.3887 0.7792 0.5021
Transformer 0.7835 0.3957 1.0258 0.5666 1.0278 0.5759 0.7265 0.4107 1.0493 0.6573 1.2220 0.8219
Informer 0.8494 0.4298 0.9944 0.5613 1.0740 0.6297 0.8116 0.4744 1.1784 0.7544 1.2083 0.8098
FEDformer 0.2812 0.1259 0.5834 0.3167 0.6682 0.3679 0.3048 0.1818 0.6862 0.4198 0.7637 0.4753
Autoformer 0.3950 0.1915 0.6145 0.3434 0.7136 0.3996 0.4002 0.2570 0.7143 0.4603 0.7865 0.5178
PatchTST 0.2743 0.1150 0.5068 0.2558 0.6132 0.3176 0.2712 0.1387 0.6224 0.3659 0.7106 0.4298
AdaRNN 0.6563 0.4481 0.7884 0.5313 1.0645 0.6720 0.3310 0.2046 0.9604 0.7031 0.9843 0.7004
HSN-LSTM 0.6525 0.3446 0.8595 0.4563 0.9336 0.5106 0.6184 0.3243 0.8875 0.5427 1.0505 0.6711
NADINE 0.4007 0.1741 0.6803 0.3809 0.8394 0.4884 0.4465 0.1847 1.2152 0.6640 1.6422 0.9133
FSNet 0.4020 0.2028 0.3435 0.1777 0.3909 0.2031 0.6235 0.4459 0.5898 0.3069 0.5625 0.3499
OneNet 0.2343 0.0938 0.4560 0.2317 0.4958 0.2581 0.2165 0.1099 0.5497 0.3331 0.5721 0.3712

Model PSAL TEMP

H=1 H=24 H=48 H=1 H=24 H=48
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

BRAIN-VAE 0.2953 0.1340 0.9480 0.5856 1.2242 0.8045 0.2198 0.0994 0.6287 0.3842 0.8412 0.5137
RNN-LSTM 4.2336 3.4063 4.8702 4.0146 5.5061 4.6823 3.2687 2.4213 4.2192 3.1841 4.4146 3.3858
NBeats 0.8107 0.5186 1.8068 1.1749 2.2441 1.5172 1.0030 0.6786 1.5496 0.9989 2.1463 1.4210
Transformer 0.8027 0.5094 2.4351 1.7783 3.3364 2.4657 1.2431 0.7707 2.7991 1.8921 3.4034 2.4428
Informer 1.3949 0.9856 2.4642 1.7923 3.1687 2.3294 1.7742 1.2145 2.8586 2.0476 3.2066 2.3762
FEDformer 0.6396 0.3796 2.2741 1.6161 2.5236 1.8353 0.8266 0.5282 1.7587 1.2064 2.0894 1.4110
Autoformer 1.2059 0.8755 2.3049 1.6566 2.9015 2.1718 1.1957 0.8272 1.8325 1.3267 2.0443 1.5037
PatchTST 0.6136 0.3350 1.8009 1.1721 2.3252 1.5422 0.7651 0.4506 1.5439 0.9190 1.8213 1.0751
AdaRNN 1.0281 0.8156 4.0677 3.3787 3.9977 3.2982 1.0847 0.8079 2.8720 2.3254 3.3872 2.5916
HSN-LSTM 0.9187 0.5960 2.0921 1.5183 2.6806 2.0383 1.3076 0.8061 2.3727 1.6801 2.8312 2.0698
NADINE 2.0536 0.5998 5.3457 2.9008 6.8524 3.9764 1.2894 0.5368 3.4520 1.6377 5.2622 2.6760
FSNet 1.6107 1.0467 4.5993 2.0053 2.5862 1.4668 1.6133 0.9453 2.2440 1.4468 2.4191 1.6479
OneNet 0.5730 0.3291 1.7088 1.2038 2.0060 1.4595 0.6825 0.4075 1.2452 0.8421 1.6971 1.2028

Model TUR4 WSPD

H=1 H=24 H=48 H=1 H=24 H=48
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

BRAIN-VAE 1.3968 0.5463 2.8633 1.5436 3.0698 1.7291 0.6496 0.3076 1.5595 0.9558 1.7178 1.1927
RNN-LSTM 7.0597 5.5112 7.2619 5.6497 7.6757 6.1001 4.5227 3.1496 4.9202 3.4894 5.0434 3.6070
NBeats 3.9913 2.2494 4.8533 2.7216 5.1332 3.0728 1.9122 1.1723 2.9384 2.0149 3.6390 2.5035
Transformer 5.1282 3.7572 5.9702 4.3753 6.6822 4.9547 2.6666 1.6509 3.7313 2.5430 4.3578 2.9860
Informer 5.0593 3.4409 6.4531 4.8229 7.1578 5.5133 2.8657 1.8281 4.1323 2.8662 4.3691 3.0360
FEDformer 4.3692 2.7313 5.1605 3.3677 5.6446 3.7936 1.8921 1.2258 2.7489 1.9040 2.9713 2.0751
Autoformer 4.2407 2.5758 4.9667 3.1035 5.2695 3.3313 2.1136 1.3943 2.6700 1.8512 2.9566 2.0761
PatchTST 3.9400 2.0615 4.5397 2.4823 4.9003 2.7783 1.8384 1.1825 2.5421 1.7481 2.8270 1.9613
AdaRNN 4.7166 3.0292 6.4782 4.8479 6.1856 4.4350 1.8935 1.2347 3.4822 2.3841 3.9063 2.7208
HSN-LSTM 4.4713 2.9312 6.0312 4.3518 6.5432 4.9223 2.2278 1.3779 3.3015 2.2822 3.8957 2.7278
NADINE 4.7241 2.6707 5.6897 3.4842 6.6388 4.4067 2.3424 1.5615 3.5149 2.4989 3.8332 2.7577
FSNet 4.0991 2.1153 4.8031 2.9947 5.4131 3.7947 1.9539 1.2961 1.7099 1.1518 1.7038 1.1465
OneNet 3.2020 2.1984 3.9796 2.6236 4.4182 3.1360 1.4301 0.8046 2.6530 1.7941 2.9708 1.9418
1 We conducted 2340 experiments in total, and it is not feasible to present them all specifically. All data presented

above are the average results across time-series instances of each marine data type. The detailed tables can be
obtained by contacting the author..
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while, the BRAIN-VAE-RER variant, which employs a random experience se-
lected replay mechanism, performs notably worse than even those models that
do not utilize any replay mechanism at all. This comparison strongly demon-
strates that the strategy of strategically selecting samples for replay is effective
and helps the model to learn better. Additionally, it was observed that removing
the attention-based fusion module (BRAIN-VAE-woAttn) results in a noticeable
decline in predictive performance, underscoring the critical role of the attention
layer in the model’s effectiveness. The BRAIN-VAE model is designed to seam-
lessly integrate any type of time series model as its internal module; even when
incorporating relatively simple structures such as TCN (Temporal Convolutional
Network), the model achieves competitive performance, showcasing its flexibility
and robustness in handling diverse time series data.

To gain deeper insights into the importance reweighting behavior and the
dynamics of the latent variable, we conducted a case study using the PSAL-3
dataset. As shown in Figure 6, the attention weights across the three modules
exhibit dynamic adjustments rather than remaining static throughout the online
learning process. Notably, a significant change in weight allocation occurs during
periods of data distribution shift. Specifically, Module-1 tends to contribute less
in high-frequency data segments, while BRAIN-VAE assigns higher weights to
Module-2, which is better suited for capturing and adapting to high-frequency
patterns. To further investigate the behavior of the latent variable z, we selected
several time points to extract its distribution parameters and plotted the corre-
sponding probability density. The results demonstrate that the distribution of
z undergoes continuous changes over time, reflecting its dynamic adaptation to
the evolving patterns in the time series.

4.4 Performance and Deployment Considerations

The operational deployment of online learning models in large-scale systems re-
quires careful consideration of computational efficiency and scalability. Our im-
plementation shows that edge devices in the network have limited computational
capacity, making them unable to support complex AI algorithms—especially in
high-throughput environments. Therefore, our deployment architecture adopts
a compute-offloading paradigm: sensor data skips local processing and is di-
rectly streamed to a centralized computing facility, the National Supercomput-
ing Center in Jinan. As a core partner in the ocean observation network, the
center handles data collection, processing, and analysis. Specifically, we design
a supercomputing-parallelized architecture to handle massive concurrent data
streams, distributing high-throughput intelligent computations across thousands
of cores. Each stream is assigned to an individual core for end-to-end online
learning and inference, addressing the inability of edge devices to perform AI
model inference services in high-throughput scenarios. This centralized, high-
performance framework meets BRAIN-VAE’s computational needs and provides
a robust, scalable solution for deploying advanced AI in marine monitoring sys-
tems.
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Comparison of Model Performance Across Different Datasets and Prediction Lengths

Fig. 4. A box plot comparison of model performance across the experimental datasets,
presenting results in a consistent order from left to right: BRAIN-VAE, RNN-LSTM,
NBeats, Transformer, Informer, FEDformer, Autoformer, PatchTST, AdaRNN, HSN-
LSTM, NADINE, FSNet, and OneNet.
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Fig. 5. Performance comparison of BRAIN-VAE variants on 5 time series in TUR4
datasets across prediction horizons (1, 24, 48 steps) using RMSE.

Fig. 6. An illustration of the probability density of z (the lantent representation space
is set as 2) change across Prediction Steps for PSAL-3 data.
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5 Conclusion

In this work, we propose BRAIN-VAE, an online deep learning model tailored for
marine observation data forecasting. BRAIN-VAE integrates a variational au-
toencoder backbone with an attention mechanism to effectively fuse information
from multiple modules, enabling robust generalization capabilities for handling
marine data with concept drift. Notably, BRAIN-VAE operates efficiently in
cold-start scenarios without the need for pre-training or storing historical mod-
els. Instead, it employs a generative replay mechanism that reconstructs hidden
representations of past data distributions, akin to a ‘hippocampus’, to serve as
pseudo-replay data. This allows the model to ‘review’ past experiences most rel-
evant to the current patterns, making it particularly well-suited for long-term,
real-time processing of marine observation data streams. Additionally, we in-
troduce MarineDrift-1.0, the first dataset specifically designed to study concept
drift in marine observation data. This dataset provides a valuable resource for
evaluating forecasting models in marine environments. To promote further re-
search and reproducibility, we make the source code and MarineDrift-1.0 dataset
publicly available at: https://github.com/muzixiang/BRAIN-VAE

Despite the model’s strong performance, several promising enhancement di-
rections exist. The current univariate BRAIN-VAE framework, featuring a mod-
ular architecture that decouples generative memory replay, multi-module dy-
namic ensembling, and VAE-based representation learning, can naturally scale
to multivariate scenarios. Future work will integrate multivariate encoders and
cross-attention layers to model inter-variable dependencies—requiring no infras-
tructure modifications. Additionally, the model lacks systematic sensitivity anal-
ysis of hyperparameters, e.g., the replay frequency and the number of replayed
experiences. Furthermore, we will quantify the model’s performance in catas-
trophic forgetting scenarios by introducing a dedicated dataset and evaluat-
ing retention of historical knowledge. Finally, we aim to enrich the MarineDrift
dataset with complex periodic patterns and multivariate samples.
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