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Abstract. Multi-agent trajectory data collected from domains such
as team sports often suffer from missing values due to various fac-
tors. While many imputation methods have been proposed for spa-
tiotemporal data, they are ill-suited for multi-agent sports, where player
movements are highly dynamic and interactions evolve over time. To
address these challenges, we propose MIDAS (Multi-agent Imputer
with Derivative-Accumulating Self-ensemble), a data-efficient frame-
work that imputes multi-agent trajectories with high accuracy and phys-
ical plausibility. It jointly predicts positions, velocities, and accelera-
tions via a Set Transformer-based neural network and refines them
by recursively accumulating predicted velocity and acceleration val-
ues. These predictions are then combined using a learnable weighted
ensemble to produce final imputed trajectories. Experiments on three
sports datasets show that MIDAS significantly outperforms existing base-
lines, with particularly large margins in limited-data settings. We also
demonstrate its utility in downstream tasks such as estimating total
distance and pass success probability. The source code is available at
https://github.com/gkswns95/midas.git.

Keywords: Sports Analytics · Multi-Agent System · Trajectory Imputa-
tion · Deep Learning under Physical Constraints · Weighted Ensemble

1 Introduction

Many spatiotemporal domains, such as transportation, robotics, surveillance, and
sports, handle multi-agent trajectory data. While advances in computer vision
⋆ These authors contributed equally to the paper.
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Fig. 1: Example of imputing unobserved player trajectories from tracking data
obtained in a soccer broadcast.

and sensing technologies have facilitated large-scale trajectory data collection,
acquiring complete data remains challenging due to various factors such as signal
loss in wearable devices and limitations of the camera’s field of view (Fig. 1). This
prevalence of missing values calls for the development of effective imputation
techniques that can accurately reconstruct missing trajectories.

Though various imputation methods have been proposed for spatiotempo-
ral data, applying them to multi-agent sports remains challenging due to their
dynamic nature. In particular, while many of them [1,5,16,17,18,24] have demon-
strated their effectiveness in multi-sensor data, including traffic flow or air
quality datasets, they do not account for dynamic interactions between agents.
In such fixed-sensor networks, spatial relationships typically remain constant
over time. In contrast, multi-agent domains such as team sports involve play-
ers with continuously changing positions, requiring a suitable architecture for
explicitly modeling these dynamic inter-agent relationships while maintaining
permutation-equivariance with respect to the agents.

Furthermore, player motion is governed by biomechanical constraints that
impose physical limits on speed, acceleration, and directional change. To ac-
curately model such constraints and generate physically plausible trajectories,
imputation models must learn nuanced patterns in movement dynamics. This
typically requires a large volume of high-quality training data. However, this
poses a significant limitation in the sports domain, where player tracking data is
often treated as confidential due to the competitive nature of professional leagues.

Addressing these challenges, this paper proposes MIDAS (Multi-agent Imputer
with Derivative-Accumulating Self-ensemble), a framework for multi-agent sports
that imputes missing trajectories with high accuracy and data efficiency by explic-
itly enforcing the physical constraints that real player trajectories should satisfy.
First, a neural network equipped with Set Transformers [13] and player-wise
bidirectional LSTMs [9] predicts the positions, velocities, and accelerations of
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missing players. In addition to this initial prediction (IP), it generates alternative
estimates through derivative-accumulating prediction (DAP), which recursively
accumulates the predicted velocity and acceleration values from the nearest
observed positions in both forward and backward directions. Finally, the learn-
able soft voting mechanism combines these three predictions, namely IP and
forward/backward DAPs, to produce the final imputed trajectories.

The proposed MIDAS overcomes the aforementioned challenges in two aspects.
First, by employing the Set Transformer, it models dynamic inter-agent relation-
ships while ensuring permutation-equivariance with respect to agents. Second,
MIDAS jointly predicts positions, velocities, and accelerations, and integrates
them through a derivative-accumulating self-ensemble mechanism that explicitly
enforces their physical consistency. This design enables the model to capture the
underlying patterns of player motion, leading to improved data efficiency.

Experiments across three sports datasets demonstrate that MIDAS consis-
tently outperforms existing baselines in terms of both positional accuracy and
physical plausibility of imputed trajectories, with particularly large margins in
low-data settings. In addition, we showcase real-world applications of MIDAS, in-
cluding the approximation of physical (e.g., total distance covered) and contextual
(e.g., pass success probability) metrics based on imputed trajectories.

2 Related Work

Numerous methods have been proposed for time series and spatiotemporal data
imputation. Early models such as BRITS [1], GRU-D [4], and MRNN [28] relied
on recurrent models, but suffered from compounding errors due to dependence on
their previous predictions. Non-autoregressive frameworks such as NAOMI [16],
CSDI [24], and SAITS [7] mitigated this issue by enabling parallel imputation
across time steps, improving robustness and efficiency. More recently, methods
like TIDER [15] and TimesNet [25] were developed to capture temporal patterns
such as seasonality or local biases. Other recent approaches further leverage
graph structures (GRIN [6], SPIN [17], and NRTSI [21]), information bottlenecks
(TimeCIB [5]), or low-rank priors (ImputeFormer [18]) to enhance imputation
performance. Although they perform well on static multi-sensor systems, they
are not designed to handle dynamic interactions in multi-agent scenarios.

Meanwhile, several frameworks have proposed dedicated architectures for
multi-agent imputation to capture shifting spatial relationships of agents. No-
table examples include Graph Imputer [19], GC-VRNN [26], and TranSPORT-
mer [2], which employ dynamic graph or set attention [13] architectures to model
time-varying player interactions. More recently, methods tailored for sports
data with advanced architectures have been explored, such as U2Diff [3] and
Event2Tracking [10]. However, the former suffers from high computational costs
and low data efficiency inherent to diffusion models, while the latter requires
manually annotated event data, which are not always available. Interaction mod-
eling has been widely studied in future trajectory forecasting [8,12,14,23,27,29],
but these methods are not directly applicable to missing trajectory imputation.
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3 Proposed Framework

Our study about multi-agent trajectory imputation assumes a scenario where
the missing time intervals of players could differ from one another. To elaborate,
let the trajectories of K players be X1:T = {xk

1:T }Kk=1, where each player k’s
input features xk

t at each time t consist of their (x, y) position pk
t = (pkt,x, p

k
t,y),

velocity vk
t = (vkt,x, v

k
t,y), and acceleration ak

t = (akt,x, a
k
t,y). Here, the veloc-

ity and acceleration are calculated from the position values by the following
approximations:

vk
t ≈

pk
t − pk

t−1

∆t
, akt ≈

vk
t+1 − vk

t

∆t
(1)

where ∆t is the difference between adjacent time steps.
In our scenario, each xk

1:T has missing parts identified by a masking sequence
mk

1:T = (mk
1 , . . . ,m

k
T ) where mk

t = 1 if xk
t is observed and 0 if it is missing. Then,

an imputation model aims to take the incomplete data {mk
1:T ⊙xk

1:T }Kk=1 as input
and produce imputed trajectories {x̂k

1:T }Kk=1. Combining these with the observed
fragments results in complete trajectories, i.e.,

x̃k
1:T = mk

1:T ⊙ xk
1:T + (1T −mk

1:T )⊙ x̂k
1:T , k = 1, . . . ,K. (2)

The novelty of the proposed framework lies in the mechanism of enhancing
the model performance by combining positions directly predicted by a neural
network and those resulting from accumulating predicted derivatives (i.e., velocity
and acceleration values). To elaborate on the details of the proposed mechanism,
the remainder of this section consists of the following four parts: Section 3.1
describes the neural network for initial prediction, Section 3.2 introduces the
derivative accumulation process for alternative predictions, Section 3.3 describes
the weighted ensemble mechanism to combine multiple predictions resulting from
the previous sections, and Section 3.4 explains the loss function for model training.
See Fig. 2 illustrating the overall architecture of our framework.

3.1 Neural Network-Based Initial Prediction

This section describes the neural network architecture that makes initial prediction
(IP) of imputed trajectories. It takes partially observed trajectories {mk

1:T ⊙
xk
1:T }Kk=1 as an input and predicts each player k’s full trajectory

x̂k,i
1:T = {(p̂k,it,x, p̂

k,i
t,y, v̂

k,i
t,x, v̂

k,i
t,y , â

k,i
t,x, â

k,i
t,y)}Tt=1, (3)

where the superscript i stands for “initial”.
Since there is generally no inherent order among players in team sports,

modeling their movements requires ensuring permutation-equivariance. That is,
permuting the input order should not affect each player’s output, except for
applying the same permutation in the output order. Following a recent study on
the ball trajectory inference in team sports [11], we employ Set Transformer [13]
to ensure the permutation-equivariance of outputs.
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Fig. 2: Overview of the proposed framework.

To be specific, we obtain permutation-equivariant player-wise embeddings
{zkt }Kk=1 from the encoder of a Set Transformer and a single permutation-invariant
embedding zt from a full Set Transformer for each time step t:

(z1t , . . . , z
K
t ) = ST-Encoder(m1

tx
1
t , . . . ,m

K
t xK

t ),

zt = SetTransformer(m1
tx

1
t , . . . ,m

K
t xK

t ). (4)

Frame-by-frame application of the Set Transformer to the input features yields
embeddings {(z1t , . . . , zKt , zt)}Tt=1. Then, bidirectional LSTMs [9] sharing weights
across players extract the sequential information from the concatenated sequence
{(xk

t , z
k
t , zt)}Tt=1 per player k by updating joint hidden states:

hk,f
t = LSTMf (xk

t , z
k
t , zt;h

k,f
t−1), hk,b

t = LSTMb(xk
t , z

k
t , zt;h

k,b
t+1) (5)

Lastly, a fully-connected layer decodes the joint hidden state to output a prediction
x̂k,i
t = FC(hk,f

t ,hk,b
t ) at each time t. In later sections, we combine it with

alternative predictions to get a more accurate final prediction.

3.2 Derivative-Accumulating Prediction

In this section, we start from the fact that players’ acceleration values highly vary
over time since they are directly related to their stochastic intents. In contrast,
velocities are more correlated across neighboring time steps, and positions exhibit
even stronger autocorrelation than their derivatives. This implies that accurately
predicting acceleration values can lead to more stable and accurate position
estimates, provided the physical relationships in Eq. (1) are maintained. However,
since the model introduced in Section 3.1 does not enforce these relationships in
its outputs {x̂k,i

1:T }Kk=1, accurate prediction of the derivatives does not necessarily
lead to improved position accuracy.
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Taking this into account, we make alternative derivative-accumulating predic-
tions (DAP), which enforces the physical relationships in Eq. (1) for improved
stability. Specifically, given a missing segment (ts, te) for a player k, we recursively
predict positions inside the segment by accumulating velocities and accelerations
in either direction using the following equation derived from Eq. (1):

pk
t+1 ≈ pk

t + vk
t+1∆t, vk

t+1 ≈ vk
t + akt∆t. (6)

That is, along the forward direction, we start from the observed position pk
ts by

setting p̂k,f
ts = pk

ts and recursively add predicted velocities and accelerations to
obtain forward predictions p̂k,f

t for t ∈ (ts, te) as follows:

p̂k,f
t ≈ p̂k,f

t−1 + v̂k,i
t ∆t ≈ p̂k,f

t−1 + (v̂k,i
t−1 + âk,it−1∆t)∆t (7)

Likewise, we start from the observed position pk
te at the opposite endpoint and

recursively subtract the predicted derivatives to obtain backward predictions p̂k,b
t .

Adopting DAPs instead of initial prediction carries several advantages. First,
since the loss between these DAPs and the ground truth penalizes unstable
predictions of the velocity and acceleration, minimizing it improves the smooth-
ness of the predicted derivatives. Considering that existing position-oriented
imputation models suffer from fluctuating trajectories, these smooth derivatives
have a clear advantage in that they result in more plausible positional predictions.
Furthermore, enforcing the relationships between the physical quantities imposes
an additional inductive bias on the model, making it more data-efficient.

3.3 Weighted Ensemble of Multiple Predictions

Alhough DAP introduced in Section 3.2 has clear advantages over IP resulting
from Section 3.1, it also has a potential drawback known as the error compounding
problem. Because DAP only relies on the observation at an endpoint as an anchor
and the predicted derivatives that are accumulated on the anchor, prediction
errors tend to grow as the number of iterations in Eq. (7) (or its backward
counterpart) increases. In contrast, IP is robust to this problem since it is less
sensitive to estimates at certain time steps.

To balance this trade-off, we take a hybrid approach that combines the
strengths of both IP and DAP. Rather than exclusively relying on one prediction,
it performs a soft voting ensemble by computing a weighted sum of three predic-
tions, IP and forward/backward DAPs. These weights are dynamically learned
through an additional player-wise Bi-LSTM, which adapts the contribution of
each prediction at each time step.

More specifically, for each player k and time step t, we feed the three predic-
tions x̂k,i

t , p̂k,f
t , p̂k,b

t along with the context embeddings zkt , zt from Eq. (4) into
a Bi-LSTM that updates its hidden states:

h̃k,f
t = LSTMf (x̂k,i

t , p̂k,f
t , p̂k,b

t , zkt , zt, γt; h̃
k,f
t−1), (8)

h̃k,b
t = LSTMb(x̂k,i

t , p̂k,f
t , p̂k,b

t , zkt , zt, γt; h̃
k,b
t+1). (9)
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where γt = exp(−max{0,Wγδt + bγ}) is the temporal decay factor introduced
in BRITS [1], indicating the distance of t from observed endpoints. We define
δt = (t− ts, te− t) to provide symmetric time gaps for weighting the bidirectional
DAPs. Then, a fully-connected layer with a softmax activation returns

(λk,i
t , λk,f

t , λk,b
t ) = Softmax(FC(h̃k,f

t , h̃k,b
t )) (10)

that add up to 1. Based on these weights, the model yields a final prediction

p̂k
t = λk,i

t p̂k,i
t + λk,f

t p̂k,f
t + λk,b

t p̂k,b
t . (11)

Combining this final prediction with the observed fragments by Eq. (2) results in
complete trajectories across the entire period:

x̃k
1:T = mk

1:T ⊙ xk
1:T + (1T −mk

1:T )⊙ x̂k
1:T , (12)

where x̂k
t = (p̂kt,x, p̂

k
t,y, v̂

k,i
t,x, v̂

k,i
t,y , â

k,i
t,x, â

k,i
t,y).

Figure 3 illustrates how MIDAS dynamically adjusts ensemble weights de-
pending on the characteristics of the missing segment. For Player 2, who has a
short and stable missing trajectory, the model assigns negligible weight to IP,
relying more on DAPs for imputation. In contrast, Player 3’s longer and more
variable missing trajectory leads to higher IP weights, especially in the middle
where DAP errors may accumulate. This highlights MIDAS’s ability to improve
the final prediction by adaptively combining its components.

3.4 Loss Function

In our framework, improving the accuracy of the prediction at each stage con-
tributes to a more reliable ensemble output. Therefore, we minimize not only
the loss between the final ensemble prediction and the true trajectories but
also the loss of each auxiliary prediction. Specifically, we compute the mean
absolute errors (MAEs) for the IP and DAPs as well as the ensemble prediction,
respectively, and train the entire architecture by minimizing the sum of these
MAEs. Formally, for the MAE losses Li of the IP, Lf and Lb for the bidirectional
DAPs, and Lh for the ensemble prediction, the model is trained by minimizing

LMIDAS = Li + Lf + Lb + Lh. (13)

Fig. 3: Example of ensemble weights for individual imputed trajectories, where
circles indicate each player’s initial position.
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Table 1: Details on the three sports datasets.
Soccer Basketball A. Football

Split Matches Frames Matches Frames Matches Frames

Training 2 65,014 70 1,621,835 — 425,000
Validation 0.5 20,104 10 216,118 — 52,150
Test 0.5 21,242 20 468,885 — —

4 Experiments

In this section, we conduct experiments on multiple sports datasets to evaluate
the performance of MIDAS and its generalizability across different sports.

4.1 Data Preparation

In the experiments, we independently trained and evaluated models on three
public datasets collected from popular team sports: soccer, basketball, and
American football. The soccer dataset is provided by Metrica Sports7 and contains
tracking data for 22 players collected across three matches. For basketball, we use
the first 100 matches of SportsVU NBA dataset8, containing trajectories of 10
players per match. The American football dataset is from the Kaggle competition9

and is based on NFL’s Next Gen Stats. We adopt its preprocessed version10

provided by the NRTSI paper [21], which contains 9,543 five-second time series
of six offensive players. The original sampling rates of the three datasets are
25Hz, 25Hz, and 10Hz, respectively, but we downsample all datasets to 10Hz for
consistency. As model inputs, we use 200 frames (20 seconds) per sequence for
soccer and basketball and 50 frames (5 seconds) for American football.

4.2 Missing Scenarios

To evaluate the model performance on various missing patterns, we consider the
following three scenarios that may occur during data acquisition processes:

1. Uniform missing: All players have missing values at the same time interval.
Note that among the baselines, NAOMI [16] and NRTSI [21] are designed to
only handle this scenario and are not capable of the following other scenarios.

2. Agent-wise missing: Individual players have different missing intervals.
3. Broadcasting camera: A virtual camera follows the ball and only captures

the players inside the camera view, resulting in missing values for the remain-
ing players as shown in Fig. 1. Following Graph Imputer [19], we conduct
experiments only on the soccer dataset for this scenario.

7 https://github.com/metrica-sports/sample-data
8 https://github.com/linouk23/NBA-Player-Movements
9 https://www.kaggle.com/competitions/nfl-big-data-bowl-2021

10 https://github.com/lupalab/NRTSI/tree/main/codes_stochastic

https://github.com/metrica-sports/sample-data
https://github.com/linouk23/NBA-Player-Movements
https://www.kaggle.com/competitions/nfl-big-data-bowl-2021
https://github.com/lupalab/NRTSI/tree/main/codes_stochastic
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Fig. 4: Masking matrix examples for three different missing scenarios.

Fig. 4 illustrates examples of masking matrices from the soccer dataset used
in each missing scenario. Since our task is to impute trajectories given observed
data before and after the missing intervals, we ensure that the first and last five
frames of each sequence are always observable, following previous work [16,19,21].
During training, we apply a dynamic missing rate ranging from 0.1 to 0.9, while
testing is conducted with a fixed missing rate of 0.5 to encourage the model
to generalize across various missing rate scenarios. Additional evaluations with
different missing rates are presented as the ablation study in Section 4.5.

4.3 Baseline Models and Evaluation Metrics

In the experiments, we compare the imputation performance of MIDAS with
several baselines, including naive methods such as linear interpolation (LI) and
cubic spline (CS), as well as deep learning models such as BRITS [1], NAOMI [16],
NRTSI [21], CSDI [24], Graph Imputer (GI) [19], and ImputeFormer (IF) [18].
To evaluate the impact of our derivative-accumulating self-ensemble mechanism,
we also implement a baseline that only uses the initial prediction (IP) described
in Section 3.1 and is trained with the loss Li from Section 3.4. For models such
as BRITS, NAOMI, and CSDI that do not preserve permutation-equivariance
of input players, we sort trajectories by the sum of their average x and y
coordinates to ensure permutation robustness. We compare these baselines using
two evaluation metrics: (1) position error (PE) indicating the average Euclidean
distance between the true and predicted positions and (2) step change error
(SCE) [16,21] defined as the average absolute difference between the variance of
the true and predicted velocities to assess the trajectories’ physical plausibility.

4.4 Main Experimental Results

The resulting Table 2 shows that the proposed MIDAS consistently outperforms
other baselines in both positional accuracy (PE) and physical plausibility (SCE).
Linear interpolation (LI) and cubic spline (CS) offer simple yet competitive results
in some scenarios. Notably, deep learning baselines such as BRITS, NAOMI, and
CSDI, which are not designed for multi-agent domains, often fail to exceed these
naive baselines. Similarly, Graph Imputer (GI) performs worse than LI and CS
in many cases, as previously reported in its original article [19].
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Table 2: Performance of imputation methods on different datasets and scenarios.
Method

Scenario Metric LI CS BRITS NAOMI NRTSI CSDI GI IF IP MIDAS

Soccer
Uniform PE 3.8406 2.2085 7.4859 4.5343 3.1791 3.4295 4.6511 2.0898 1.4563 1.3205

SCE 0.1299 0.0867 3.9089 3.9793 0.0854 0.1586 0.1191 0.0815 0.1488 0.0516
Agent-wise PE 5.0752 11.4647 5.7266 — — 4.0279 5.6011 2.5798 2.0755 1.9832

SCE 0.1631 0.2939 2.9627 — — 0.1305 0.1508 0.0976 0.1057 0.0535
Camera PE 3.1083 1.9209 7.4208 — — 3.5181 3.6512 2.2151 1.4879 1.2296

SCE 0.0993 0.0547 4.1967 — — 0.2132 0.0934 0.3149 0.1554 0.0374

Basketball
Uniform PE 3.3481 2.3114 2.9085 1.5254 2.5291 2.2558 2.8305 1.3622 0.9801 0.9727

SCE 0.1483 0.1025 1.0521 0.3230 0.0734 0.0631 0.1066 0.0531 0.0432 0.0438
Agent-wise PE 4.4992 10.3857 2.4238 — — 2.3471 2.5859 1.3345 1.3832 1.3862

SCE 0.1787 0.2715 0.5397 — — 0.0563 0.0700 0.0485 0.0373 0.0381

American Football
Uniform PE 0.8897 0.7448 1.7990 0.9692 0.5158 0.5558 0.8899 0.3673 0.2073 0.1542

SCE 1.1063 0.9463 10.9459 2.3112 0.2989 0.4905 1.1023 0.2858 0.1990 0.1126
Agent-wise PE 1.5128 1.2041 1.7527 — — 0.6182 1.5128 0.3944 0.2383 0.2104

SCE 1.0641 0.5306 10.6807 — — 0.4288 1.0631 0.1869 0.1180 0.0967

Table 3: Performance of the top-3 methods on the basketball dataset when trained
with full data (70 games) versus limited data (3 games).

Limited Data Full Data
Scenario Metric IF IP MIDAS IF IP MIDAS

Uniform PE 1.6741 1.1868 1.1438 1.3622 0.9801 0.9727
SCE 0.0628 0.1483 0.0493 0.0531 0.0432 0.0438

Agent-wise PE 1.8876 1.6414 1.5994 1.3345 1.3832 1.3862
SCE 0.0645 0.0452 0.0439 0.0485 0.0373 0.0381

By contrast, our model for initial prediction (IP) already surpasses most
baselines, demonstrating its strength in modeling dynamic multi-agent interac-
tions. Furthermore, comparing IP and MIDAS highlights the effectiveness of our
self-ensemble mechanism. By effectively leveraging the complementary strengths
of initial predictions and alternative derivative-accumulating predictions, it leads
to superior performance even compared to state-of-the-art methods such as
ImputeFormer (IF) in most scenarios.

Such observations are also evident in Fig. 5, where LI, NRTSI, and CSDI
often generate unrealistic trajectories, either overly linear or changing direction
too frequently, resulting in erratic and implausible motion patterns. In contrast,
IF and MIDAS produce trajectories that closely resemble true player movements,
as indicated by the relatively low PEs over the missing interval.

Meanwhile, an interesting observation emerges in the basketball dataset,
where IP and IF show performance comparable to or slightly better than MIDAS
in some cases. We attribute this to the larger amount of training data available
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Fig. 5: Ground truth (solid) and imputed trajectories (dashed) for a uniform
missing scenario in basketball. Circles indicate the players’ initial positions, and
the annotated values represent average position errors over the missing interval.

(70 games), which may reduce the relative advantage of MIDAS. In contrast, for
soccer and American football, where training data are more limited, MIDAS’s
derivative-based self-ensemble mechanism demonstrates its data efficiency by
significantly outperforming other methods.

To investigate whether this data efficiency holds for the basketball dataset,
we measure model performance on an additional setting where models are trained
using only 3 games (comparable in scale to the training data used for the soccer
dataset). As shown in Table 3, all models experience a performance drop when
trained on limited data. However, the degradation is much less severe for MIDAS,
which eventually outperforms both IF and IP under this setting. This observation
underscores the practical utility of MIDAS in real-world sports analytics, where
obtaining large amounts of complete tracking data is often difficult due to the
competitive and commercial nature of professional sports.

4.5 Ablation Studies

In addition to the main experiments, we conducted two ablation studies to further
investigate the model’s behavior across varying difficulties and the impact of its
features and components on the performance.

Model Behavior Across Varying Difficulties. To better understand how MIDAS
responds to varying levels of difficulty, we conduct an ablation study analyzing
the model’s behavior across different missing lengths. For the agent-wise missing
scenario in the soccer and basketball datasets, we divide trajectory segments in
the test set into three groups based on missing length.

As shown in Table 4, the position error increases with longer missing segments,
and the advantage of DAP over IP diminishes. When the missing length is short,
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the DAP components outperform the initial prediction (IP) by a wide margin,
resulting in substantial performance gains through the ensemble. However, as
the missing length increases, the uncertainty of player motion makes DAP less
reliable, reducing its advantage. This trend is reflected in the ensemble weights
as well: λ̂k,i

t increases and λ̂k,f
t decreases as the missing length grows.

In addition, the advantage of DAP over IP varies by sport. In soccer, DAP
maintains its superiority over IP even for long segments, and the IP component
receives almost zero weight in the ensemble, indicating that MIDAS relies entirely
on DAP. In contrast, in basketball, IP surpasses DAP for medium and long
segments. This is reflected in noticeably higher λ̂k,i

t , suggesting its greater influence
in ensemble prediction. This difference likely stems from the nature of basketball,
where the variability of player motion is higher relative to the small court size,
making long-range accumulation of derivatives more error-prone.

Impact of Derivative Features. To empirically justify the use of derivative features
in IP and DAP, we compared the performance of MIDAS on the broadcasting
camera scenario in soccer with those trained without accelerations (i.e., using
positions and velocities) and even without velocities (i.e., only using positions)
of observed trajectories. Furthermore, we configured IP to predict only positions
and velocities, and DAP to estimate positions only based on predicted velocities.

Table 4: Position errors and ensemble weights of each MIDAS component in
Eq. (11) across different missing lengths within 200-frame (20 s) trajectory seg-
ments. Segments are grouped into the short, medium, and long thirds based on
missing length, where the mean and standard deviation of the number of missing
frames in each group are reported in the table.
Sports Category Missing Frames p̂k,i

t (λ̂k,i
t ) p̂k,f

t (λ̂k,f
t ) p̂k,b

t (λ̂k,b
t ) p̂k

t

Soccer
Short 33.30± 15.72 0.1379 (0.0001) 0.0742 (0.6501) 0.0783 (0.3498) 0.0504

Medium 90.42± 19.17 0.7939 (0.0003) 0.7492 (0.6110) 0.7624 (0.3887) 0.7004
Long 173.41± 21.70 2.7359 (0.0002) 2.7017 (0.5034) 2.7186 (0.4964) 2.6082

Basketball
Short 33.86± 16.11 0.0444 (0.1596) 0.0424 (0.5216) 0.0426 (0.3187) 0.0376

Medium 90.65± 19.02 0.5395 (0.1783) 0.5483 (0.4809) 0.5482 (0.3406) 0.5312
Long 172.60± 21.20 1.8104 (0.1801) 1.8288 (0.4313) 1.8258 (0.3985) 1.8005

Table 5: Position errors of each MIDAS component in Eq. (11), when trained
using different subsets of features.

IP Features DAP Features p̂k,i
t p̂k,f

t p̂k,b
t p̂k

t

Position Velocity 4.0008 2.8203 2.8261 2.5549
Position Vel. & accel. 2.9119 2.6973 2.6858 2.4954
Pos. & vel. Velocity 1.6600 1.5742 1.5590 1.4025
Pos. & vel. Vel. & accel. 1.6235 1.5731 1.5670 1.4013
All features Velocity 1.6713 1.4985 1.5595 1.2644
All features Vel. & accel. 1.4963 1.4122 1.3982 1.2296
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We then compared these “velocity-only” DAP models with their counterparts
that also incorporate predicted accelerations as in Eq. (7).

Table 5 shows that providing velocities and accelerations as input features
for IP clearly improves the imputation performance. We attribute this to the
neural network architecture for IP, where Set Transformers independently encode
multi-agent contexts at each time step via Set Transformers, and player-wise
Bi-LSTMs link temporal information. Providing derivatives as input allows the
Set Transformers to utilize information of adjoining time steps, resulting in more
comprehensive context embeddings compared to using positions alone.

In addition, we observe consistent performance improvements when predicted
accelerations are incorporated into DAP alongside velocities (i.e., rows 2, 4, and
6 versus 1, 3, and 5, respectively). We attribute this to the fact that including
accelerations enables DAP to capture the finer dynamics of player motion,
mitigating the drift caused by error compounding in velocity-only DAP.

4.6 Time Complexity Analysis

While achieving high imputation accuracy is important, real-world deployment
requires efficient processing without excessive computational overhead. To assess
the feasibility of real-time use, we analyze both the theoretical and empirical
time complexity of the proposed MIDAS framework.

From a theoretical standpoint, we consider three key parameters: the number
of time steps T , the hidden dimension m, and the number of players K. It
takes O(TK2m) for Set Transformer used in the initial prediction, O(TKm2) for
Bi-LSTMs employed in the initial prediction and weighted ensemble. In total,
O(TK2m+ TKm2) ≈ O(TKm2) as m ≫ K. Since Bi-LSTM adopts a recurrent
structure, the entire computation process proceeds over O(T ) steps, proportional
to the length of the sequence.

In addition to this analysis, we empirically evaluated the inference time of
MIDAS and several baseline models using an NVIDIA TITAN RTX GPU with
24GB memory. As summarized in Table 6, although MIDAS is slightly slower
than ImputeFormer [18], it can process an entire 40-minute game (half-match for

Table 6: Empirical analysis of time complexity on soccer and basketball data.
Each row corresponds to an imputation method, with the number of parameters,
average inference time per 20-second window, and total processing time for half
a soccer match and a full basketball match in the test set described in Table 1.

Soccer Basketball
Method Params Inference Total Params Inference Total

NRTSI 84,090,968 893.07ms 84.40 s 84,017,192 906.74ms 100.55 s
CSDI 414,209 394.44ms 39.68 s 413,825 324.70ms 37.68 s
ImputeFormer 1,290,978 6.19ms 4.92 s 1,060,578 5.68ms 3.85 s
MIDAS 3,945,579 24.32ms 8.22 s 3,945,579 21.58ms 5.71 s
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soccer and full game for basketball) within 10 seconds. This demonstrates that
MIDAS operates well within real-time constraints, enabling its potential use in
practical scenarios such as live match analysis or broadcasting augmentation.

5 Applications

In Section 4, we evaluate model performance primarily based on metrics related
to missing periods in sports data. In practice, however, what is more important
in this domain is the quality of the trajectories for the entire period, as they
can be utilized in diverse domain-specific downstream tasks. As examples, we
present two promising applications in the soccer domain: approximating physical
statistics and pass success probability from incomplete tracking data.

5.1 Approximation of Physical Statistics for Load Management

In this section, we explore how accurately our method can estimate statistics for
a given period when imputed trajectories are combined with known observations.
Specifically, we compare the total distance covered by a player and the number
of sprints estimated by each method, as they are widely used as indicators
for players’ physical performance or fitness. We first compute velocities from
the observed/imputed positions based on Eq. 1 and obtain speed values by
calculating the norms of these velocity vectors. To make the best estimation from
given positional predictions, we remove outliers whose speed is larger 12m s−1

or whose norm of the acceleration exceeds 8m s−2 and replace the values by
linear interpolation. Also, we smoothen the resulting speed signal by applying
a Savitzky-Golay filter [20]. After preprocessing speed signals, we compute the
distance covered by each player by summing the speed values multiplied by
∆t = 0.1s. For the latter, if a player runs faster than 6m s−1 for consecutive
frames, we detect his/her movement during the frames as sprint and count the
number of such sprints the player made during the given period.

Table 7: Players’ physical statistics estimated by different models and their mean
absolute percentage errors (MAPE) for the soccer test data.

Distance (m) Sprints
Method Mean MAPE Mean MAPE

Ground Truth 11,093.5 — 41.49 —

Linear Interp. 10,167.8 8.46% 38.89 6.32%
Cubic Spline 10,686.3 3.73% 38.85 6.73%
BRITS 10,979.2 2.76% 59.89 53.62%
CSDI 11,343.0 2.77% 44.20 14.71%
Graph Imputer 8,972.1 19.15% 37.85 9.80%
ImputeFormer 11,441.7 3.22% 50.25 26.29%
MIDAS (ours) 10,922.4 1.58% 40.71 4.95%
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For evaluation, we use the soccer test data consisting of the half of a match
and assume the broadcasting camera scenario. Since players played for different
time periods, we normalize each player’s statistics by 90 minutes and calculate
the averages of such normalized values estimated by MIDAS and other baselines,
respectively. Note that players who ran fewer than two sprints during the half
were excluded from every evaluation.

According to Table 7, MIDAS provides accurate estimates close to the ground
truth. Especially considering that almost all baselines either suffer from inaccurate
distance measures (linear interpolation, cubic spline, and Graph Imputer) or
overestimate speed spikes (BRITS, CSDI, and ImputeFormer), it is obvious that
our model takes clear advantage of smooth prediction of velocities. In a nutshell,
our framework is practical in that it can provide reliable statistics with incomplete
tracking data, which originally require complete player trajectories.

5.2 Approximation of Pass Success Probability for Spatial Analysis

One representative example of leveraging player tracking data for match analysis
is Pitch Control [22], which estimates the probability that a pass to each location
on the pitch would be successful. Such pass success probabilities for different
destinations are typically visualized as a heat map overlayed on the pitch, so that
domain experts can evaluate players’ positioning and decision-making for both
actual and hypothetical passes to different locations on the pitch.

(a) Ground Truth (b) CSDI

(c) ImputeFormer (d) MIDAS (ours)

Fig. 6: Pass success probability maps based on true and imputed player positions
resulting from different methods in a partially-observable camera setting. Darker
red and blue regions indicate a higher probability of the left and right teams
gaining possession, respectively, if the ball is passed to those areas.
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Thus, to demonstrate the applicability of imputation models in actual match
analysis, we compare the Pitch Control maps generated using the player positions
imputed by different methods. In the situation in Fig. 6 as an example, player 23
of the blue team has the ball, while his teammates 22 and 26 are making forward
runs towards the open spaces on the left flank and in the center behind the
red defensive line, respectively. The ground truth map (Fig. 6(a)) indicates that
the blue team has a slightly higher control probability in both areas, reflecting
reasonable pass success opportunities to these players, who are onside. However,
inaccurate imputations by CSDI (Fig. 6(b)) and ImputeFormer (Fig. 6(c)) lead
to issues such as players being mispredicted in offside positions or pass success
probabilities being over- or underestimated in critical areas. In contrast, MIDAS
(Fig. 6(d)) produces predictions that closely follow the actual player dynamics,
resulting in probability maps that more accurately reflect the true game situation.
This example instantiates how our framework facilitates more reliable downstream
analysis by providing accurate imputation results.

6 Conclusions

This paper proposes MIDAS, a framework for imputing missing values in multi-
agent trajectories with high accuracy and physical plausibility. MIDAS combines a
permutation-equivariant neural network for initial trajectory prediction with a self-
ensemble mechanism that incorporates derivative-based alternative predictions to
refine imputation results and enforce physical consistency. Experiments on three
team sports datasets under various missing scenarios demonstrate the effectiveness
of our approach in generating trajectories with higher positional accuracy and
improved reality than existing baselines. While this study focuses on team
sports, we believe the proposed framework is applicable to other spatiotemporal
domains. Future work will explore extending MIDAS to additional domains
such as autonomous driving and crowd simulation, as well as its application to
downstream tasks that require complete and reliable trajectory data.
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