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Abstract. The cache is a critical component that directly impacts the
computational system’s performance and Quality of Service (QoS), with
its effectiveness determined by the caching policy in use. An ideal caching
policy must adapt to diverse workloads while approximating the optimal
strategy. Recent advancements in caching strategies have focused on two
paradigms: user access pattern prediction based on supervised learn-
ing and policy search methods based on Reinforcement Learning (RL).
Supervised learning approaches often suffer from predictive inaccura-
cies. RL methods face challenges with large state spaces and insufficient
exploration. Both paradigms lead to suboptimal performance and un-
bearable complexity in the decision making process. In this paper, we
propose CARIS, a novel caching policy that integrates cache affinity es-
timation with a deep reinforcement learning agent. CARIS estimates the
cache affinity of each user access, and focuses the agent’s exploration
on accesses with higher predicted cache affinity, effectively reducing un-
necessary exploration and addressing the limitations of both paradigms.
Additionally, to reduce complexity in decision making, CARIS intro-
duces an "empty action" mechanism during cache hits to reduce noise
from irrelevant actions. Through comprehensive experiments with mul-
tiple datasets, CARIS achieves an improvement more than 294% in the
average cache hit rates compared to the SOTA learning-based caching
policies under the tested scenarios. Our results highlight CARIS’s poten-
tial to advance both theoretical understanding and practical efficiency in
modern caching systems.
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1 Introduction

The cache system is widely deployed in computer systems across various do-
mains, greatly affecting their performance and quality of experience (QoE). The
fundamental principle of the cache system is to store the frequently accessed
data objects in a smaller but quicker-to-access medium, to reduce the access
frequency on the larger but slower-to-access medium, so that the average access
time is minimized. We find caches in networking systems, large databases, and
micro systems on chips (SoCs).
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Although caching greatly improves the system’s performance in general, the
key to its optimization is to find the most appropriate caching policy for the
scenario under specific workloads. The classic heuristic-based caching policies
are studied in depth, including Least-recently-used (LRU), Least-frequently-used
(LFU), First-in-first-out (FIFO), and Greedy-dual-size-frequency (GDSF) [1].
They are simple to understand and implement, integrated in the commonly
deployed cache systems (e.g. Redis [3], Memcached [7]). However, the storage
system’s access pattern is often complex and hard to predict, while these policies
can only stick to their predetermined rules, not adapting to the evolving access
pattern. The next step to developing better caching policies is to employ machine
learning (ML) techniques.

Recently, many learning-based caching policies are proposed (e.g. [21], [10],
[27], [22], [8]). Most of these works are based on the idea of predicting the user
access pattern so as to approximate the globally optimal policy. For instance, the
Belady’s replacement policy always chooses the object that is accessed furthest
to the future to replace when the cache is full and a cache load operation is
imminent, making the key to its approximation the prediction of an object’s
revist time from the current moment. The recently proposed models predict
patterns required by the theoretically optimal policies to invoke the ideal policies
with confidence in their predictions. However, since all ML models suffer from
inevitable limitations in their predicting abilities, these caching policies based
on user access pattern prediction are always suboptimal.

Other policies based on reinforcement learning are also studied in depth (e.g.
[15], [12]). Unlike the methods based on user access pattern predictions, the
RL-based policies employ an agent to explore the cache system’s state space and
search for the optimal policy. By deciding on an objective such as maximizing ob-
ject hit rate and using an RL training method (e.g. DQN [17], Actor-Critic [13],
PPO [19]), the policy is learned in an end-to-end fashion, fulfilling the designated
objective. The major limitation in the RL-based policies is that the state space
is too large to be suffciently explored for an RL agent with a policy network that
has a limited number of parameters in during the training phase. The agent is
highly likely to spend an excessive amount of time on unimportant states and
actions, resulting in its underperformance compared to the policies based on the
user access pattern prediction.

For the problem of caching strategy optimization, the main challenges are (1)
how the RL agent’s exploration can be effectively simplified and (2) how cache
affinity prediction can aid the agent’s exploration. In this paper, we propose
CARIS, a cache admission policy based on reinforcement learning and the cache
affinity prediction on the user access, to address the aforementioned challenges.
We summarize the key contributions of this work as follows:

1. CARIS introduces an "empty action" during cache hits. For a cache ad-
mission policy, the action taken in the event of a cache hit cannot actually
influence the cache system’s state, and the agent always receives a higher im-
mediate reward. CARIS forces the agent to take the empty action on cache
hit during training, not taking any irrelevant actions.
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2. CARIS merges the concept of cache affinity into the RL policy. CARIS first
estimates the cache affinity of each user access. Then the access deemed
cache-averse is rejected to be admitted by the agent without consulting the
major policy network. By filtering the cache-averse objects beforehand, the
exploration focuses on objects that are more likely to generate cache hits in
the near future.

3. We constructed datasets with real-world workloads to test CARIS and com-
pare it with existing SOTA methods, and prove its superiority in terms of
cache hit rate.

2 Related Works

This section introduces some basic concepts related to the following major sec-
tions, and recent research development concerning these concepts.

2.1 Deep Reinforcement Learning

A decision process is a sequence of states and actions of an agent, denoted as
{(St, at)}t=∞

t=0 . An agent is capable of making decisions at each step. If the state’s
probability distribution at time t+1 solely depends on the state and action taken
at the previous moment t, we call the decision process Markovian, or a Markov
Decision Process (MDP). That is, the state transition kernel has the form of
p(St+1|St, at).

At each moment in an MDP, an immediate reward depending on the state
and action taken of the moment can be sampled by the agent, denoted as rt and
has the distribution of the form p(rt|St, at).

The agent must decide upon an action at each time t by some learned dis-
tribution p(at|St) called policy, so the discounted sum of the rewards across all
time steps is maximized. To learn such a policy, reinforcement learning methods
are often employed. Common RL training methods based on deep learning (DL)
includes DQN [4], Actor-Critic [13], TRPO, PPO [19], DDPG [25].

2.2 Caching Policies based on Access Pattern Prediction

Caching policies based on user access pattern prediction approximate the optimal
policy by having the model predict a key variable derived from the user access
sequences, that indirectly leads to optimality.

Multiple papers try to approximate the Belady’s replacement policy. LRB [21]
predicts the reuse time of each user-accessed object to meet Belady’s requirement
with GBM [11], and produce a cache replacement policy. LHR [27] predicts the
hazard rate of the user-accessed objects, an upper bound of the reuse time, to
do the same thing as in LRB [21]. Raven [8] does the estimation with a mixed-
density neural network (MDN) [23].

Cache affinity of the user accesses has also been favored as a key to optimality.
Hawkeye [10] trains a model to find the cache-averse objects, and replace them
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with a higher priority. HR-Cache [22] employs the hazard rate estimation from
LHR [27] as a measure of cache affinity, as in Hawkeye [10], and replaces them
as in Hawkeye [10].

Methods based on user access pattern prediction have 2 major issues. (1) It
requires explicit feature selection and engineering. (2) It suffers from predition
inaccuracy.

CARIS resolves these issues by introducing an RL agent that is feature-
agnostic and trained end-to-end. The agent explores in depth the cache system’s
state space induced by the accesses to the cache-friendly objects to mitigate the
impact of the inaccurate predictions.

2.3 Caching Policies based on RL

The RL-based caching policies train an RL agent that outputs the action’s prob-
ability distribution at each time step. Parrot [15] tries to approximate the Be-
lady’s cache replacement policy by imitation learning. RL-Cache [12] maximizes
the discounted sum of the number of cache hits by Monte-Carlo sampling.

Different from Parrot [15] or RL-Cache [12], other studies do not present a
caching policy for the general case, but for problems encountered in the specific
fields. [14], [26], [2] constructed RL-based policy models for caching problems
for networking in device-to-device scenarios, vehicles, video streaming and mobile
edge respectively.

RL-based caching policies underperform policies based on access pattern pre-
diction in general, due to the inefficiency of the agent’s exploration. The more
successful applications focus on special case scenarios, rather than the general
cache system optimization problem.

CARIS resolves the exploration problem (1) by introducing an empty action
during cache hits, and (2) by filtering away the cache-averse objects before the
agent is invoked. By applying these two techniques, CARIS outperforms the
existing RL-based methods without sharing any of their defectiveness.

3 The Caching Problem Analysis

This section first proves the caching policy optimization problem CARIS means
to solve is equivalent to an RL problem in section 3.1. Then, sections 3.2,3.3
introduces the techniques used in solving the problem of interest.

3.1 The Cache Admission Process as an MDP

Consider a storage system with cache that recieves user access requests as time
progresses. Denote the user-accessed data object at time t as et, and the cache
table as ct, that is the set of all objects in cache. We further consider a cache
system with an admission policy, that decides whether the accessed object should
be loaded into cache in the event of a cache miss. Denote the admission decision
as at, with at = 1 meaning the object should be loaded into cache. Denote
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the replaced data object in cache at time t as ut. The cache behaviour can be
described as equation 1, with the cache state unchanged when the admission
policy rejects the object.

ct+1 =

{
ct ∪ {et}\{ut} (at = 1)
ct (at = 0)

(1)

Let us first show that any caching decision process is Markovian. At any
given time t, denote the sequence of the cache table ct in equation 1 before
time t as Ct = {cτ}τ=∞

τ=t , the cache admission action at time t as at, the user
accessed object at time t as et, and the user’s access sequence before time t
as Ut = {eτ}τ=∞

τ=t . The cache table at time t + 1 is determined by the cache
table at time t according to equation 1. Consider the cache system’s state as
St = (Ct, Ut). The next state St+1 is determined once the current state St and
action at is given, making the caching decision process Markovian.

Note that cache admission policy must be accompanied by a cache replace-
ment policy, as in equation 1 ut must be given when the cache is full. Any cache
replacement policy can work in general.

The caching policy optimization problem can be formulated as an optimiza-
tion problem of MDP. The cache system’s state transition kernel is explicitly
given in equation 2, where p(Ct+1|Ct, et+1, Ut) is the δ function equivalent to
equation 1.

p(St+1|St, at) = p(Ut+1, Ct+1|Ct, Ut, at) = p(et+1|Ut)p(Ct+1|Ct, et+1, Ut) (2)

Denote Xt = 1 in the event of a cache hit, and Xt = 0 in the event of a
cache miss. The optimization objective is to maximize the discounted number of
cache hits, which is the discounted sum of Xt by a factor of γ less than 1, as in
equation 3.

HT =
∑
t≥T

γt−TXt (3)

Since the caching decision process can be considered Markovian, we propose
to maximize the objective HT in equation 3 by reinforcement learning methods
for all choices of T . At any moment t, treat St as the agent’s state, at ∈ {0, 1} as
the agent’s action, and Xt sampled at time t as the immediate reward rt. Denote
the state space as S, which is constructively formed by all possible values that St

might take at any given moment t. HT ’s expectation given the observed state at
the same moment T is the state value function V (ST ) by definition. By solving
the reinforcement learning problem, CARIS finds the expected optimal HT for
all T of interest and the accompanied optimal caching policy.

Different from the general MDP problems, the decision process we consider
yields immediate rewards regardless of the action taken at the moment, since
whether the access attains a cache hit is not determined by whether the cache
admits the accessed object. Therefore, during training, the agent can first sample
states and rewards, then decides upon an action.
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3.2 Focus on Cache Misses

The cache admission policy agent is not active when there is a cache hit. Only
when there is a cache miss, is the policy’s decision actually affecting the objective
in equation 3. Based on this observation, CARIS introduces the empty action,
denoted as at = 2. The empty action is equivalent to the no-admit action when
there is a cache miss. CARIS is forced to take the empty action when there is a
cache hit in training, as in equation 4, where ht = 0 represents a cache miss at
time t and ht = 1 represents a cache hit.

p(at = 2|ht = 0) = 0, p(at = 2|ht = 1) = 1 (4)

By the definition of the MDP optimization problem, if the action is either
admit or no-admit, the immediate rewards and state transitions at that moment
should be statistically dependent on the action, as in equation 2. By introducing
the empty action, this assumption is satisfied for the admit and no-admit actions,
and misleading exploration induced by actions during cache hits is avoided.

3.3 Focus on Cache-friendly Objects

Many objects are rarely revisted by the users within a short period of time,
according to the dataset statistics in table 1a. As in Figure 2, the number of
accesses for an object within one sequence is below 10 for the datasets used in
the experiments. Generally speaking, the cache admission policy should adopt
the behaviour that it admits with a higher probability the objects that are more
likely to be repeatedly accessed by the users.

Denote pm,R
T,T+L for object m in some given time interval [T, T + L) as the

probability of the object being accessed R times in the given time interval,
provided that the object is not replaced, as in equation 5. Mm

T,T+L is a collection
of sequences that is composed of 0’s and 1’s and sums to R. M ∈ Mm

T,T+L is a
sequence in the collection, and Mi denotes the ith object of the sequence. pmt
is the probability of the accessed object et being object m. pm,R

T,T+L is small for
most m,R,L.

pm,R
T,T+L =

∑
M∈Mm

T,T+L

T+L∏
t=T

(pmt )Mt−T (5)

To simplify the exploration, CARIS introduces the concept of cache affinity as
in [10] and [27]. It considers an object m cache-friendly at time T if pm,R

T,T+L > ρ
holds for some predetermined constants ρ, L,R, and the object is cache-averse if
otherwise.

When there is a cache miss and CARIS is deciding whether it admits the
accessed object, CARIS first evaluates its cache affinity. If the object is cache-
averse, reject the object. If the object is cache-friendly, CARIS then consults
the policy model trained as a reinforcement learning agent. By filtering out the
cache-averse objects before the major reinforcement learning agent is taken into
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account, the agent is protected from learning to decide on rarely revisted objects.
The exploration is significantly simplified, and focuses only on the decisions con-
cerning cache-friendly objects. The input space of the agent’s policy distribution
function p(at|St) is reduced since the potential Ut in St is partially filtered away.

In section 4.2, we propose the cache affinity predictor as a part of CARIS
to implement the aforementioned decision plan. In section 4.3, we adopt the
maskable action from [9] to force the agent to perform a no-admit action in the
event of the accessed object being cache-averse.

4 The CARIS Policy Model

Critic Network

Actor Network
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Fig. 1: Cache Affinity-aware Reinforced Intelligent Strategy Model

This section describes CARIS’s internal structure in depth. CARIS is com-
posed of a user access sequence encoder and multiple feed-forward neural net-
works, as in Figure 1, estimating the cache affinity, the state value function
and the policy distribution. The hyper parameters used for model building and
training are listed in table 2 in the appendix section A.
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4.1 The Object Access Sequence Encoder

This subsection introduces the object access sequence encoder which learns the
user-accessed objects’ representation.

As in the cases of NLP and CV, the transformer familiy does a good job
in learning the sequence representation for inputs from various domains. In our
case, CARIS uses BSARec [20], a transformer-like architecture, to encode the
object access sequence. The vanilla transformer suffers from information loss
in the high-frequency spectrum of the representation computed at each of its
layers. BSARec introduces a high-pass filter against this background to mitigate
the problem.

As in Figure 1, the encoder based on BSARec takes the user access sequence
tokens e1, ..., eT as input, and produces vectors êt as the representation êt of the
cache system state St.

4.2 The Cache Affinity Predictor

In this subsection, we propose to estimate the cache affinity from section 3.3.
CARIS estimates p̂mT,T+L given by equation 6, an upper bound of pm,R

T,T+L. p̂mT,T+L

is the probability that object m is accessed at least 2 times between time T and
T + L, so it satisfies 6. Since pm,R

T,T+L > 0 for any m,R, T, L, we have p̂mT,T+L >

pm,R
T,T+L, which is a tight bound when the probability that an object is revisted

by a user is relatively small.

p̂mT,T+L = 1−
T+L∏
t=T

(1− pmt ) =
∑
R≥2

pm,R
T,T+L (6)

For some predetermined constants ρ ∈ (0, 1) and L, CARIS considers the
object et accessed at time t cache-friendly if p̂etT,T+L ≥ ρ, and cache-averse if
otherwise. At time t, denote the event that the obejct et is accessed in (t, t+L)
as At = 1, and At = 0 if otherwise. At’s probability distribution is computed
according to equation 7 based on the representation learned by the sequence
encoder.

p(At = 1|êt) = softmax(FFNaffinity(êt)) (7)

The loss function for the cache affinity predictor’s training is equation 8,
where we use i to differentiate the training experiences. Denote the number of
state transitions in the training sequence l as N

(i)
l , and denote the number of

experiences used in training as NL.

Laffinity = − 1

NL

∑
i

1

N
(i)
l

∑
t

[A
(i)
t log p(A

(i)
t = 1)+(1−A

(i)
t ) log p(A

(i)
t = 0)] (8)
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4.3 The Actor Learner

This subsection describes the actor network and the computation of p(at|St).
The policy distribution is computed based on the representation êt given by

the sequence encoder, as the actor network in Figure 1 and equation 9. The actor
network outputs a 3 dimensional vector, representing the no-admit, admit, and
empty actions respectively as p(at|St).

p(at|St) = softmax(FFNpolicy(êt)) (9)

A valid action is the action that can be taken by the agent. CARIS computes
the action validity indicators, with which the policy rules described in sctions
3.2,3.3 are enforced.When there is a cache miss and p̂mT,T+L ≥ ρ, at = 0 is an
invalid action, while other actions are valid. When there is a cache hit, the only
valid action is at = 2. Denote the event that the action i at time t is valid as
vit = 1, and as v0t = 0 if otherwise. Denote the event that there is a cache hit at
time t as ht = 1, and ht = 0 if otherwise. Denote the event that p̂etT,T+L < ρ as
ft = 1, and ft = 0 if otherwise. The validity indicators vit for each of the actions
i can be computed as in equation 10.

v0t = (1− ht)fi

v1t = 1− ht

v2t = ht

(10)

CARIS adopts action masks [9] to implement the action constraints. To avoid
taking an invalid action, the input logits to the softmax function in equation 9
is set to a very small negative constant (CARIS uses −108) to represent −∞, so
that the component produce 0 probability. Reformulate equation 9 to 11, where
⊙ is the vector’s element-wise product.

One may consider enforcing equation 4 by assigning negative rewards to
invalid actions during training. However, the agent would still have to spend time
exploring by taking invalid actions and might not come to the right conclusion
after lots of efforts. This is explained in [9] in detail. By using the action masks,
we help the agent skip the exploring part.

p(at|St) = softmax(vt ⊙ FFNpolicy(êt) + (1− vt) · (−∞)) (11)

CARIS uses the PPO algorithm to train the policy network. Once a state
transition from St to St+1 by action at is observed, the loss is given by equation

12, where Rt =
p(at|S(i)

t )

sg[p(at|S(i)
t )]

, and sg is the stop-gradient operator in the com-

putation graph. A(St, at) is the estimate of the advantage, which is discussed
in section 4.4 in depth. CARIS introduces a penalty on the policy’s entropy
H[p(·|S(i)

t )], preventing the policy from collapsing onto a single action too early.

(Lactor)
(i)
t = −min

[
RtA(S

(i)
t , at), clip (Rt, 1 + ϵ, 1− ϵ)

]
− β1H[p(·|S(i)

t )] (12)
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4.4 The Critic Learner

This subsection describes the estimation of A(St, at) required by equation 12.
For any possible state St and action a, CARIS estimates the state value function
V (St) and state-action value function Q(St, a), then derives the advantage esti-
mate by computing A(St, a) = Q(St, a) − V (St). The state value function can
be estimated by Q’s estimate, as V (St) = maxa Q(St, a).

The Q function is estimated by the critic network part in Figure 1. Like
DreamerV3 [5], the multilayered feed-forward network’s output is set to be the
symlog value of Q’s estimate, as in equation 14, where the symlog function and
its inverse symexp is given in equation 13.

symlog(x) = log(1 + x), symexp(x) = exp(x)− 1 (13)

symlog(Q(St, a)) = FFNQ(êt) (14)

The critic network’s parameters are trained in the double DQN fashion. The
critic network is composed of 2 multilayered feed-forward networks, denoted as
the training and target critics respectively, as in Figure 1. Denote the output of
the training critic as Q1(St, a) and the output of the target critic as Q2(St, a).
Once a state transition from St to St+1 by action at is observed, the loss given
by equation 16 is computed and accumulated into the total loss. In equation 15,
rt is the immediate reward yielded by the state transition, and sg is the stop-
gradient operator in the computation graph, so no parameter update would be
performed on its input.

Q̂(St, at) = rt + γsg[Q2(St+1, argmax
a

Q1(St+1, a))] (15)

LQ =
1

NL

∑
i,t

1

2

[
symlog(Q1(S

(i)
t , a

(i)
t ))− symlog(Q̂(S

(i)
t , a

(i)
t ))

]2
(16)

Combining equations 8,16,12, the total loss is the weighted sum of the 3
losses, as in equation 17, where β2, β3 are the predetermined weights.

L = Lactor + β2LQ + β3Laffinity (17)

4.5 Offline Training and Online Inference

CARIS is trained in the same way as the vanilla PPO algorithm, in an on-policy
manner with a replay buffer as in [4]. Training experiences are generated by
a cache system simulation and fed into the replay buffer. The training process
samples experiences from the replay buffer and performs parameter updates.

When using a trained CARIS model for online inference, CARIS splits the
user access sequence into 2 subsequencesses by picking a seperating time step.
The moments before the seperating time step t is denoted as the history window,
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while the moments after the seperating time step t is denoted as the inference
window. After an inference operation is performed, the cache system performs
cache loading operations according to the inference results of the items in the
inference window. Then, user access records in the inference window are merged
into the history window, and the inference window is cleared. New user access
records are added to the empty inference window, before the next inference
operation clears it again. When the history window grows larger than a pre-
determined limit, the window removes the oldest user access records each time
new records are added. By adjusting the window sizes, the trade-off between
inference time and system performance is addressed.

To simulate the data distribution in inference, the training dataset is ex-
panded. For each sequence {et}t=N(i)

t=0 used during training, the expanded se-
quences are created according to {{et}t=l

t=0|∀l ∈ [1, N (i)]}, to form a step-by-step
scenario. All training sequences are expanded in this fashion to construct an
expanded sequence set. The sequences used to generate experiences are sampled
from the exapneded sequence set.

Our model deployed in an real world application system is updated every
hour. Newly received user access records are appended to the ever-growing train-
ing dataset, which is then used to incrementally train the model.

5 Experiments

Our experiments on CARIS were conducted with the PyTorch library [18]. A
cache system simulator was built to evaluate various kinds of caching policies.
Our code and dataset is publicly available at GitHub1.

5.1 Datasets and Cache System Settings

We used the datasets enumerated in table 1a for simulation and policy eval-
uation. The datasets have diverse characteristics. (1) The ML-1M [6] dataset
contains user rating records on movies. We sort the rating records with respect
to their timestamp for each user. Consider the movies as data objects and the
rating records as a user’s access to that object. The dataset is reformulated as a
collection of user access sequences. (2) The Wiki dataset [24] is the access log of
the Wikipedia website’s server. We extract from it the requests to the main pages
in Wikipedia, and divide the log into subsequences of length no larger than 550
to form a dataset of user access sequences. (3) The Twitter dataset [28] is the ac-
cess log of Twitter’s cache server. We sort the access records with respect to the
access time for each user, like that is done with the ML-1M dataset. The dataset
is reformed into a collection of user access sequences. We also tested CARIS
with real-world workloads. While the results supported our work, these details
cannot be disclosed due to commercial privacy and proprietary restrictions.

Table 1a includes some statistics of these datasets. The meaning of each of the
statistics is listed here. (1) #Items is the total number of data objects accessed
1 https://github.com/Anarion-zuo/caris_repo

https://github.com/Anarion-zuo/caris_repo
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Table 1: Datasets

(a) Datasets Statistics

Dataset ML-1M Wiki Twitter
#Items 3416 12236 8280

Frequency
Avg 292.63 101.24 1207.73
P50 146 104 50
P90 765 138 2406

#Distinct
Avg 624.74 467.2 770.38
P50 563 467 772
P90 874.6 478 927

LEN
Avg 751.59 549.08 1665.83
P50 677 549 1618
P90 1040.6 549 2290.8

OHWR 0.69 0.81 0.25

(b) Cache Item Capacity

Dataset Cache Capacity
ML-1M 17, 34, 68, 102
Wiki 13, 25, 50, 75
Twitter 75, 100, 125, 150

by the user. (2) Frequency is the number of accesses to each data object. (3)
Distinct is the number of distinct data objects in each user access sequence.
(4) LEN is the length of each user access sequence. (5) OHWR is the ratio
between the number of data objects that are accessed only once in each user
access sequence, and the number of user accesses in that same sequence.

Figure 2 depicts the distribution of the number of accesses for each data ob-
ject within one sequence. Most objects are rarely accessed more than 10 times
within one sequence.

A good caching strategy must perform well under difficult conditions, so the
simulated cache capacities were chosen to be no more than 3% of the number of
all data objects in each dataset, as given in table 1b.

5.2 Experimental Methodology

Compared Caching Policies We compared CARIS with 10 different caching poli-
cies, including Random, FIFO, LRU, LRU-4, LFU, GDSF [1], PredMarker [16],
LRB [21], Raven [8], HR-Cache [22]. Random is the random replacement pol-
icy, which randomly selects an object in the cache to replace when the cache is
full. PredMarker [16], LRB [21], Raven [8], HR-Cache [22] are policies based on
machine learning, while others are based on heuristic rules.

Evaluation Metrics For each dataset, randomly pick 64 sequences for perfor-
mance evaluation, and use the rest for training. For each of the sequences used
in evaluation, the last 100 user accesses were used as the inference window, as
in section 4.5. We used the cache object hit rate (OHR) in the inference win-
dow as the performance metric of a evaluation sequence. To enable comparison
across datasets, we used the OHR of the Random policy as a baseline value
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(a) ML-1M (b) Twitter

(c) Wiki

Fig. 2: Histograms of the Objects’ #Accesses within One Sequence

and computed the normalized metric score with xr = x
xbase

− 1. xbase was set to
be the OHR of the Random policy given the testing conditions if not specified
otherwise.

5.3 Main Results

Figure 3 depicts the CARIS’s OHR (not normalized) on the 3 datasets we used
under various simulated cache capacities from table 1b. Figure 4 depicts the nor-
malized OHR of other policies compared to CARIS’s, with the Random policy’s
OHR as the baseline value xbase.

Under all experimented conditions, CARIS outperformed all other policies
consistently. Compared to the learning-based methods, CARIS achieved an im-
provement of more than 294% on average. CARIS’s advantage differed on the
various datasets, with ML-1M being the most victorious. Note that CARIS’s nor-
malized OHR did not monotonically increase with the simulated cache capacity,
while its OHR did.

The compared learning-based methods (PredMarker, LRB, Raven, HR-Cache)
exhibited apparent drawbacks. They are policies based on user access pattern
predictions, whose performance is largely affected by the dataset’s one hit won-
der ratio. When the one hit wonder ratio was large, wrong predictions were less
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Fig. 3: CARIS OHR under Various Dataset and Cache Capacities

(a) ML-1M (b) Wiki

(c) Twitter

Fig. 4: CARIS OHR Compared with Other Policies

harmful, since a right prediction hardly pays off when objects are rarely re-
visted. The Wiki dataset has the largest one hit wonder ratio, and these policies
performed the best and were closest to CARIS on Wiki.



CARIS: Cache Affinity-aware Reinforced Intelligent Strategy 15

However, when the cache capacity was relatively small, the prediction-based
methods suffered more from a bad decision, since cache hits were relatively rare.
Therefore they were even outperformed by the Random policy. CARIS has an
RL agent to mitigate the damage caused by prediction errors.

5.4 Ablation Study

(a) OHR when Key Features are Re-
moved

(b) PredAffinity AUROC vs OHR dur-
ing Training

Fig. 5: Ablation Study Results

Consider the ablation study results in Figure 5. Denote the CARIS without
the empty action as RL+PredAffinity, and the case without the affinity pre-
dictor as RL+Nop. Denote the CARIS without the RL agent as PredAffinity,
using soley the affinity predictor for object admission decisions. The PredAffin-
ity CARIS admits objects when the access is considered cache-friendly. Figure
5 depicts the normalized OHR of CARIS when these key features were removed
from it. The simulated cache capacity for the 3 datasets were 34, 100, 100 for
these ablation studies. The baseline value xbase used in score rescaling was the
OHR of the original CARIS. As is demonstrated by Figure 5, any removal of the
key components in CARIS damaged it.

A simple observation showed the importance of the cache affinity predictor
in CARIS. Degradation was worst in the RL+Nop case on datasets Wiki and
Twitter, where their OHR was so small compared to the original CARIS that
the normalized scores were close to −1. However, since Twitter had its one hit
wonder ratio smaller than Wiki’s, and RL+Nop degraded almost equally on both
datasets, the cache affinity is equally imoprtant for user access patterns with both
larger or smaller probability of revisiting the previously accessed objects.

We further investigated the impact of the cache affinity predictor’s accuracy
on CARIS’s performance. We tested on the datasets ML-1M, Wiki and Twitter
with simulated cache capacities 34, 25, 125, and depict the relation between the
prediction’s AUROC score and the achieved OHR of CARIS during the training
process in Figure 5. As before, the PredAffinity case was outperformed by the



16 Yu Zuo, Yanlei Shang �

fully equipped CARIS throughout the training process. Obviously, OHR got
higher as the AUROC got larger and the prediction became more accurate.

6 Conclusions

In this paper, we introduce the caching admission policy model CARIS, based
on RL for the most part, and aided by cache affinity estimation. CARIS uses a
Transformer-like encoder [20] to learn the sequence item representation, based
on which it computes the predicted cache affinity and the policy. By focusing
the exploration on the cache-friendly user accesses, CARIS’s training process is
significantly simplified. Besides, CARIS is forced to take an empty action in the
event of a cache hit, addressing the problem of useless caching actions. To the
best of our knowledge, CARIS is the first caching policy model that incorporates
RL with prediction methods based on supervised learning.

Presently, the CARIS model is deployed in our web application servers. We
are looking to generalize its application to other systems such as CDN and edge
computing, so as to verify its ability across diverse fields.
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A Parameters Used for Model and Training

Table 2: Model & Training Parameters

Parameter Name Chosen Value
Learning rate 0.0005
Random seed 42
BSARec α 0.7
BSARec c 5
Batch size 16
BSARec attention #heads 4
BSARec hidden #layers 6
Representation hidden size 64
Adam beta 1 0.9
Adam beta 2 0.999
Adam weight decay 0.1
Actor network #layers 2
Critic network #layers 2
BSARec hidden layers dropout 0.5
BSARec attention dropout 0.5
Actor network dropout 0.5
Critic network dropout 0.5
Discount ratio γ 0.99
Replay buffer size 1024
Entropy loss weight β1 1
Q loss weight β2 1
Cache affinity loss weight β3 1
Affinity threshold ρ 0.3
Cache affinity range L 400
PPO clip tolerance ϵ 0.1

Table 2 lists the parameters used in deep learning model building and train-
ing. The parameters prefixed with "BSARec" are for the encoder part of the
model based on BSARec [20].
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