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Abstract. We address the question of how to identify fast road races in
running by automatically decomposing race results into athlete perfor-
mance and race condition components. Our approach does not require
explicit modeling of influencing factors such as course terrain profiles. Fa-
vorable conditions have a substantial impact on race results in road run-
ning, and can be critical for meeting championship qualifying standards
or for achieving personal bests. We frame this problem as an instance
of weighted nonnegative matrix factorization and validate our approach
using 6,000 real-world 10k race results from recent local to regional level
races. Extensive experiments on both this real-world data and simulated
data demonstrate the robustness of this method to high missing value
rates and its ability to reduce bias in estimating race conditions compared
to mean- or median-based approaches. Our approach also successfully re-
covered seasonal patterns in race conditions. The number of races and
the rate of missing values were found to be the most important properties
affecting accuracy, while the number of athletes had less impact.

Keywords: Endurance Sports · Nonnegative Matrix Factorization.

1 Introduction

In many endurance sports, athletic performance is measured in terms of the
time required for completing a given course, or the distance covered within a
given time. In both cases, a single value summarizes a complex interplay of
underlying factors that affect each athlete’s overall performance in a particular
race. Unraveling running performance has been approached in the literature
from a variety of perspectives, among others, using environmental properties,
physiological measurements, training statistics, and course characteristics.

We study a related yet distinct problem: distinguishing general race con-
ditions from individual performance levels. General race conditions encompass
factors that vary between races but remain approximately constant within each
race, such as weather or course topology. In contrast, individual performance
levels pertain to characteristics specific to each athlete. This distinction allows
us to separately analyze the impact of external race conditions and individual
athletic abilities on performance outcomes.
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We propose an automatic data-driven method based on solving an associated
optimization problem for unpacking these two groups of components. In the most
basic model instantiation, we unpack race results as the product of two particular
values, one of them linked to the race and the other one to the athlete. Our
approach is suitable for endurance sports where individual performance is the
dominant factor, and components such as team tactics and race dynamics are less
important. While this assumption is met for typical road races in running and
time trial competitions in cycling, it is not met in cycling road races. Note that
naive approaches for quantitatively capturing race conditions, such as mean or
median race results, dependent heavily on the athlete performance distribution
within races and are easily biased. We provide experimental evidence that our
approach is less prone to this problem as it simultaneously conducts race and
athlete unpacking.

Several interesting applications are facilitated by decomposing race condition
and performance level, such as estimating and comparing race results of athletes
who did not compete in the same race in a sound manner [11], or computing flat
equivalent distances for comparing race courses [12]. If we assume that static race
conditions, such as elevation profile or surface properties, are dominant, more
favorable race conditions may be identified based on associated condition values
for future race schedule planning, among others. More technically, both [11] and
[12] build on a general matrix factorization solved by alternating least squares
optimization, while our approach is based on nonnegative matrix factorization
[7], a matrix decomposition technique which has received increasing attention
and has been considered in a variety of fields, among those are astrophysics [10]
and bioinformatics [5].

Our main contributions include a practical, entirely data-driven, and param-
eter-free method for effectively separating race conditions and athlete perfor-
mance using nonnegative matrix factorization as the core computational tech-
nique. This approach is well-suited to real-world race data and handles missing
values in a principled way with limited computational demands. We introduce
an intuitive and interpretable normalization method for practitioners and com-
piled a real-world dataset of approximately 6,000 recent 10k race results from
local to regional level running road races in Germany (2022-2023) using publicly
available data sources. To evaluate the performance of our method and study
the impact of specific dataset properties on estimation accuracy, we conducted
extensive experiments on both this real-world dataset and an additional simu-
lated one. Furthermore, nonnegative matrix decomposition provides a general
data-driven framework for analyzing race properties and athlete profiles without
explicit feature modeling.

This paper is structured as follows: We discuss related research from the
fields of sports performance science and machine learning in the following sec-
tion. In Section 3, we introduce our approach both from a technical perspective,
including the underlying mathematical optimization problem and the solution
strategy based on weighted nonnegative matrix factorization, and from a con-
ceptual perspective with respect to interpreting the decomposition results and
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practical applications. We discuss experimental results on real-world road run-
ning races and simulation data in Section 4 to provide a comprehensive empirical
analysis of the properties of our approach. Finally, in Section 5, we summarize
our findings and discuss promising directions for future research.

2 Related Work

A related matrix factorization method has been considered in [11] for race pace
results in multi-distance running races as an initial processing step. Beyond di-
rectly utilizing decomposition values for race pace prediction for known races,
the authors employ race characterization vectors as targets in a linear regres-
sion model. Here, the inputs are distance and elevation features computed from
global navigation satellite system (GNSS) route data. The final combined model
allows for race pace prediction for races not included in the initial dataset. While
adopting a similar factorization step for race time or covered distance, we focus
on race condition estimation for fixed-distance or fixed-time races. Building upon
[11], the authors in [13] incorporate a physiological model for adjusting different
race distances beyond a straightforward average pace approach. The aim of this
approach is to compute hypothetical flat equivalent distances for running routes.

Several studies have addressed the impact of ambient weather conditions on
endurance performance in road running, including air temperature [1,8,16], rela-
tive humidity [1,16], air pressure [8,16], solar radiation [1], precipitation [8], and
wind [8]. In addition to these typically highly variable features, more stable prop-
erties correlated with performance have been studied as well, among these are
altitude [16] and course terrain profile [14], which includes elevation profile and
the number and type of turns. In contrast to this, physiological and technological
differences between athletes may be considered as an orthogonal dimension of
overall performance. Physiological features include age and sex [17], among the
technological ones is advanced footwear technology [9]. In this paper, we do not
aim to study individual factors but rather to separate both groups of compo-
nents in a data-driven manner. This setting allows for a substantially broader
application range, as no measurements beyond basic race results are required.

3 Race Result Decomposition

In this section, we propose a model for decomposing endurance race results
into two distinct components: those associated with the race itself and those
associated with the individual athletes. First, we elaborate on the underlying
motivation and assumptions, before we introduce technical details of our decom-
position model. Then, we proceed by discussing its implication on analyzing race
data.

We focus on endurance race results where individual performance is the pre-
dominant factor in races and components, such as team tactics, race dynamics,
and drafting, are less important. While this may be considered a reasonable as-
sumption for typical road races in running and time trial competitions in cycling,
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among others, it is less so in typical cycling road races. From a data perspec-
tive, we consider races where outcomes are measured by a single value, typically
by a time or distance measurement. Hence, we start of a straightforward race
results collection comprising a set of races and athletes: For each athlete-race
combination, this dataset contains either a valid race result or a special flag, if
the athlete did not compete in this particular race. This type of dataset can be
compiled for a variety of endurance sports easily, and we will present real-world
results for regional running road races in the experimental results section.

We assume each athlete’s fitness level to remain approximately constant for
the analyzed period of time, hence, multi-season datasets are less suitable for
our approach. Drawing on this assumption, race results from athletes competing
in multiple competitions can be used for estimating race conditions, as athlete
performances in races correlate with more or less favorable race conditions. Ob-
viously, race data from athletes competing in a single race only does not provide
meaningful information for this purpose. As races are not deterministic pro-
cesses, we have to consider a random component which impacts race results and
captures incomplete knowledge of the overall process. Starting from a poten-
tially large dataset comprising results from multiple athletes and races, we aim
at limiting the impact of this inherent randomness in each individual result.

As noted above, separating race- and athlete-related components in this type
of data becomes much simpler once we have access to either one. However, since
neither is known a priori, the major challenge is to unpack both simultaneously.

3.1 Decomposition Model

Assume we are given an overall number of m athletes competing in n races.
We proceed from a m × n nonnegative real matrix of race results X ∈ Rm×n

+ ,
with Xij ≥ 0 storing the outcome for athlete i in race j. In this setting, race
outcomes Xij typically represent a time measurement for a given race course, or
the distance covered within a fixed period of time on a given race course.

We consider an unsupervised approach by applying nonnegative matrix fac-
torization (NMF) [7] to the race result matrix X to solve the decomposition
problem. Hence, we aim at solving the following optimization problem for a
given rank d with 1 ≤ d ≤ min(m,n):

argmin
A,R

1

2

∑
ij

(Xij −
∑
k

AikRkj)
2 = argmin

A,R

1

2

∑
ij

(X −AR)2ij (1)

where A ∈ Rm×d
+ and R ∈ Rd×n

+ . Hence, NMF computes an approximation AR
of rank d of the race result matrix X:

X ≈ AR. (2)

In practice, we typically need to account for a significant number of missing
values in X, as only a subset of athletes competes in a particular given race.
Weighted nonnegative matrix factorization (WNMF) [15] is an extension of
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NMF, which allows to consider missing data by adding a binary m × n ma-
trix P in the optimization problem, where Pij = 0, if Xij is missing, otherwise
Pij = 1:

argmin
A,R

1

2

∑
ij

Pij(X −AR)2ij . (3)

Note that solutions are not unique as simultaneously permuting columns of A
and rows of R, or rescaling both matrices, yields the same objective value.

While it is obvious that the race data matrix X contains only nonnegative
values, it is less obvious why we should restrict our solution to nonnegative
decomposition matrices A and R. Other decomposition techniques, such as prin-
cipal component analysis (PCA) and vector quantization (VQ), do not impose
this constraint. However, as has been demonstrated in the seminal paper [7],
PCA and VQ tend to learn linear combinations that typically involve complex
cancellations and where many basis elements lack intuitive meaning. In contrast,
in NMF no subtractions can occur and more intuitive, parts-based representa-
tions are learned, an appealing property which has led to increasing attention in
recent years in several application fields, among those are astrophysics [10] and
bioinformatics [5]. From a statistical perspective, solutions of (3) are maximum
likelihood estimators for A and R, if we assume additive i.i.d. Gaussian noise
with mean 0 and standard deviation σ for race results Xij [2].

From a computational perspective, it was proved in [3] that the optimization
problem (3) is NP-hard, even for rank d = 1. Computing the global optimum
solution is therefore not realistic in general, and we have to resort to approxima-
tion algorithms. As a side note, for the rank d = 1 case without missing data, the
global minimizer can be computed in a straightforward manner based on singular
value decomposition [4]. For our experiments, we implemented a straightforward
multiplicative update approach [6] to compute approximate solutions based on
the matrix update rules for WNMF given in [4]. While more sophisticated op-
timization techniques are available, this straightforward approach proved to be
both efficient and robust in our race data experiments.

3.2 Interpreting Decomposition Results

In this section, we will elaborate more on interpreting matrix decompositions
for race results. For a given rank value d, the X ∈ Rm×n

+ race result matrix is
factorized into X ≈ AR, where m and n correspond to the number of athletes
and races, respectively. Here, the m × d matrix A is associated with athletes,
and more precisely, row k stores a d-dimensional nonnegative characterization
for athlete k. Likewise, the d×n matrix R is linked to races, and column l stores
a d-dimensional nonnegative characterization of race l. The choice of the rank d
is the only hyperparameter in our model and controls the length of the athlete
and race characterizations. We focus on the case d = 1. Here, the approximation
of a race result Xij for athlete i in race j simplifies to the product of two values,
Xij ≈ AiRj , where Ai

def
= Ai1 and Rj

def
= R1j . Therefore, the value Ai can
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be interpreted as the basic fitness level for athlete i, while Rj integrates all
performance-related properties of race j. These race-related properties typically
vary between races, but remain roughly constant for all athletes in the same
race. As stated above, typical factors relevant in many endurance races are:

– weather (temperature, humidity, precipitation, wind)
– course terrain profile (elevation profile, surface, number / type of of turns)
– altitude

As noted above, there exists a scaling degree of freedom for solutions of the
optimization problem (3). We propose the following average race normalization1:

Ravg def
=

1

n

∑
j

Rj (4)

Anorm
i

def
= Ai ·Ravg and Rnorm

j
def
=

Rj

Ravg (5)

Normalization yields better interpretability of the decomposition results:

Xij ≈ Anorm
i ·Rnorm

j (6)

While Anorm
i represents a reference race result for athlete i assuming average race

conditions, Rnorm
j is normalized such that a value of 1.0 corresponds to average

race conditions in the dataset.

3.3 Applications

In this section, we elaborate more on applications for the decomposition matrices
Anorm and Rnorm and rank value d = 1. First of all, Rnorm allows to compare
general race conditions for two races k and l in a principled quantitative manner.
For example, suppose that Rnorm

k = 1.03 and Rnorm
l = 0.99, then race results

in race k will typically be approximately 4% higher compared to l. In contrast
to simple race statistics, such as mean or median results, race decomposition
approaches are potentially more robust with respect to the athlete performance
distribution and allow comparing races with more or less elite level participation
as has been noted in [11,12], as long as there is some participation overlap. In
the experimental section, we will demonstrate this problem on real-world data.

Conceptually, our approach is of retrospective nature and aims at analyz-
ing past race results, since environmental conditions may change in the future.
However, Rnorm may allow identifying more favorable races, assuming that static
race conditions, such as the course terrain profile, are dominant. In [12], a two-
step approach is considered for computing hypothetical equivalent flat distances
for comparing races, where race result matrix factorization is combined with an
elevation profile regression step.

As Anorm encodes general athlete fitness levels, we can compare two athletes
k and l by their associated values Anorm

k and Anorm
l , even though they did not

1 Median-based normalization is another straightforward option.
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compete in the same race (see [11]). Beyond ranking athletes by their fitness level,
our normalization method allows for a quantitative comparison as fitness levels
represent hypothetical race results for an average race. Moreover, assuming that
athlete i did not compete in race j, a hypothetical race result can be estimated
by X̂ij

def
= Anorm

i · Rnorm
j , which technically is a data imputation approach for

missing results. For actual race results, residual values

Dij
def
= Xij −Anorm

i ·Rnorm
j = Xij − X̂ij

provide some insight into whether the outcome for athlete i in race j is above or
below the expected level.

In many endurance sports, scoring systems are used to aggregate results
over a series of races. Here, race condition normalization Xij/R

norm
j may be

considered as a preprocessing step for result aggregation as an alternative to
uncalibrated and rank-based approaches.

4 Experimental Results

In this section, we present empirical results of our approach on race data decom-
position. Our first study is devoted to real-world running race data, while our
second study considers simulated data to provide a more fine-grained analysis
of the properties of our approach.

In our experimental studies, we focus on the case rank d = 1, where race
results are approximated by

Xij ≈ Anorm
i ·Rnorm

j .

As stated above, normalized matrix decomposition values have a straightforward
interpretation for d = 1, since Anorm represents reference race results for athletes
under average race conditions and Rnorm encodes race-related performance com-
ponents. As we will discuss below, missing data is a major issue in our real-world
experimental study.

As stated in Section 3.1, solving the underlying WNMF problem is com-
putationally very demanding as it is NP-hard. For our experimental study, we
used an iterative approximation approach based on multiplicative updates [6]
using the WNMF update rules derived in [4] for the weighted sum of squared
differences loss function. The matrices A and R were initialized randomly by
sampling elements from a uniform distribution over [0, 1]. The factorization al-
gorithm stopped once the relative loss change between two subsequent iterations
fell below a tolerance value of 10−8. Normalization, i.e., computing Anorm and
Rnorm, was conducted as a postprocessing step (see Equations (4) and (5)).

4.1 Real-World Data for Road Running

Data Preparation and Characterization We conducted a study on results
from regional road races in running. The dataset consists of publicly available
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results 2 from local to regional level 10k road races in Westphalia, a region
of northwestern Germany and a regional district of the German Athletics As-
sociation (DLV), for the years 2022 and 2023. The raw dataset was compiled
on 2024/11/06 using regional district (= Westfalen) and race category (= road
race) as filter criteria. Note that these races are characterized by relatively flat
to moderately hilly courses with limited elevation change. Hence, altitude level
can be neglected as a relevant performance impacting factor for these races.

The raw dataset contains 6784 individual results for 50 races in 2022 and
9565 results for 52 races in 2023 with valid entries for the considered fields,
i.e., result time, name, sex, year of birth. Since this dataset does not include
any unique identifier for athletes, such as a national athlete ID, we consider
results to originate from the same athlete, if all of the following three records
are identical: name, sex, and year of birth. After matching records, we applied
the following two-step filtering process to compose a common dataset for all
experiments. Step one consists of removing athletes who competed in a single
race only, as we assume these records to provide limited information for the
decomposition process. In step two, we removed races with less than 10 valid
result entries remaining after the athlete removal step.

After preprocessing, the final dataset for 2022 consists of 2302 result records
for 904 athletes in 40 races, and 3832 result records for 1309 athletes in 47
races (see Table 1 for more details on the dataset properties). For each year,
we composed a m-by-n nonnegative matrix X ∈ Rm×n

+ for all combinations of
athletes and races, where Xij stores the result for athlete i in race j. Note that
93.6% and 93.8% of the matrix entries are missing for 2022 and 2023, respectively,
due to the fact that athletes competed in a subset of races only. Hence, dealing
with missing data is of particular importance here.

Results on Algorithmic Stability We conducted an initial set of experiments
on this dataset to analyze algorithmic initialization sensitivity by solving the
decomposition problem for 100 random initializations of A and R. Despite the
huge number of missing values, the algorithm was rather robust, as indicated by
the maximum standard deviation for matrix entries in Anorm and Rnorm of 4.08 ·
10−1 and 8.58 ·10−5 for 2022, and 9.09 ·10−2 and 2.96 ·10−5 for 2023. Moreover,
robustness with respect to random initialization can be further increased by
reducing the termination tolerance value.

Results on Race-Factors We computed race result decompositions for 2022
and 2023 (detailed results are given in the supplementary section in Tables 8
and 9). The race factors Rnorm

j are compared with normalized mean and median
results, i.e., a normalized mean or median value of 1.0 corresponds to a global
dataset mean or median race result.
2 See https://ladv.de/westfalen/ergebnisse or as an alternative source https:
//ergebnisse.leichtathletik.de, as part of the official website of the German
Athletics Association.

https://ladv.de/westfalen/ergebnisse
https://ergebnisse.leichtathletik.de
https://ergebnisse.leichtathletik.de
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Table 1: Race dataset properties (after preprocessing).
Year

2022 2023
Results 2302 3832
Races 40 47
Athletes 904 1309

Race results
(in minutes)

min 31:03 31:18
max 1:21:33 1:26:26
mean 48:33 48:52
median 47:56 48:16
SD 8:20 8:36

Result entries
(per race)

min 15 10
max 168 328
mean 57.5 81.5
median 49.0 53.0
SD 38.9 75.7

Result entries
(per athlete)

min 2 2
max 13 14
mean 2.5 2.9
median 2.0 2.0
SD 1.1 1.6

The Pearson correlation coefficients calculated between mean / median race
results and Rnorm

j are 0.509 and 0.432 for the year 2022, and 0.226 and 0.148
for the year 2023. These results indicate a rather limited positive linear cor-
relation between the r-factors and both the mean and median race outcomes,
hence, providing initial evidence that these approaches for capturing race-related
components are conceptually different.

As most of the race courses in this dataset are characterized by limited el-
evation change and took place at a similar low altitude level, we hypothesized
that weather conditions are of particular importance for differences in race con-
ditions and hence in race results. Therefore, we grouped the races into monthly
bins and computed normalized mean and median results, and mean r-factors.
There are some important observations to be pointed out in Tables 3 and 4.
The overall range of normalized mean and median values is substantially larger.
Moreover, we can observe a seasonal pattern for r-factor values both in 2022
and 2023, while this pattern is much less pronounced, if at all visible, for mean
and median values. Figure 1 provides bar chart visualizations for this seasonal
pattern. With respect to r-factors, the best race conditions could be observed in
April and October for 2022, and in February and October for 2023.

Apart from seasonal patterns, race-specific comparisons provide some evi-
dence that r-factor values are less biased with respect to more or less elite level
athlete distribution: In 2023, races 9 and 10 overlap as the state road cham-
pionships (race 10) have been conducted as part of race 9 (see Table 9 in the
supplementary section). Here, the mean and median for both athlete subsets
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Table 2: Evaluation of imputation error for WNMF-imputation and athlete-
based mean and median imputation. Year-wise column-normalized background
coloring is added to emphasize differences.

Year Imputation Method MAE MRE
WNMF 106.3 0.0354

2022 mean 117.6 0.0391
median 117.9 0.0391
WNMF 107.4 0.0352

2023 mean 112.9 0.0370
median 112.7 0.0368

are substantially different (mean: 0.963 vs. 0.846 and median: 0.935 vs. 0.824),
presumably due to the fact that the state championship (sub-)race comprises a
more competitive athlete subset. When interpreted as a race condition charac-
terization, mean and median values are obviously misleading here, as both races
have been conducted simultaneously on the same course. In contrast, the r-factor
values for these races are considerably less impacted by the athlete performance
distribution (1.006 vs. 1.000).

Imputation Results We conducted an additional experiment focusing on data
imputation only. In each subexperiment, we removed a single valid result entry
Xij from the data matrix, computed both decomposition matrices Anorm and
Rnorm using the remaining entries, and estimated this additional missing entry
(see (6)). We compared each estimated entry with the ground truth one using
the well-known mean absolute error (MAE) and the mean relative error (MRE)
measures as evaluation measures, and averaged the results over all subexperi-
ments for non-missing result entries in X. As alternative imputation methods,
we considered athlete-based mean and median value imputation.

The imputation results are shown in Table 2, where for both 2022 and 2023,
mean and median achieve comparable estimation accuracy, while WNMF-based
imputation is the most accurate method in this evaluation. As stated in the
dataset properties Table 1, the mean number of result entries per athlete is 2.5
and 2.9, respectively. Moreover, the mean standard deviation per athlete is 71.0
and 73.3, respectively. Hence, considering this typically very small number of
highly variable data points per athlete (out of which one is masked out in the
above stated evaluation process), we should not expect a high level of accuracy
when estimating individual results. In a secondary evaluation, we confirmed
that imputation accuracy generally increases for all methods with the number
of results available for the considered athlete.

4.2 Simulated Data

In addition to experiments on real-world data, we conducted a series of exper-
iments on simulated race data in order to analyze the algorithmic sensitivity
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Table 3: Normalized mean, median, and r-factors for races grouped by month
for 2022. Note that the dataset does not include outdoor race results for 1/2022.
Column-normalized background coloring is added to emphasize differences.

Month Athletes mean median r-factor
2 204 1.017 1.020 1.008
3 256 0.957 0.952 0.996
4 169 1.030 1.039 0.990
5 180 0.988 0.993 0.992
6 102 0.980 0.974 1.003
7 235 1.032 1.043 1.016
8 156 1.018 1.009 1.016
9 273 1.049 1.046 1.014

10 252 0.963 0.968 0.985
11 182 1.004 0.992 0.992
12 293 0.972 0.974 1.004

Table 4: Normalized mean, median, and r-factors for races grouped by month for
2023. Column-normalized background coloring is added to emphasize differences.

Month athletes mean median r-factor
1 507 1.010 1.009 0.991
2 212 1.013 1.013 0.981
3 239 0.983 0.979 0.994
4 201 1.040 1.048 0.990
5 308 1.022 1.014 1.009
6 260 1.001 0.977 1.019
7 409 1.021 1.031 0.996
8 820 0.969 0.966 0.995
9 353 1.031 1.047 0.994

10 176 0.930 0.925 0.978
11 63 0.953 0.969 0.983
12 284 1.010 1.005 1.011

with respect to the missing value rate, the number of races, and the number
of athletes. The conceptual difference between real-world data and simulated
data is that the data-generating process is known for the latter one, and more
specifically the ground truth matrix entries Ânorm

i and R̂norm
j . Hence, we are

able to quantitatively evaluate the accuracy of our approach in estimating these
matrices given noisy race data X̂.

The ground truth athlete-related entries Ânorm
i were randomly sampled from

a uniform distribution over [1800, 2700] corresponding to reference race times
between 30 min and 90 min. The race-related entries R̂norm

j were randomly sam-
pled from a uniform distribution over [0.9, 1.1]. Both choices are based roughly
on the observed real-world value ranges. Race results X̂ij were computed as

X̂ij = Ânorm
i · R̂norm

j + ϵij ,
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Fig. 1: Average r-factors for races grouped by month for 2022 and 2023. Note
that the dataset does not include outdoor race results for 1/2022. The reference
line corresponds to the mean r-factor among all races for the considered year.

where the additive noise components ϵij were randomly sampled from a Gaussian
distribution with mean µ = 0 and standard deviation σ = 70.

We used the following approach for simulating missing values in X̂: In each
row, one entry is randomly selected as a valid data element (which corresponds to
the requirement that each athlete has to compete in at least one race). Likewise,
we randomly select one entry in each column to be a valid data element (which
corresponds to the requirement that each race is associated with at least one
result). Note that these two steps are conducted independently of each other. All
remaining entries are randomly assigned to the valid and missing data categories
in order to match the required overall missing data rate. For each choice of
parameters, we computed average MAE and MRE values over 100 repeated
simulation runs.

Missing Values In a first experimental evaluation, we fixed the number of
athletes (= 1000) and the number of races (= 50), while varying the fraction of
missing values from 0.0 to 0.8 in equal steps of 0.1, and between 0.90 and 0.97
with a step size of 0.01. Note that there is a limit for the fraction of missing
values of 0.97 here, as for 0.98, which corresponds to 1000 missing values, all
missing entries would already be required for ensuring the minimum valid data
constraint for athletes only.

The results shown in Table 5 indicate that up to a missing value fraction of
roughly 0.9 there is a continuous, but limited increase in the estimation error
measures for A, while for R the estimation error is at a rather stable level up to
a missing value fraction of 0.96. Then, all error measures increase substantially
at the final missing value fraction of 0.97.

Number of Athletes A second experimental evaluation is devoted to the num-
ber of athletes. Here, we fixed the number of races (= 50) and the missing value
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Table 5: Error evaluation (MAE, MRE) for Anorm and Rnorm using simulated
race data with varying missing value rates. Column-normalized background col-
oring is added to emphasize differences.

missing Anorm Rnorm

values MAE MRE MAE MRE
0.00 18.4 0.0082 0.0075 0.0075
0.10 18.0 0.0081 0.0072 0.0072
0.20 17.3 0.0077 0.0067 0.0067
0.30 17.5 0.0078 0.0067 0.0067
0.40 16.5 0.0074 0.0059 0.0059
0.50 17.4 0.0078 0.0059 0.0059
0.60 20.0 0.0090 0.0071 0.0071
0.70 19.7 0.0088 0.0061 0.0061
0.80 23.1 0.0103 0.0066 0.0066
0.90 30.4 0.0137 0.0069 0.0070
0.91 31.8 0.0143 0.0067 0.0067
0.92 33.7 0.0152 0.0069 0.0069
0.93 36.6 0.0165 0.0077 0.0077
0.94 38.0 0.0171 0.0068 0.0068
0.95 42.0 0.0189 0.0077 0.0076
0.96 46.8 0.0211 0.0085 0.0085
0.97 53.4 0.0240 0.0104 0.0104

rate (= 0.9), while the number of athletes varied between 100 and 10, 000, 000
with a multiplicative step factor of 10. Note that our missing value model re-
quires the number of athletes to be greater than 50.

The results shown in Table 6 indicate that the error measures are at a rather
stable level over a very large range of the number of athletes, except for the
initial number of 100 athletes.

Number of Races A third experimental evaluation is devoted to the number
of races. Here, we fixed the number of athletes (= 1000) and the missing value
rate (= 0.9) while varying the number of races between 20 and 100 with a step
size of 10. Note that our missing value model requires the number of races to be
greater than 10.

The results given in Table 7 show a continuous error decrease with an increas-
ing number of races. While for 20 and 30 races, the associated error values are
comparatively high, error values decrease at a substantially lower rate starting
at 40 .

Discussion In our experimental evaluations on simulated data, the missing
value rate and the number of races had the largest impact on the considered
error measures. For the missing value rate, the impact on Anorm seems to be
more pronounced, while the estimation accuracy was more stable for Rnorm.
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Table 6: Error evaluation (MAE, MRE) for Anorm and Rnorm using simulated
race data with varying numbers of athletes. Column-normalized background col-
oring is added to emphasize differences.

Anorm Rnorm

athletes MAE MRE MAE MRE
100 32.0 0.0144 0.0114 0.0114

1000 30.5 0.0137 0.0070 0.0070
10000 30.9 0.0139 0.0067 0.0067

100000 31.0 0.0139 0.0069 0.0069
1000000 30.2 0.0136 0.0064 0.0064

10000000 30.6 0.0137 0.0065 0.0065

Table 7: Error evaluation for simulation race data with varying numbers of races.
Column-normalized background coloring is added to emphasize differences.

Anorm Rnorm

races MAE MRE MAE MRE
20 49.0 0.0220 0.0103 0.0104
30 40.6 0.0182 0.0090 0.0090
40 35.0 0.0157 0.0081 0.0081
50 31.2 0.0140 0.0075 0.0076
60 27.4 0.0123 0.0062 0.0062
70 25.8 0.0116 0.0064 0.0064
80 23.5 0.0105 0.0055 0.0055
90 22.6 0.0101 0.0056 0.0056

100 21.0 0.0094 0.0052 0.0052

The impact of the number of races on Anorm and Rnorm seems to be on a similar
scale.

In contrast to these findings, there seems to be only a minor impact of the
number of athletes on the estimation performance, as suggested by our experi-
ments which cover a large range of values.

5 Conclusions

We propose a novel data-driven approach for separating two essential groups
of components from a set of race results: Race conditions and individual per-
formance level. Based on nonnegative matrix factorization for dimensionality
reduction, we unpack results into race- and athlete-related quantitative charac-
terizations. Their dimensionality is the only hyperparameter of our method.

We focus on the one-dimensional case in our experimental evaluation, where
the normalized values associated with athletes and races have a straightforward
interpretation: The athlete component represents a reference race result assum-
ing average conditions and hence a quantification of the individual performance
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level, while the race value integrates general factors such as weather and course
terrain profile.

In the experimental section, we conduct a series of evaluations on real-world
race data for local to regional level 10k road running races and simulated race
data. We demonstrate that our approach is a practical method for real-world
data, and in particular is a mathematically sound and well-suited method for
dealing with a high missing value rate. We show that our method provides more
robust estimates for race conditions with respect to the particular athlete dis-
tribution competing in a race, while simple mean- or median-based techniques
suffer from obvious drawbacks and compute biased race estimates. Moreover, we
were able to recover seasonal patterns from race-data only, which is consistent
with the fact that weather conditions are of particular importance for the con-
sidered races which are characterized by limited elevation change and a similar
altitude level. A series of experiments on simulated race data suggests that our
approach provides stable estimates over a wide range of dataset properties. More
precisely, in our experiments, the missing value rate and the number of races had
a larger impact on the estimation accuracy, while the number of athletes had
less impact. The computational complexity of our approach is rather low and
should not be a limiting factor for typical applications.

Unpacking race conditions and individual performance levels provides a vari-
ety of interesting applications, such as comparing results of athletes who did not
compete in the same race in a sound quantitative manner, comparing past race
conditions and potentially identifying favorable future ones, and scoring systems
for race series.

We focused on the case d = 1, where all components related to particular
races and athletes were integrated into associated scalar values. However, for
d > 1 this approach provides a framework for computing multidimensional char-
acterizations as well, which, due to the nonnegativity constraint (see Section 3.1),
facilitates feature interpretability. From a conceptual and terminological point of
view, it is more appropriate to refer to multidimensional race and athlete char-
acterizations as race condition and athlete profiles rather than race condition
values and athlete performance levels. Then

∑
k AikRkj can be interpreted as

matching race and athlete profiles against each other. It will be interesting to
analyze and potentially link individual components of these profiles to known
performance factors or explore novel ones. These more fine-grained characteri-
zations may provide an interesting starting point for better understanding the
strengths and weaknesses of athletes with respect to race conditions, and allow
for better matching those to specific race demands in the future.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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