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Abstract. Wireless Sensor Networks (WSNs) face critical data incom-
pleteness challenges driven by hardware failures and energy constraints,
which severely undermine environmental monitoring reliability. Although
are frequently employed, Low-Rank Matrix Approximation (LRMA)
methods often overlook nonlinear temporal dynamics and fail to discrimi-
nate structured noise from actual anomalies. This paper introduces the
Adaptive Latent Feature Analysis with Fourier Embedding (ALFA-FE)
framework, featuring two principal contributions: (1) dynamic Fourier
embeddings that incorporate manifold-based frequency-domain regular-
ization to flexibly capture multi-scale temporal patterns, and (2) a robust
optimization scheme unifying Huber-norm loss with anomaly-sensitive
constraints. Comprehensive evaluations across four real-world datasets
reveal that ALFA-FE significantly outperforms seven state-of-the-art
models in both reconstruction accuracy and robustness. By effectively bal-
ancing precise signal recovery with anomaly retention, ALFA-FE demon-
strates strong potential for advancing environmental sensing reliability in
resource-limited IoT deployments.

Keywords: Wireless sensor networks(WSNs)· Low-rank matrix approxi-
mation(LRMA)· Manifold Regularization· Spatio-temporal correlation.

1 Introduction

WSNs consist of a deluge of distributed sensor nodes that communicate wirelessly
to monitor and collect environmental data [28]. Each sensor node is capable
of performing preliminary data processing, such as filtering, aggregation, and
fusion, to reduce redundant data and enhance data transmission efficiency [5].
With the continuous evolution of WSNs, adoption has expanded across diverse
domains, including environmental monitoring, smart cities [30, 4, 6], healthcare
management [9, 34], and industrial automation [19, 32]. WSNs enable real-time,
high-resolution data acquisition, playing a crucial role in enhancing decision-
making and optimizing resource utilization across various fields. The significant
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Fig. 1: The data distribution of real Beijing air quality.

advantages of WSNs have established it as a key driver of efficiency and innovation
in multiple domains.

WSNs often suffer from data loss due to sensor failures, communication
disruptions, and changes in network topology [10]. Ensuring reliable data collection
becomes particularly challenging when monitoring dynamic environments, where
measurements must be continuously captured and transmitted [33, 29]. Moreover,
the data collected by WSNs often exhibit complex spatiotemporal dependencies,
influenced by environmental cycles or periodic industrial operations, further
complicating the recovery process [18]. To tackle this issue effectively, missing
data appears as an incomplete matrix, with rows corresponding to sensor nodes
and columns representing time slots. Given the inherent correlations within
WSN data, including nonlinear dependencies across both spatial and temporal
dimensions, the resulting matrix often exhibits low-rank structure. Consequently,
recovering missing values can be formulated as LRMA problem, where the missing
entries are inferred based on the relationships embedded in the observed data.

LMRA establishes a mathematical framework for matrix decomposition, em-
ploying rank constraints to construct low-dimensional manifold approximations
of high-dimensional data [37]. Derived from this theory, low-rank constrained
optimization models enable effective missing data recovery in wireless sensor
networks by leveraging subspace structures of partial observations [21, 37, 26].
However, current implementations ignore the intrinsic heterogeneity of anomalies
across multisource sensors [12], characterized by divergent spatiotemporal signa-
tures across sensor clusters. To be more intuitive, Fig. 1 shows a real example to
demonstrate this issue.

Example 1: Air quality monitoring data from Beijing WSNs (5.1-6.8, 2014)
demonstrate sensor challenges. Fig. 1a reveals intensified urban gradients that
indicate persistent high-concentration variability, while the suburban site remains
comparatively stable. Fig. 1b indicates a multimodal CO distribution (µ = 1.8,
σ = 0.5mg/m3) with 9.4% of samples above 2.7mg/m3. Three transient spikes
exceeding 3.5mg/m3 appear around May 25–28, peaking at 3.8mg/m3, contrast-
ing the typical diurnal cycle of 1.1–2.3mg/m3. Spatial-temporal coupling between
PM2.5 volatility and CO anomalies suggests distinct noise-outlier interactions.
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Example 1 substantiates the challenges of strongly coupled outliers and
pervasive multimodal noise within data gathered by WSNs. While conventional
approaches predominantly resort to static regularization schemes, such methods
prove inadequate as predetermined weighting parameters and rigid processing
frameworks fail to accommodate the intricate, nonlinear dynamics intrinsic to
noise–outlier coupling phenomena. A case in point is PM2.5, which exhibit a
rapid increase and inconsistency with nearby sensor readings. Needless to say,
such an outlier cannot uniformly treated as random noise. Alternatively, can we
build adaptive LRMA architectures that improve recovery accuracy by achieving
noise suppression and anomaly retention?

In response, this paper proposes an adaptive latent feature analysis (ALFA)
framework with Fourier embedding (FE) for spatiotemporal signal recovery in
WSN data, termed ALFA-FE, balancing noise resistance and anomaly retention.
Its main idea is twofold: 1) temporal-focused Fourier integration enables the
latent space to dynamically adapt to non-stationary patterns through manifold-
basedfrequency-domain regularization. 2) Aggregating the huber-norm with
gradient descent empowers the model to discern legitimate anomalies from
coupled noise-artifacts. With such a design, it possesses the merits of both
robustly capturing temporal dynamics and effectively distinguishing noise from
genuine anomalies.

The primary contributions of this work are summarized as follows:

– An ALFA-FE model is constructed by integrating Fourier feature embedding
with the Huber norm, facilitating dynamic frequency regulation and robust
anomaly handling in spatiotemporal WSN data.

– Theoretical guarantees, including convergence analysis and generalization
bounds, are provided for the ALFA-FE model.

– An efficient optimization algorithm is designed by synergizing gradient-based
updates with adaptive noise suppression, ensuring scalability and real-time
adaptability for large-scale WSN deployments.

The computational complexity analysis of ALFA-FE and some experimental
detail are submiteed as supplemental material. ALFA-FE code and supplemental
material have been published on https://github.com/adingyuting/signal-recovery

2 Related Work

The LRMA model formulates WSN data recovery as a low-rank matrix completion
problem, leveraging its intrinsic low-rank structure to represent data with a
limited set of latent factors. By harnessing spatial and temporal dependencies
from observed data points, LRMA optimizes an objective function to infer missing
values, ensuring a globally coherent reconstruction. In recent years, LRMA has
made significant strides in WSN data recovery, integrating various regularization
techniques to enhance reconstruction accuracy, including graph regularization,
nuclear norm minimization, sparsity constraints, weighted L1-L2 regularization,
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temporal smoothness enforcement, total variation regularization, and Bayesian
prior modeling.

The exploitation of spatiotemporal features constitutes the cornerstone of
LRMA-based data recovery in WSNs. Prevailing methods predominantly resort
to graph-based regularization to encode such dependencies—ranging from graph
Laplacian matrices for topology-aware smoothing [27, 20] to hybrid graph con-
straints capturing global-local signal structures [8]. Despite their merits, these
approaches intrinsically presume linear or quasi-linear temporal dependencies,
often failing to accommodate the nonlinear dynamics pervasive in real-world
WSN signals [25, 20, 7].

Regarding robustness enhancement, the community has witnessed a dichotomy
between L2-norm-oriented accuracy optimization [44, 14] and L1-norm-driven out-
lier resistance [13, 36]. While L2-based models achieve superior performance under
Gaussian noise, their susceptibility to anomalies has been widely documented [41,
38]. Conversely, L1-regularized variants, though more robust, tend to undermine
recovery fidelity due to over-conservative noise suppression [15, 2, 39, 43]. Recent
attempts to reconcile this dilemma through static L1/L2 hybrid regularization [45,
16] merely mitigate rather than resolve the bias-variance tradeoff, as their fixed
weighting parameters cannot adapt to skewed noise distributions. This paper
introduces two innovations: Nonlinear Temporal Regularization and Adaptive Ro-
bustness via Huber Regularization. The first embeds coupled Fourier features to
capture nonlinear spatiotemporal dependencies, overcoming graph-based methods’
linearity assumption. The second replaces rigid L1/L2 composites with Huber loss
for dynamic outlier response, synergizing with nonlinear representation learning
to form a theoretically grounded framework that achieves an optimal equilibrium
unattainable by prior arts.

3 The proposed ALFA-FE model

The proposed ALFA-FE framework advances LFA models through dual-criteria op-
timization. It exploits spatiotemporal manifold regularization term that captures
nonlinear time-dependent patterns and employs Huber-norm for noise suppression
and anomaly preservation, offering adaptive responses via self-adjusted thresholds.
The next is to introduce the proposed ALFA-FE model.

3.1 Exploiting Spatiotemporal Feature

The spatiotemporal features in WSNs are characterized by spatial proximity and
temporal dynamics. Spatially, sensor measurements attenuate with increasing
node distance. Temporally, sensor signals show stable frequency and diverse
dynamics across different time scales.

Spatial proximity To capture spatial proximity, we construct undirected
weighted sensor graph G = (V, E , A), where V represents the set of N sensor
nodes, E denotes the set of edges representing pairwise sensor connections, and
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A ∈ RN×N is the weighted adjacency matrix. Each entry aij in A quantifies the
relationship between sensor node i and node j. Given the sensor locations, the
pairwise distance matrix D ∈ RN×N is computed based on Euclidean distances:

dij = ∥xi − xj∥2, (1)

where xi and xj represent the coordinate vectors of the respective sensors.
Using the distance matrix D, the adjacency matrix A is constructed by

selecting k nearest neighbors for each node. The edge weights are determined by
a Gaussian kernel function:

aij =

{
exp

(
−d2

ij

σ2

)
, if j ∈ Nk(i) or i ∈ Nk(j)

0, otherwise
(2)

where σ is a scaling parameter controlling the decay of similarity with distance.
The spatial smoothness is characterized by the graph Laplacian matrix L,

defined as:
L = D −A, (3)

where D is the degree matrix, a diagonal matrix whose elements are given by:

Dii =
∑
j

aij . (4)

Thus, L is expressed as:

L =


∑

a1j −a12 · · · −a1N
−a21

∑
a2j · · · −a2N

...
...

. . .
...

−aN1 −aN2 · · ·
∑

aNj


N×N

, (5)

where
∑

aij denotes the sum of weights in the i-th row of A. The Laplacian
matrix encodes the structural properties of the sensor network and enables spatial
proximity modeling.

To normalize the influence of varying node degrees, we further define the
normalized graph Laplacian as:

Lsym = I −D−1/2AD−1/2, (6)

and the random walk Laplacian as:

Lrw = I −D−1A. (7)

Normalized Laplacians ensure scale-invariance and enhance spectral analysis of
the sensor network. By constructing the graph Laplacian, ALFA-FE effectively
captures spatial dependencies among sensor nodes, enabling robust graph-based
signal processing techniques for spatiotemporal modeling in wireless sensor net-
works.



6 Y. Ding et al.

Temporal dynamic WSNs measurements, represented as rows in W ∈ RN×T ,
exhibit structured temporal dynamics, often containing both long-term trends
and high-frequency variations. Fixed-scale representations may fail to capture
this variability, leading to either the loss of fine details or excessive sensitivity
to noise. To fix this issue, this paper employs Concatenated Fourier Features
(CFF), which embeds time into a multi-scale sinusoidal basis, ensuring a robust
representation of diverse temporal patterns.

Given a sequence of time indices τ = [τ1, τ2, . . . , τT ]
T ∈ RT , we define the

Fourier feature expansions:

γ(τ ) =
[
sin(2πB1τ ), cos(2πB1τ ), . . . , sin(2πBSτ ), cos(2πBSτ )

]T
(8)

where Bs ∈ Rd/2×1 frequency scaling matrices are sampled from a Gaussian
distribution, i.e.,

Bs ∼ N (0, σ2
sI), (9)

ensuring multi-scale feature extraction across different frequency bands.
Using this transformation, the temporal encoding matrix T ∈ RT×Sd is

constructed as follows:

T =


γ(τ1)
γ(τ2)

...
γ(τT )

 =


sin(2πB1τ1) cos(2πB1τ1) . . . sin(2πBSτ1) cos(2πBSτ1)
sin(2πB1τ2) cos(2πB1τ2) . . . sin(2πBSτ2) cos(2πBSτ2)

...
...

. . .
...

...
sin(2πB1τT ) cos(2πB1τT ) . . . sin(2πBSτT ) cos(2πBSτT )

 .

(10)
Using the temporal encoding matrix T, the temporal dynamic matrix Ctemp is
shown as:

Ctemp = TTT ∈ RT×T . (11)

This formulation encodes dependencies across all time steps, naturally capturing
periodicity and multi-scale temporal variations.

Regularization Constraint of Spatiotemporal Feature After obtaining
the graph Laplacian matrix Lrw and the temporal dynamic matrixCtemp, they
are incorporated into the Huber norm as the regularization constraints,

ε(P,E) =β∥J ◦ (W − PE)∥Huber︸ ︷︷ ︸
Data fitting term

+λreg

(
∥P∥2F + ∥E∥2F

)︸ ︷︷ ︸
Tikhonov regularization

+ λ1 trace
(
PTLrwP

)︸ ︷︷ ︸
Spatial proximity constraint

+ λ2 trace
(
ETCtempE

)︸ ︷︷ ︸
Temporal dynamic constraint

(12)

where λ1 and λ2 are two hyperparameters controlling the effects of spatial and
temporal features, respectively. β is hyperparameter controlling the effects of the
Huber norm.
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3.2 Model Optimization

It is noteworthy that since the Huber-norm-based loss function in (12) exhibits
gradient discontinuity at specific points, (12) can be reformulated into an element-
wise representation, as shown in [11], [27], and [41].

ε(P,E) =β

N∑
i=1

T∑
j=1

({
1
2 (wi,j − pi,.e.,j)

2, if |wi,j − pi,.e.,j | ≤ δ

δ(|wi,j − pi,.e.,j | − 1
2δ), otherwise

)

+ λreg

N∑
i=1

T∑
j=1

(
∥pi,.∥2F + ∥e.,j∥2F

)
+ λ1

N∑
i=1

T∑
j=1

(
(PTLrwP )i,i

)
+ λ2

N∑
i=1

T∑
j=1

(
(ETCtempE)j,j

)
(13)

where pi,. and e.,j denote the ith row vector of P and the jth column vector
of E, respectively. Then, considering the instant loss εi,j of ε(P,E) on a single
entry wi,j , we define

ε(i, j) =β

({
1
2 (wi,j − pi,.e.,j)

2, if |wi,j − pi,.e.,j | ≤ δ

δ(|wi,j − pi,.e.,j | − 1
2δ), otherwise

)
+ λreg

(
(pi,.)

2 + (e.,j)
2
)
+ λ1

∑
m

(Lrw)im(pi,. − pm,.)
2

+ λ2

∑
n

(Ctemp)jn(e.,j − e.,n)
2

(14)

The optimization with respect to top pi,. and e.,j can achieve it by the stochastic
gradient descent (SGD) algorithm. Then, at the tth iteration, employ SGD to
minimize (14) as follows: 

pti,. = pt−1
i,. − η

∂εt−1
i,j

∂pt−1
i,.

et.,j = et−1
.,j − η

∂εt−1
i,j

∂et−1
.,j

(15)

where pt−1
i,. , et−1

.,j , and εt−1
i,j denote the states of pi,., e.,j , and εi,j at the (t− 1)th

iteration, and η denotes the learning rate of SGD. Let ∆t−1
i,j = wi,j − pt−1

i,. et−1
.,j be

the estimation error on a single entry wi,j at the (t−1)th iteration. By combining
(14) into (15), the updating rules of pti,. and et.,j on a single entry wi,j at the tth
iteration are obtained as follows:

∆t−1
i,j | ≤ δ


p′ik = p′−1

ik + ηβ∆t−1
i,j et−1

jk − 2ηλregp
t−1
ik

−2ηλ1

∑
m(Lrw)im(pt−1

ik − pt−1
mk )

e′jk = et−1
jk + ηβ∆t−1

i,j pt−1
ik − 2λrege

t−1
jk

−2λ2

∑
n(Ctemp)jn(e

t−1
jk − et−1

nk )

(16)
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∆t−1
i,j | > δ


p′ik = p′−1

ik + ηβδ · sgn(∆t−1
i,j )et−1

jk

−2λregp
t−1
ik − 2λ1

∑
m(Lrw)im(pt−1

ik − pt−1
mk )

e′jk = et−1
jk + ηβδ · sgn(∆t−1

i,j )pt−1
ik

−2λrege
t−1
jk − 2λ2

∑
n(Ctemp)jn(e

t−1
jk − et−1

nk )

(17)

where sgn(·) is the sign function, defined as:

sgn(x) =

{
1, x > 0

−1, x < 0
(18)

3.3 Theoretical Analysis

Error Bound Analysis with Huber-Spatiotemporal Regularization

Proposition 1. The composite loss at iteration t combines Huber loss and spa-
tiotemporal regularization:

OH,ST
t = βH

t H(J ◦ (W − PtEt)) + βST
t

(
λ1tr(PTLrwP ) + λ2tr(ETCtempE)

)
(19)

where H(·) denotes Huber norm. The cumulative error BH,ST
t :=

∑t
ω=1 O

H,ST
ω

satisfies

BH,ST
T ≤ minBH

T , BST
T + ln 2

√
lnT +

T

8
√
lnT

(20)

Proof. Define potential function Ft = e−σBH
t + e−σBST

t with σ = (1/ lnT )1/2.
Through Hoeffding’s inequality:

ln
FT

F0
≤ −σBH,ST

T +
σ2T

8
≤ −σminBH

T , BST
T − ln 2 (21)

Rearranging terms yields the bound with σ =
√
1/ lnT .

Recovery Error Guarantee

Proposition 2. For any corrupted matrix H ∈ RM×N satisfying |H−P(H)|F ≤
α|H|F α ∈ [0, 1), the reconstruction error satisfies:

|X −W |F ≤
λ
√
2rank(W ) + z1|LrwW |F + z2|WCtemp|F

1− α
(22)

where P(H) := β1J ◦ sign(H) + β2J ◦H + z1LrwH + z2HCtemp.

Proof. Apply KKT conditions to derive the reconstruction formula:

X = SVTλ(W − P(W )) (23)

Use triangle inequality with SVT properties:

|X −W |F ≤ λ
√

2rank(W ) + |P(W )|F (24)

Combine with spectral bounds for P(W ).
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Summary: The integration of Huber loss and spatiotemporal regularization
ensures controlled cumulative errors (≤ minBH

T , BST
T +O(

√
lnT )) and bounded

reconstruction error proportional to noise level and graph/temporal smoothness.

Table 1: Properties of Experimental Datasets.

No. Name |M| |N | Time Minimum/Maximum

D1
Beijing PM2.5

35 8647 2014-05 – 2015-04 3.0 / 773.7
concentration [1]

D2
Beijing CO

35 8647 2014-05–2015-04 0.1 / 20.0
Concentration[42]

D3
Sea surface

70 1733 1976-01–2014-12 0.01 / 30.31
Temperature[24]

D4
Daily mean CO

74 365 2010-01–2010-12 0.1 / 2.9
concentration[35]

4 Experiments

The experiments are designed to address the following research questions (RQs):
RQ.1. Does the proposed ALFA-FE model outperform state-of-the-art models

in recovering missing data in WSNs?
RQ.2. How do noise data affect the performance of ALFA-FE and other

recovery models?
RQ.3. How do different hyperparameter settings influence the performance of

the proposed ALFA-FE model?

4.1 Experimental Setup

Datasets. To evaluate the performance of the proposed model, we select four
benchmark datasets collected from real-world WSNs, including PM2.5, CO, and
sea surface temperature. The key properties of these datasets are summarized in
Table 1.

Evaluation Metrics. Mean absolute error (MAE) and root mean square error
(RMSE) are widely used to assess predictive accuracy [17, 23, 31]. RMSE penalizes
larger errors due to the squared term, making it suitable for scenarios where
extreme deviations matter, while MAE treats all errors uniformly, providing
a balanced evaluation [25, 27, 20, 41, 22]. In WSN missing data recovery, where
outliers are common, the metric play a crucial role. The mathematical formulations
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Table 2: The comparison results of recovery accuracy on D1-D4.
Data Metric ST-LRMA BR-TVGS LRDS RRImpu L3F TRSS LFA-STSR ALFA-FE

D1
MAE 12.3630±0.94 9.82±0.67 9.56±0.70 23.2691±1.09 13.8012±1.15 8.1215±1.50 8.2616±1.53 7.9241±1.54
RMSE 22.7555±1.97 18.7477±1.01 18.0317±1.06 38.8918±1.50 25.35±1.04 16.2920±1.64 16.0696±1.64 15.4539±1.62

D2
MAE 0.1946±0.02 0.1658±0.02 0.1651±0.01 0.3027±0.02 0.2491±0.02 0.1322±0.02♦ 0.1445±0.02 0.1393±0.01
RMSE 0.4366±0.02 0.3777±0.01 0.3731±0.01 0.5507±0.02 0.5180±0.02 0.3126±0.02♦ 0.3390±0.02 0.3220±0.02

D3
MAE 0.1268±0.02 0.1734±0.02 0.1260±0.01 0.4064±0.02 0.1255±0.02 0.1737±0.02 0.1207±0.0150 0.1162±0.02
RMSE 0.1753±0.02 0.2438±0.01 0.1740±0.02 0.5449±0.01 0.1709±0.013 0.2444±0.03 0.1654±0.02 0.16±0.02

D4
MAE 0.1145±0.01 0.0981±0.01 0.0922±0.01 0.1064±0.01 0.0984±0.01 0.0919±0.01 0.0969±0.01 0.0780±0.01
RMSE 0.1916±0.01 0.1585±0.01 0.1488±0.01 0.1667±0.01 0.1488±0.01 0.1478±0.01 0.1471±0.01 0.1124±0.01

Statistical
win/loss♦ 8/0 8/0 8/0 8/0 8/0 6/2 8/0 —
p-value⋆ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 —

Analysis F-rank∗ 5.78 5.11 4.11 8.00 7.00 2.33 2.67 1.00

are as follows:

MAE =

∑
wi,j∈Γ

|wi,j − ŵi,j |

|Γ |

RMSE =

√√√√ ∑
wi,j∈Γ

(wi,j − ŵi,j)2

|Γ |

(25)

where ŵi,j denotes the estimation of wi,j and Γ denotes the testing set, a lower
value of RMSE/MAE indicates better accuracy.

Baselines. The proposed ALFA-FE model is evaluated against seven state-of-
the-art models, including ST-LRMA[25], BR-TVGS[27], RRImpu[22], L3F[41],
TRSS[7], and LFA-STSR[40]. A brief description of the competing models is
provided in supplement document.

Experimental Details. To simulate missing data scenarios in WSNs, partial
observations are randomly selected from the complete dataset to construct the
training set, while the remaining observations are designated as the testing set.
Within the training set, half of the data is utilized for model training, and the
other half is reserved for performance validation and hyperparameter tuning.
After determining the optimal hyperparameters, model retraining is performed
using the entire training set. The maximum number of iterations is fixed at 1500,
and early termination is triggered if the error difference between two consecutive
iterations falls below 10−6. Each experiment is conducted five times, and the
average results are reported. All experiments are executed on a computing system
equipped with a 3.4-GHz Intel i7 processor and 64 GB of RAM.

4.2 Performance Comparison (RQ.1)

The recovery accuracy of ALFA-FE. Comprehensive evaluations at a 0.8 sam-
pling rate demonstrate superior reconstruction capability of ALFA-FE across four
datasets, as shown in Table 2. Statistically significant improvements in both ac-
curacy and stability are achieved, with MAE=7.92±1.54 and RMSE=15.45±1.62
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Fig. 2: The comparison CPU running time of involved models on D1–D4.

on D1, surpassing LFA-STSR by 4.3% and 3.9%, respectively. On D4, MAE is re-
duced to 0.078±0.006, marking a 15.1% improvement over TRSS (0.0919±0.007).
In D2, variance remains 50% lower than TRSS (0.139±0.01 vs. 0.132±0.02)
while maintaining comparable accuracy. For temporal reconstruction in D3,
RMSE reaches 0.1569±0.0154, with 11.2% error reduction compared to LRDS
(0.174±0.0149). Dominance in pairwise comparisons is evident with 8/0 win-loss
ratio, significant differentiation confirmed by Wilcoxon tests (p<0.002), and
optimal Friedman ranking (F-rank=1.00 vs. TRSS=2.33). Despite slightly better
D2 metrics (MAE=0.132 vs. 0.139), TRSS exhibits compromised robustness,
reflected in 100% higher variance and inferior ranking. This systematic vali-
dation highlights the effectiveness of ALFA-FE in balancing precision-stability
trade-offs through adaptive spatiotemporal regularization. Compared to TRSS,
ALFA-FE yields the largest relative gain on D1 and D4, where sharp pollutant
spikes are prevalent, indicating the benefit of Huber-based anomaly preservation.
On smoother datasets like D3, the improvements are moderate, demonstrating
Fourier embeddings’ capacity to align with continuous temporal structures.

Comparison of Computational Efficiency. To evaluate the computational effi-
ciency of all test models, we measured their CPU runtime across all datasets, as
illustrated in Fig. 2. Besides, Analysis of computational complexity can be found
in the supplementary document. In Our model generally achieves a lower CPU
runtime compared to the baseline models, except in certain cases where L3F
performs better. This is primarily due to the fact that our approach incorporates
spatio-temporal smoothness characteristics, which are not considered in the L3F
model.

4.3 Robustness Analysis under Noisy Conditions (RQ.2)

To rigorously evaluate the capability of ALFA-FE in handling heterogeneous
anomalies and coupled noise-outlier interactions inherent in real-world WSN
deployments, we design a structured noise injection protocol that emulates the
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spatiotemporal characteristics of sensor data corruption. The contamination
process adheres to four principles: (a) Spatially randomized selection of observed
entries to simulate uneven anomaly distribution across different district sensor
arrays; (b) Value corruption via extremal substitution based on localized training
subsets, replicating multimodal WSNs data distributions observed in Fig.1b; (c)
Controlled escalation of noise intensity from 10% to 50% contamination ratios
to mimic progressive sensor degradation scenarios; (d) Strict isolation of noise
injection to training data, preserving test set integrity for unbiased generalization
assessment. As visualized in Fig.4, our simulation framework preserves the baseline
distribution (pink) while introducing context-aware outliers (orange) bounded
by localized extremal thresholds (green). Quantitative analysis in Fig. 3 reveals
that conventional low-rank models exhibit accelerated performance decay under
rising contamination levels due to undifferentiated noise-anomaly processing. In
contrast, our ALFA-FE framework demonstrates moderated accuracy degradation,
maintaining 22% lower MAE than the best baseline at 50% noise ratio. The
results confirm the dual capacity of ALFA-FE that is simultaneously recovering
stable low-rank structures through Fourier-embedded manifolds and protecting
sensor-specific anomaly signatures via noise-outlier discriminative learning.

4.4 Effects by the Hyperparameters (RQ.3)

This section investigates the influence of spatio-temporal regularization parameters
(λ1 and λ2 ) and the latent factor dimension (k) on model effectiveness. We



Fourier-Enhanced Adaptive Manifold LFA 13

5 10 30 50 70
-10

0

10

20

30

k

M
A
E

5 10 30 50 70
-10

0

10

20

30

40

50

k

R
M
SE

Fig. 5: The MAE/RMSE of ALFA-FE as k increases from 5 to 70 on all the
datasets.

systematically analyze their effects on reconstruction accuracy, stability, and
adaptability to varying data patterns.

Trade-off Analysis of Feature Dimensions. Increasing the feature dimension gener-
ally improves model recovery accuracy at the expense of increased computational
time. At sampling rate of 0.9, we experimented with feature dimensions ranging
from 5 to 80, and the results are presented in Fig. 5. The data indicate that both
MAE and RMSE decrease as the feature dimension increases, until reaching a
point beyond which further improvements become marginal. Furthermore, as
analysised in Section 3.3 and corroborated by the violin plots in the accompanying
figures, increasing the parameter k leads to a notable rise in time complexity.
Therefore, a value of k = 50 is recommended to strike a balance between recovery
accuracy and computational efficiency.

Impact of Spatiotemporal Regularization on Reconstruction Performance. Fig. 6
illustrates the impact of spatiotemporal regularization on reconstruction per-
formance under sampling rate of 0.1. A systematic parameter analysis reveals
non-linear error responses to parameter variations: Incremental increases in λ1

and λ2 (ranging from 0.2 to 1.0) initially lead to a 14.5% reduction in MAE on
dataset D3. However, beyond a critical threshold, further parameter augmentation
results in performance deterioration. Dataset D4 achieves optimal performance
at λ1 = 0.02 and λ2= 0.005, yielding a minimum MAE of 0.1173. This result
underscores the importance of balancing spatial and temporal regularization
constraints to achieve optimal reconstruction accuracy. The interplay between
spatial λ1 and temporal λ2 regularization parameters exhibits a complementary
effect, where appropriately tuned values mitigate reconstruction errors while
preserving structural integrity. Overall, harmonized spatiotemporal regularization
plays a pivotal role under conditions of limited sampling.

5 Conclusion

This article proposes ALFA-FE for robust spatiotemporal signal recovery in wire-
less sensor networks. Its main idea is twofold: 1) embedding Concatenated Fourier
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Fig. 6: The MAE of ALFA-FE with different λ1 and λ2 on all the datasets.

Features into temporal dynamics to improve the adaptability to non-stationary
data patterns; 2) integrating the Huber norm with gradient descent optimization
to enhance robustness against coupled noise and anomalies. By harmonizing
frequency-domain regularization and adaptive robustness constraints, ALFA-
FE possesses the merits of both dynamic representation learning and effective
anomaly handling. In the experiments, ALFA-FE is evaluated on four benchmark
datasets of varying scales from real-world WSNs. The results demonstrate that
ALFA-FE significantly outperforms state-of-the-art methods in reconstruction
accuracy and robustness under noisy conditions. Although ALFA-FE performs
well, its deployment can be streamlined. Replacing fixed-rate SGD and grid search
with adaptive optimizers (e.g., Adam) and automated tuning (e.g., Bayesian
optimization) will cut training cost, while extending the framework to edge-
friendly, decentralized updates and dynamic graphs will let it handle mobile or
wireless WSNs and meet real-time, resource-limited constraints in large-scale IoT
deployments.
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