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Abstract. Polymers are fundamental materials with numerous appli-
cations in everyday life, making their synthesis, characterization, and
property measurement critically important. Machine learning (ML) al-
gorithms offer promising opportunities to accelerate polymer screen-
ing with high accuracy, yet significant challenges persist. Unlike small
molecules with fixed structures, polymers, especially copolymers formed
by polymerizing two or more distinct monomers, can be modeled at mul-
tiple scales (atomic, monomer, or repeat-unit level) and exhibit inherent
variability due to the stochastic polymerization process, which affects
connectivity, chain length, conformations, and compositional complex-
ity. Additionally, the scarcity of labeled polymer data with high-fidelity,
experimentally measured properties poses a challenge for ML training.
In this work, we tackle these challenges by (1) proposing CoPolyGNN
(CoPolymer Graph Neural Network), a multi-scale model that employs
a GNN encoder to learn representations of polymer repeating units or
individual monomers, combined with an attention-based readout func-
tion that aggregates these representations with explicit monomer pro-
portion information; (2) compiling a large dataset of polymers anno-
tated with both simulated and experimentally measured properties; and
(3) introducing a supervised auxiliary training framework to mitigate
data scarcity in polymer property prediction. We empirically validate
CoPolyGNN on datasets of polymer properties measured under real ex-
perimental conditions. Our findings demonstrate that augmenting the
main task with auxiliary tasks leads to beneficial performance gains. Con-
sequently, our work provides a neural architecture and training frame-
work enabling practitioners to predict polymer properties from simple
text notations of repeat units or monomers and their proportions, achiev-
ing strong performance even with limited training data. 4

Keywords: Multitask Learning · Polymers · Property Prediction.

4 Code available at https://github.com/CIDAG/CoPolyGNN
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1 Introduction

Polymers are macromolecules composed of repeating chemical units covalently
bonded to form long chains or networks [21], with versatile properties that make
them essential in everyday products from packaging, synthetic clothing to ad-
vanced biomedical devices [10]. As technology progresses, it is essential to design
polymers with properties that meet the evolving needs of society, such as high-
energy-density capacitors [13], molecular imprinting [20], gas separation [27],
and biocompatible or (bio)degradable materials [28]. However, designing poly-
mers involves navigating a vast space of possible polymeric materials, where few
structure-property relationships are known, and the screening of potential poly-
mers through wet-lab experiments remains expensive and time-consuming, while
simulations, such as those relying on force fields, often struggle to reproduce ex-
perimental properties [37, 4].

Polymer informatics has emerged to accelerate polymer discovery by lever-
aging machine learning (ML) for property prediction [37]. However, polymers
differ significantly from small molecules, whose fixed and well-defined structures
have enabled substantial success using ML models such as graph neural net-
works (GNNs). The exact structure of a polymer is complex and challenging to
characterize precisely due to the stochastic nature of polymerization processes,
resulting in inherent variations in chain length, sequence, and network architec-
ture [36]. This poses challenges in adapting ML models originally designed for
small and well-defined molecular structures to polymers. As a result, polymers
are typically modeled based on their fundamental building blocks, which are
small molecules such as monomers or repeating units. In the literature, several
studies have focused on polymer property prediction, either using molecular fin-
gerprints or one-hot encoding (OHE) applied to these building blocks [34, 4].
An alternative approach has involved using GNNs to learn fingerprints in an
end-to-end fashion, typically based on the graph structure of the monomers [9,
23].

Additionally, polymer informatics also suffers from the challenge of data
scarcity, which limits the accuracy and generalizability of predictive models.
Existing work has considered multi-task learning (MTL) to mitigate the data
scarcity issue through shared learning across related multiple related tasks [25].
In this context, both molecular fingerprints and GNNs have been explored us-
ing data from simulations, experiments, or their combination. For example, [28]
demonstrated that training an MTL model with both simulated and experimen-
tal data improved the accuracy of predicting experimental ring-opening polymer-
ization enthalpy. MTL aims to solve multiple tasks simultaneously, but in prac-
tical applications, there is often a primary focus on a specific polymer property.
In such scenarios, others tasks can serve as auxiliary tasks, facilitating knowl-
edge transfer and improving generalizability of the learned model. This strategy,
known as multi-task auxiliary learning (MTAL), helps the model prioritize the
main task while leveraging auxiliary tasks for knowledge transfer. MTAL could
provide a promising solution to the challenges in polymer informatics, however,
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the effectiveness of this approach depends on careful task selection, as inappro-
priate auxiliary tasks can introduce negative transfer.

This work presents a three hold effort to address the above mentioned chal-
lenges.

– First, we propose CoPolyGNN (CoPolymer Graph Neural Network), a neu-
ral polymer encoder that integrates a GNN-based monomer encoder with an
attention-based readout function to learn copolymer representations at mul-
tiple scales while also handling simpler cases like homopolymers (polymer
comprised of a single monomer or repeating unit). Unlike prior polymer rep-
resentation models, CoPolyGNN explicitly incorporates monomer structural
information and their proportions through an attention mechanism, leading
to more expressive polymer representations.

– Second, we curate a comprehensive polymer property dataset from exist-
ing literature, comprising over 70.000 polymers and their experimental and
simulated properties across 35 unique properties (e.g., chemical reactiv-
ity, electronic, thermal, and other polymer-relevant characteristics) obtained
through simulations and/or experiments. This large-scale dataset serves as
a valuable resource for training robust polymer property prediction models,
particularly in data-limited scenarios.

– Third, we explore multiple MTAL strategies to effectively address data scarcity.
Specifically, we investigate two distinct classes of MTAL approaches: (1)
treating all tasks distinct from the main task as predefined auxiliary tasks
and integrating them into a unified loss function using weighting heuristics
such as Gradient Cosine Similarity (GCS) [6] and Online Learning for Aux-
iliary Losses (OL-AUX) [18]; and (2) assuming that auxiliary tasks are un-
known and dynamically learning an optimal set of auxiliary tasks, as in Task
Affinity Grouping (TAG) [8]. By systematically evaluating these strategies,
we show that MTAL achieves superior performance in most tasks compared
to the single-task learning (STL) version of CoPolyGNN, as well as tradi-
tional methods such as fingerprint-based descriptors. Furthermore, our top
result improves upon the strongest baseline by approximately 50%. These
findings underscore the potential of MTAL in leveraging auxiliary tasks to
enhance learning and generalization, offering a promising approach to miti-
gating data scarcity in polymer informatics.

Together, these contributions provide a self-contained pipeline that allows prac-
titioners to build polymer property prediction models with limited experimental
data while leveraging a rich set of auxiliary tasks and a large-scale polymer
dataset. Our MTAL framework offers a scalable and generalizable solution for
enhancing polymer informatics through data-efficient learning.

2 Background

This section first introduces key aspects of polymers and then guides the reader
to the application of ML in polymer science for property prediction.
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2.1 Basic Concepts of Polymers

Polymers have always been with us, yet the scientific understanding of their na-
ture became clear in the mid-20th century with the rise of plastics. The term
originates from the Greek words poly, meaning many, and mer, meaning unit.
This etymology reflects their fundamental structure, as they are macromolecules
generated through polymerization, in which small molecules called monomers
join together to form long chains. After being incorporated into the polymer,
monomers serve as structural units, establishing stable covalent bonds with ad-
jacent units. If a polymer is composed of a single type of monomer, it is classified
as a homopolymer. If it is composed of two or more distinct monomers, it is
called a copolymer. Additionally, the arrangement of each monomer in the poly-
mer chain influences the classification of copolymers into random, alternating,
block, and graft types [7].

One fundamental concept in polymer science is the repeating unit, which
is the smallest structural segment of the polymer that recurs along the chain.
The repeating and structural units of a polymer may differ. For instance, in a
homopolymer, both units are identical, whereas in copolymers, the arrangement
of multiple monomeric units causes the repeating and structural units to differ.
Moreover, such arrangements lead to diversity in architecture, composition, and
patterning, making copolymers some of the most commercially important poly-
mers, such as those utilized in plastics, rubbers, and coatings. For most synthetic
polymers, structural characteristics (e.g., chain length, architecture) can also be
influenced by stochastic factors during polymerization, regardless of the method.
This results in polymers being polydisperse in molecular weight, meaning that
the molecular weights of the polymers follow a distribution. Therefore, we typ-
ically refer to their average molecular weight, and experimental measurements
reflect this average [7, 21]

In short, polymers pose challenges in structural representation, as their pre-
cise connectivity beyond polymerization points remains uncertain. While some
polymerization methods reduce variations and yield more uniform structures,
a perfectly predictable structure is not guaranteed. For standard ML, which
usually relies on well-defined input representations, this structural variability
requires a careful choice of representation strategies that capture both struc-
tural information and uncertainty. This has resulted in polymers typically being
described by their building blocks, such as their monomers or repeating units.

2.2 Machine Learning for Polymer Property Prediction

Given the complexity of polymers and the vast design space, computational
approaches, such as physical molecular modeling and data-driven methods, have
become attractive for predicting their properties by offering a lower-cost, faster
alternative to experimental characterization. In this realm, polymer informatics
leverages ML to predict diverse polymer properties, such as thermodynamic and
mechanical properties, among others [2]. Such strategies often utilize molecular
descriptors, GNNs, or language model-based methods to extract representations
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from the monomers or repeating units that describe the polymer. Fingerprints
are a traditional type of molecular descriptor, and they rely on domain expertise
to capture the presence or absence of chemical substructures. Popular options
include the hierarchical editing language for macromolecules, which is widely
used in pharmaceutical and industrial applications, the extended-connectivity
fingerprint, Molecular ACCess System (MACCS) keys, and others [13, 39, 31].
Furthermore, OHE and topological descriptors, such as those available in RDKit,
are also commonly applied in these processes [3, 24].

For example, [39] proposed a hierarchical fingerprinting scheme with four
levels to capture physical and chemical interactions that contribute to predict-
ing gas permeation properties. This hierarchical approach starts at the atomic
scale by counting the occurrence of atomic triples. The second level involves
counting building blocks from a predefined list, the third incorporates quan-
titative structure-property relationship descriptors, and the fourth accounts for
morphological descriptors. Instead of focusing on hierarchical fingerprinting, [19]
proposed a data augmentation method based on the iterative rearrangement of
polymer fragments. Specifically, it follows a process similar to window slicing, in
which the repeating unit is disassembled into smaller fragments and recombined
in a way that preserves the polymer backbone. The recombined structure is then
processed into molecular fingerprints.

In contrast, there are studies that extract polymer representations without
relying on handcrafted features. One such direction is GNN-based methods, in
which a graph is used to describe the molecular connectivity of the building
block (i.e., monomers or repeating units), where vertices represent atoms and
edges represent bonds. In cases involving copolymers, the polymer representa-
tion is typically a weighted sum of monomer representations, with weights based
on their ratios [35, 9]. This approach is also a common practice in fingerprint
methods and OHE [25, 24]. [2] introduced a GNN that uses a graph with pa-
rameterized stochastic edges to capture the average structure of the repeating
unit. Following up on this, [9] extended such a framework under self-supervised
learning, considering node-, edge-, and graph-level pre-training tasks to improve
representation learning as a way to reduce the impact of limited data on super-
vised tasks.

Another approach to representation learning involves textual token-based
models, particularly transformer-based methods like TransPolymer [33], Poly-
BERT [15], and PolyCL [38]. In addition, MTL has been explored to exploit
correlations between properties, improving generalizability and mitigating data
scarcity [14, 16]. It is typically implemented as a hard parameter model, rely-
ing on either GNN- [26, 32, 23] or transformer-based [22, 30, 22] encoders. For
example, [23] introduced PolymerGNN, an MTL framework that concatenates
the embeddings from a GNN along with resin properties to predict the glass
transition temperature and inherent viscosity of homopolymers and copolymers.
A different approach uses a fingerprint-based representation in a multilayer per-
ceptron to predict polymer properties from in-house simulation datasets and
experimental measurements reported in the literature [14].
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Nevertheless, most existing methods still rely on either monomer-based or
repeating-unit-based representations separately. For this reason, we propose an
ML model that captures polymer structure with a multi-scale approach within
a unified architecture and replaces a simple weighted sum of monomer embed-
dings with an attention-based readout mechanism that dynamically learns the
contribution of each polymer component. This flexible design extends its ap-
plicability to a broader range of polymer architectures, from homopolymers to
copolymers. Furthermore, we explore our model within an MTAL framework,
which, to the best of our knowledge, has not been previously applied to polymer
data to mitigate data scarcity.

3 Methodology

In this section, we introduce the core workings of CoPolyGNN and the techniques
for training it in the MTAL setting, as illustrated in Figure 1.

∑

w
Task

Selection
Task 

Weighting

G0

Gnfn

f0

Details in panel b)

Details in panel c)

Details in 
panel d)

Fig. 1. Overview of the proposed CoPolyGNN in an MTAL setting. (a) For each task in
the pool of polymer datasets, we first build the graph representation of the monomers,
which are fed to the first component of CoPolyGNN, a GNN encoder that produces
monomer-level embeddings. These monomer-level embeddings are passed through a
readout function to generate a polymer-level embedding for the predictive tasks. After
this, an MTAL scheme is used to assign importance to each auxiliary predictive task
according to the main task. (b) Illustrates the encoding process of p-SMILES into
a graph and highlights the polymerization atom feature to indicate the connectivity
between monomers. (c) Shows the attention-based readout function that weights the
importance of monomers for the predictive task. (d) Depicts the two types of MTAL
strategies used to train CoPolyGNN.

3.1 Polymer Representation

We express a polymer as a set of monomer graphs {G0,G1, . . . ,Gn}, where each
Gi is built on the p-SMILES (Simplified Molecular-Input Line-Entry System) no-
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tation5 and is assigned a monomer fraction fi such that
∑n

i=0 fi = 1. p-SMILES
extends SMILES strings by incorporating the ‘*’ character to represent polymer-
ization points in monomers. We convert p-SMILES into a graph following the
natural molecular encoding, where atoms are represented as nodes and chemical
bonds are treated as edges of the graph. Each atom is represented by a feature
vector, which includes the atom type (with OHE), atomic number, aromaticity,
hybridization states (sp, sp2, and sp3), and the number of explicitly attached
hydrogen atoms, with the addition of a binary feature, where 1 indicates a poly-
merization point and 0 indicates the absence of one. Figure 1(b) shows this
process of reading the p-SMILES string and extracting atomic descriptors using
the RDKit Python package (version 2024.03.6) [17].

3.2 CoPolyGNN

The representation of a polymer requires more than a conventional molecular
graph, as their structure emerges from many factors, such as the combination of
multiple monomers and how often each appears. CoPolyGNN was designed to
handle such complexity by combining two processing blocks to learn a polymer
embedding. The first block is a Graph Isomorphism Network (GIN), which op-
erates on each monomer graph in {G0,G1, . . . ,Gn} for the given polymer. GIN
was chosen for its theoretical equivalence to the Weisfeiler-Lehman graph iso-
morphism test and its strong performance across diverse chemical tasks [12]. It
initiates encoding with a message-passing operation that updates each atom’s
representation over k iterations by aggregating information from its neighbors
and itself, as defined in Equation 1.

m(k)
v =

(
1 + ϵ(k)

)
· h(k−1)

v +
∑

u∈N (v)

h(k−1)
u ,

h(k)
v = MLP(k)

(
m(k)

v

)
,

(1)

where h
(k−1)
v denotes the representation of atom v at iteration k − 1 (note that

h0
v is the initial feature vector of the atom, defined when constructing the graph),

N (v) represents the neighboring atoms of v, ϵ(k) is either a learnable parameter
or a fixed scalar, and MLP(k) represents the multilayer perceptron associated
with the k-th iteration. After k iterations, each atom’s representation encodes
the structural information from its k-hop neighborhood, and monomer-level rep-
resentations are then obtained via average pooling.

The second block employs a readout function that aggregates monomer-level
representations into a polymer-level representation using attention mechanism,
as depicted in Figure 1(c). The attention mechanism dynamically learns the
context-dependent contributions of individual monomer units to the overall poly-
mer behavior. This design captures the fact that interactions between monomers
5 The repeating unit can be interpreted as a simplified form of the monomer-based

representation, where a single graph is used and f0 = 1.
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in a polymer are neither strictly linear nor merely additive. Monomer-level rep-
resentations are projected through three linear layers to compute the query (Q),
key (K), and value (V ) matrices. A dot product is then calculated between the
transformed Q and the sum of K across monomers to capture interactions be-
tween monomers and the global representation. The result is normalized by the
square root of the key dimensionality (dk), followed by a softmax operation,
softmax

(
(FQ)(

∑
i FiKi)

⊤
√
dk

)
V , where F is a diagonal matrix with fi on the diag-

onal, i.e., F = diag(f1, f2, ..., fn). This scales the query and key vectors of the
i-th monomer by its proportion fi before computing the dot product, ensuring
that the monomer contribution to the attention scores are weighted according
to their fractions in the polymer.

3.3 CoPolyGNN Multi-Task Auxiliary Learning

In this section, we discuss the MTAL training strategy for CoPolyGNN. Our
MTL data contains polymer data on 35 different tasks, each with varying num-
ber of examples. During training, we adopt a sampling approach wherein each
task contributes an equally sized batch in each iteration. This ensures balanced
representation across tasks, irrespective of the data size of individual tasks. After
each batch is processed, the auxiliary task selection strategy determines how to
update the parameters based on the relevance of different tasks, as shown in Fig-
ure 1(d). Specifically, we examine three strategies for MTAL: GSC [6], OL-AUX
[18], and TAG [8].

The first two methods, GCS and OL-AUX, integrate auxiliary tasks into a
unified loss function L by assigning heuristic-based weights wi to each auxiliary
task i:

L =
1

Nmain

Nmain∑
k=1

(
y
(k)
main − ŷ

(k)
main

)2

+

T∑
i=1

wi

Ni

Ni∑
k=1

(
y
(k)
i − ŷ

(k)
i

)2

, (2)

where Ni represents the number of data points for task i.
Specifically, the key idea of GCS is to include an auxiliary task in the total

loss only if its gradient exhibits non-negative cosine similarity with the main
task gradient on shared parameters. Therefore, GCS assigns wi = 1 when the
cosine similarity between the gradients is non-negative and wi = 0 otherwise [6].

OL-AUX follows a similar idea, but it treats wi as model parameters with
its own loss function. This loss function measures the negative dot product
between gradients of the main task, ∇θtLmain(θt), and each auxiliary task,
∇θtLi(θt), at iteration t. The gradient update for wi is given by ∂Lweights

∂wi
=

−α∇θtLmain(θt)
T∇θtLi(θt), where θt represents the model parameters and α is

the learning rate [18].
In contrast, TAG selects an optimal set of auxiliary tasks without using a

unified weighted loss function. To achieve this, it maximizes inter-task affinity
scores, denoted by Zt

i→j , a metric that quantifies the influence of auxiliary task
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i on the main task j [8]. In this context, i represents a set of auxiliary tasks, and
j corresponds to the main task, with Zt

i→j formally defined in Equation 3.

Zt
i→j = 1−

Lj(x
t, θt+1

s|i , θtj)

Lj(xt, θts, θ
t
j)

. (3)

To compute this quantity, the model relies on the parameters of the shared
encoder (θt+1

s|i or θts) and the parameters of the prediction head for task j, denoted
as θtj . Note that in Zt

i→j , the numerator utilizes the shared encoder parameters
after being updated for the auxiliary task i (θt+1

s|i ), while the denominator em-
ploys the shared encoder parameters trained to predict the main task j (θts).
Consequently, a positive value of Zt

i→j signifies that updating the shared pa-
rameters reduces the loss of the main task compared to the values of the origi-
nal parameters. At each training iteration, a batch of data is sampled for each
task, and the model computes the mean squared error. The gradients are then
backpropagated only through the parameters associated with the corresponding
tasks. TAG selects the subset of auxiliary tasks that maximizes Zt

i→j as the op-
timal support set for the main task. We then use this selected auxiliary tasks to
fine-tune the weights of the model.

4 Dataset

We curated a dataset of 70 827 polymers by compiling data from recent publi-
cations on polymers published between 2020 and 2024, where SMILES strings
are used to describe the building blocks of the polymers [2, 11, 14, 13, 1, 5, 29, 28,
23, 24, 27]. This dataset encompasses several chemical species, H, C, N, O, F,
Na, Si, P, S, Cl, Ge, Br, and I, as well as homopolymers and copolymers with
structures such as linear, branched, and cyclic, which is an indicator of the di-
versity within it. Moreover, it spans 35 distinct properties, some of which have
experimental and simulated data, while others are available only from simula-
tions or experiments. Figure 2 illustrates the distribution of diverse properties in
the dataset, which can include chemical reactivity, electronic-nuclear properties,
thermal properties, and others. We also indicate whether the data come from
experiments (in blue) or simulations (in black). As can be seen, 3280 polymers
(about 5%) correspond to experimental data, which points to the limited size
of the experimental dataset and the challenges associated with gathering such
data.

We applied a series of preprocessing steps to prepare the datasets. First, we
ensured consistency by reading p-SMILES with RDKit. Some datasets repre-
sented polymerization points using special characters such as ‘[Th]’ and ‘[Ce]’,
which we replaced with ‘*’, the standard notation for polymerization points.
Next, we canonized p-SMILES to standardize their representation and removed
duplicate entries within each task by averaging target values and merging iden-
tical strings. Overall, polymers were described using two common formats: (1)
monomers with their respective fractions and (2) repeating units. Of the total
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Fig. 2. Distribution of the number of polymers per task: Electron affinity with respect
to the standard hydrogen potential - SHE (ESHE

ea ), Ionization potential with respect to
the SHE (ESHE

i ), Bandgap - Chain (Echain
gap ), Electron injection barrier (Φe), Refractive

index (ne), Density (ρ), Static dielectric constant (ϵstatic), Radius of gyration (Rg),
Isentropic compressibility (βS), Bulk modulus (KT ), Compressibility (βT ), Constant
volume (Cv), Volume expansion coefficient (αP ), Isentropic bulk modulus (KS), Lin-
ear expansion coefficient (αP, l), Self-diffusion coefficient (D), Constant pressure (Cp),
Thermal conductivity (λ), Thermal diffusivity (κ), Glass transition temperature (Tg),
Bandgap - Bulk (Ebulk

gap ), Crystallization tendency (X), Ring-opening polymerization
enthalpy (∆HROP), Atomization energy (Eat), Dielectric constant (ϵ0), Ionization en-
ergy (Ei), Rubber coefficient of thermal expansion (RCTE), Density at 300K (ρ300K),
Bandgap - Crystal (Ecrystal

gap ), Glass coefficient of thermal expansion (GCTE), N2 perme-
ability (N2 perm.), CO2 permeability (CO2 perm.), CH4 permeability (CH4 perm.),
Inherent viscosity (IV), and 19F magnetic resonance imaging signal-to-noise ratio (19F
MRI SNR). Experimentally measured properties are shwon with blue labels, and sim-
ulated properties are shown with black labels. Three properties include both experi-
mental and simulated data.

polymers in our dataset, 33 342 are described using repeating units, while the
remainder are characterized by monomers. Among these, 36 994 polymers are
composed of two monomers, with the maximum number of monomers in a poly-
mer reaching 7. Additionally, we standardized property units across datasets for
consistency. We did not merge polymers with identical p-SMILES when proper-
ties were derived from different simulation methodologies, as a way to enhance
diversity and incorporate additional data into our MTAL framework.

Moreover, our final dataset contains polymers relevant for a variety of ap-
plications, such as gas separation membranes, high-voltage insulation, and con-
trolled drug release. Yet, property co-occurrence exists. The mean number of
polymers that overlap in property pairs is 252 and the median is 49. This is
due to the relatively small size of most datasets, typically under 1000 samples,
and the broad diversity of polymer applications. Among the 703 possible task
pairs, 454 have fewer than 100 co-occurring polymers, while three tasks exhibit
minimal co-occurrence across nearly all task pairs. This diversity and overlap
create a possible scenario for MTAL.
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5 Experiment Configuration

First, we perform hyperparameter optimization by modifying the batch size to
16, 32 and 64, the latent representation dimensionality to 32 and 64, dropout to
1×10−1, 2×10−1 and 4×10−1, and the Adam optimizer learning rate to 1×10−2

and 1 × 10−3. Optimization was conducted using MTL without auxiliary task
selection to ensure unbiased hyperparameter tuning. We performed a grid search
where, for each hyperparameter combination, training involved sequentially sam-
pling a batch per task, computing the mean squared error, and backpropagating
gradients only through the corresponding task parameters. The best hyperpa-
rameter combination was selected based on the performance of the model across
the majority of tasks. Subsequently, we evaluated the impact of incorporating the
attention mechanism compared to that of weighting the monomer embeddings
according to their respective fractions. We again selected the optimal model
as the one that consistently achieved superior performance in the majority of
property prediction tasks.

For MTAL, all models were trained for 10 epochs, each epoch containing a
number of iterations proportional to the batch count of the largest dataset. A
k-fold-like approach (k = 10) was adopted for the experimental datasets (i.e.,
main task), where k−2 folds were used for training, 1 fold for validation, and the
remaining fold for testing. In contrast, the simulated datasets were exclusively
used for training, as they were designed for auxiliary tasks. Furthermore, we saw
that OL-AUX and TAG have update rules (see Section 3.3) that involve addi-
tional parameter updates. This introduces computational overhead, so updates
for MTAL here were performed every T steps. For OL-AUX, we initialized the
weights of all auxiliary tasks to 1 and updated them every 10 epochs. For TAG,
we set the step interval to 10 as well, and fine-tuning was performed over 10
epochs using the optimal auxiliary task group.

As a reference for evaluating the MTAL framework, we trained a random
forest model on individual tasks. Specifically, we conducted experiments using
three different descriptors commonly used for polymers: (1) a set of molecular
features available in RDKit, (2) the MACCS fingerprint, and (3) the OHE rep-
resentation of the monomers. For polymers composed of multiple monomers, we
computed a weighted sum of the descriptors of individual monomers to construct
a single feature vector representing the entire polymer. This setup allows us to
explore whether models based on handcrafted features and classical learners pro-
vide a viable alternative. For additional comparison, we also included an STL
version of our model to evaluate the added benefit of MTAL compared to the
core architecture.

6 Results and Discussion

This section presents results obtained from our experiments. We began by opti-
mizing the hyperparameters of the proposed model, followed by an investigation
of the attention mechanism for the readout function, and finally evaluating the
performance of our MTAL model in predicting 9 experimental properties.
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6.1 Optimizing Hyperparameters

Hyperparameter choices are essential in guiding a model to its optimal perfor-
mance. To determine the ideal model configuration, we started our investigation
with a grid search using the hyperparameter space defined in Section 5. The
optimal settings identified were a learning rate of 1× 10−3, a batch size of 16, a
dropout rate of 0.1 and a latent representation dimensionality of 64. Among the
hyperparameters, we observed that the learning rate had the most significant
impact on reducing error across most properties, while the others introduced
only marginal improvements.

Moreover, we determined the number of iterations per epoch by considering
the batch count of the largest dataset. Given that the optimal batch size was 16,
each training epoch consisted of 1036 iterations. For the experimental datasets,
which are the tasks we carry out and aim to improve, this number of iterations
proved sufficient to achieve convergence, as a full training cycle is equivalent to
1726 (280) passes through the smallest (largest) experimental datasets. Through-
out the training iterations, we observed that the losses initially decreased steadily
but tended to stabilize toward the end, with no significant improvement after
a certain point. However, there are instances where the training loss decreases
rapidly, but the validation loss does not follow the same trend, creating a no-
ticeable gap between them. Such behavior is evident in tasks associated with the
smallest datasets, containing 116, 117, and 204 polymers, respectively.

6.2 Impact of the Attention Mechanism

This study examines the impact of using an attention mechanism as part of
the readout function, as detailed in Section 3.2. Table 1 shows the results and
compares them with a readout function that weights the monomer embeddings
according to their respective fractions. We report the performance in terms of
the MAE of the validation set over 10 folds. As can be seen, the attention-
based readout function generally tends to minimize both the mean and the stan-
dard deviation of the error across the properties, showing a subtle, but consis-
tent improvement in performance. In particular, the readout function that uses
monomer fractions was shown as a competitive alternative and outperformed
the attention-based approach in the 19F MRI SNR prediction task.

We believe that the proposed readout function allowed the model to capture
more complex monomer interactions and prioritized their contributions to poly-
mer properties by dynamically adjusting their weights. Moreover, its generaliza-
tion capability is likely to benefit significantly from the use of larger datasets,
as it is naturally a data-hungry method. At the same time, we highlight that
the simplicity of the fraction-based method promotes interpretability while still
delivering strong performance.

6.3 Multi-Task Auxiliary Learning

Here, we assessed the performance of CoPolyGNN under MTAL setting in pre-
dicting experimental polymer properties using the hyperparameter configuration
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Table 1. Comparison of the performance of our model using an attention-based readout
(w/ attn) and a fraction-weighting readout (w/o attn) for predicting experimental
properties: ∆HROP (kJmol−1), ρ300K (g cm−3), 19F MRI SNR (1), Tg (K), IV (dL g−1),
and CH4, CO2, and N2 permeability (Barrer).

w/ attn w/o attn

∆HROP 6.33± 2.67 6.51± 2.30
ρ300K 0.07± 0.03 0.08± 0.03
19F MRI SNR 6.42± 1.15 6.18± 1.15
Tg 4.12± 2.01 4.20± 1.42

w/ attn w/o attn

IV 0.04± 0.02 0.05± 0.02
Tg 17.75± 2.00 19.00± 4.44
CH4 perm. 0.31± 0.02 0.33± 0.04
CO2 perm. 0.26± 0.02 0.29± 0.03
N2 perm. 0.28± 0.02 0.30± 0.02

that yielded the best results. These results were compared against three de-
scriptors commonly employed for polymer property prediction as a way to pro-
vide a contrast and evaluate whether traditional feature-engineering approaches
could offer a viable alternative to our design. For the molecular descriptors, we
constructed polymer-level representations by computing a weighted sum of the
monomer-level features. Table 2 summarizes the test set errors across the 10
folds, where the same k-fold split was consistently applied to all models.

Table 2. Test Error for Predicting Experimental Polymer Properties. The best result
for each task is shown in bold and ties occur where rounding masks marginal differences.
See Table 1 for property units.

STL (Random Forest) MTAL (Ours)

RDKit MACCS OHE GCS OL-AUX TAG

∆HROP 8.26 ± 2.79 10.73 ± 3.69 - 9.75 ± 3.53 9.20 ± 2.65 9.05 ± 2.77
ρ300K 0.12 ± 0.03 0.13 ± 0.04 - 0.12 ± 0.05 0.12 ± 0.04 0.12 ± 0.05
19F MRI SNR 8.48 ± 2.23 7.65 ± 1.66 6.97 ± 1.20 8.21 ± 1.96 8.94 ± 1.53 8.06 ± 1.47
Tg 6.84 ± 2.40 6.53 ± 2.30 12.28 ± 4.09 6.20 ± 1.93 6.45 ± 2.11 5.61 ± 1.78
IV 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.05 ± 0.02
Tg 26.49 ± 4.50 27.24 ± 4.92 - 28.01 ± 4.27 26.48 ± 4.47 24.02 ± 4.79
CH4 perm. 0.45 ± 0.05 0.52 ± 0.05 - 0.45 ± 0.04 0.44 ± 0.04 0.23 ± 0.04
CO2 perm. 0.40 ± 0.05 0.45 ± 0.07 - 0.37 ± 0.05 0.36 ± 0.05 0.20 ± 0.04
N2 perm. 0.41 ± 0.04 0.48 ± 0.05 - 0.38 ± 0.05 0.38 ± 0.05 0.32 ± 0.03

The first important point to highlight is that we aimed to train a model
capable of leveraging the maximum amount of information available about the
polymers. To achieve this, the Tg experimental datasets were divided into two
subsets because some polymers with this property included additional features
beyond the p-SMILES notation, for instance, the molecular weight. This feature
was reported by [23]. In these cases, we concatenated the additional features
with the representation learned by the CoPolyGNN and used this combined
input for the prediction head. Secondly, our MTAL model outperformed the
baseline predictors in 7 out of 9 tasks, as shown in Table 2. While the overall
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performance gains were modest, the last three properties in Table 2 showed
significant improvements, with approximately 48%, 50%, and 22% gains over
the best baseline results for CH4, CO2, and N2 permeability, respectively.

Among MTAL strategies, TAG showed consistent prominence by outper-
forming the others with a significant margin and achieving the best performance
on 6 tasks. However, during task selection for this method, no single auxiliary
task appeared consistently across all folds, which may be influenced by the vari-
ability present in small datasets and the sensitivity of the model to data splits.
In comparison, heuristic-based task weighting approaches showed marginal im-
provements over the baseline, with more favorable results observed in nearly
half of the cases. Moreover, the experimental properties presented in Table 2
are organized by dataset size, with the smallest datasets positioned at the top
and the largest at the bottom. We observed that, overall, the models struggled
more with datasets containing fewer samples, even when the best results were
achieved. This highlights the challenges posed by limited data availability.

We also investigated whether the improvement shown in Table 2 stemmed
from the inclusion of auxiliary tasks or from the predictive power of the model
itself. To address this question, Table 3 compares the results of our MTAL with
a version of our model trained on the main task without auxiliary tasks, i.e.,
STL. We report the results obtained on the test set averaged over 10 folds. As a
result, the MTL model outperformed STL across all tasks, which demonstrates
the contribution of auxiliary tasks to improved performance on the main task.

Table 3. Comparison of the performance of STL and MTAL for predicting experimen-
tal properties. See Table 1 for property units.

STL MTAL

∆HROP 9.43 ± 3.34 9.05± 2.77
ρ300K 0.13 ± 0.05 0.12± 0.05
19F MRI SNR 8.67 ± 1.37 8.06± 1.47
Tg 6.61 ± 2.20 5.61± 1.78

STL MTAL

IV 0.06 ± 0.02 0.05± 0.02
Tg 28.14 ± 4.99 24.02± 4.79
CH4 perm. 0.41 ± 0.03 0.23± 0.04
CO2 perm. 0.38 ± 0.05 0.20± 0.04
N2 perm. 0.41 ± 0.05 0.32± 0.03

7 Conclusion

In this work, we addressed key challenges in polymer informatics to predict poly-
mer properties by proposing CoPolyGNN, a GNN-based representation model
for copolymers, curating a large-scale polymer dataset, and exploring MTAL
strategies to tackle data scarcity. We conducted several experiments to opti-
mize hyperparameters and investigated 3 techniques for MTAL, namely, GSC,
OL-AUX, and TAG. Our results demonstrate that CoPolyGNN, when combined
with MTAL, consistently outperforms STL and baseline models, achieving up to
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50% improvement in prediction accuracy for gas permeability and notable gains
in other polymer properties. This validates the practical applicability of our ap-
proach across diverse experimental tasks, from glass transition temperature to
gas separation performance. Moreover, our findings highlight how data-efficient
learning and a flexible, multi-scale model can improve ML performance despite
data scarcity. This is particularly relevant for polymer science, where data avail-
ability remains a bottleneck for computational design, and a model capable of
handling the inherent structural variability of polymers is essential. Future work
will investigate how the proposed framework generalizes across different poly-
mer datasets and tasks, with a focus on identifying factors that influence task
transferability.
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