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Abstract. Control optimization is essential to achieve high performance
and cost efficiency in large-scale physical systems such as inertial dis-
trict energy networks. These systems play a key role in mitigating cli-
mate change, particularly in heating and cooling. They integrate multi-
ple energy sources and require intelligent control strategies to minimize
costs while preserving high efficiency. However, the complexity of their
underlying dynamics and the high computational load associated with
their numerical simulation often make predictive control prohibitively
slow or limited to short time horizons. In this work, we introduce a hy-
brid modeling framework where predictive control is accelerated using a
physics-informed spatio-temporal graph neural network as a state-space
surrogate model. Unlike existing models, our approach incorporates first-
principle conservation laws to improve accuracy and generalization. This
approach drastically reduces simulation time by four orders of magni-
tude, enabling faster decision-making. Using real-world data, we intro-
duce a time-series augmentation technique combining Gaussian scaling
and time slicing to improve model performance. Extensive experiments
were conducted to evaluate the accuracy and generalization capacity of
the learned model. Once validated, several optimization techniques were
implemented, including evolutionary algorithms and reinforcement learn-
ing, which are assessed against rule-based control. Results show that this
approach enables scalable predictions and efficient control, achieving up
to 29% energy cost savings during mid-season while cutting optimization
time from days to mere minutes.

Keywords: Predictive Control - Surrogate Modeling - Sustainable En-
ergy Systems

1 Introduction

Mitigating climate change requires substantial reduction in greenhouse gas emis-
sions [27]. To do so, the international energy agency (IEA) outlines the need to
deploy large energy networks with multiple low-carbon-footprint energy sources
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to reach net-zero emissions by 2050 [21]. District heating networks are an exam-
ple of such large inertial energy networks infrastructure [2]. The term ‘inertial’
refers to the system’s thermal inertia, where the thermal mass of pipes and stor-
age induces a time delay between heat production and demand. These networks
use simultaneously various renewable energy sources such as biomass, geother-
mal, solar thermal in addition to thermal energy storage (TES). Incorporating an
increasing number of energy sources requires rethinking smart control strategies
to ensure efficient system deployment and achieve sustainable energy transition.
Nevertheless, the different dynamics of energy sources (non-linearities, response
time, intermittence etc.) bring new complexity to numerical simulation, which
then makes the optimization of such systems prohibitively time-consuming, rang-
ing from several hours [15] to days [13], using traditional approaches such as
mixed integer non-linear programming (MINLP).

To address this limitation, recent works have used deep learning models, known
for their fast inference and strong approximation capabilities in capturing com-
plex dependencies and dynamics [10]. This technique was applied to diverse types
of dynamical systems such as climate forecasting [33], thermal and electrical load
forecasting [35, 12], fluid dynamics and electromagnetics [8], among others.
However, applying deep learning to physical systems presents some challenges.
Many studies rely on benchmark datasets with high-frequency sampling (e.g., 1
ms or 4 s) and simplified dynamics, often defined by few state variables or initial
conditions [36,25]. In contrast, real-world systems are rarely monitored at such
fine time steps and depend on numerous state variables and external inputs, such
as weather disturbances. Moreover, while some real-world applications exist, no
systematic methodology or design framework has been established for inertial
district energy networks, in contrast to electric grids [40].
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Fig. 1: Proposed methodology: Left block shows neural model predictive control
using a validated surrogate model with evolutionary and RL optimizers. Right
block schematizes surrogate model design, training, and validation pipeline.

In this work, we propose a hybrid strategy for control optimization of iner-
tial district energy networks. The developed approach, schematized in Fig. 1,
leverages the graph representation of such systems to develop an appropriate
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physics-informed spatio-temporal graph neural network (PI-STGCN). Unlike
prior research, our proposition can handle various energy sources at different
locations along with multiple consumer nodes to learn a state-space representa-
tion between these entities. The surrogate model development pipeline, shown in
the right block of Fig. 1, relies on hyperparameters optimization and historical
time-series augmentation during the learning phase. We demonstrate that, in
addition to expanding the dataset size, the latter technique enables the incor-
poration of physically plausible scenarios into the training set. The effectiveness
of our strategy is demonstrated through its application to a real-world system
combining an inertial energy source (biomass) and an intermittent source (solar).
The primary contributions can be summarized as follows:

— We introduce a system-agnostic methodology to accelerate optimal control
of inertial district energy systems, leveraging their graph topology to model
diverse producer and consumer types.

— We adapt Gaussian scaling and time warping to augment time-series data,
exposing the model to plausible training scenarios. Furthermore, integrat-
ing a generic first-principle conservation equation enhances predictive confi-
dence, resulting in a physics-informed model architecture.

— The proposed state-space surrogate is validated through extensive experi-
ments and benchmarks. Scalability is demonstrated using a synthetic dataset,
that is made publicly available. In addition, the optimization is carried out
with several optimizers to assess their performance and the resulting control
strategies.

— Applied to a real-world system with multiple energy sources and stringent
constraints (e.g., power ramps, minimum time-on/off), our method achieves
up to 29% energy cost reductions and reduces computational time by up to
four orders of magnitude.

2 Related Work

Model predictive control (MPC), as schematized in Fig. 1 (left block), requires an
accurate system model to perform predictive simulations. The control algorithm
must accurately model and predict the system’s behavior under various control
scenarios. In control theory, this dynamical model is often expressed in a state-
space, where the dynamics follow an ordinary differential equation (ODE) [7].
An optimal control problem is mathematically formulated for an optimization
time-horizon H°P* = [0, t¢] as follows:

d:fiit) = f(z(t), u(t), d(t)), and z(0) = o,

Cleg )= [ ot w0, )i+ hityzalen) 1)

s.t. xy(t) = argmin C(ty,u) and I(t, x(t), u(t)) <0 Vi

where f represents the non-linear system dynamics, x € R"= is the vector of
state variables, u € R™ and d € R™¢ are the vectors of control variables and
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external disturbances respectively. The cost function C' is composed of a running
cost g and a terminal cost h evaluated at ¢ = tf, the end of the optimization
horizon H°P!. In addition, state and control variables must satisfy a set of con-
straints [ along the optimization horizon. State-space models can be learned in
two distinct ways, discrete-time (DT) or continuous-time (CT) models [3,4].
DT models are more common and easier to construct as data is represented via
discrete elements (arrays, vectors, etc.).

In the field of inertial district energy systems, a number of studies proposed
surrogate DT models [29,9,19,20]. For example, the authors of [19] proposed
to associate a recurrent neural network (RNN) to each consumer node in a dis-
trict heating network (DHN). However, they only considered a single producer
network, and the surrogate model conception relies on creating and connecting
RNN cells. Graph neural networks (GNNs) encode topological features as induc-
tive bias, as in [9], where a graph attention-based model was used to accelerate
dynamic simulations by 1 to 2 orders of magnitude. However, no physical con-
straints were included, and only single-producer networks were studied. Other
studies [20, 29] proposed control strategies for district energy systems in which
heat load forecasts are generated by GNN-based models, while the physical sys-
tem still relied on a physical simulation which is computationally expensive. In
terms of optimization techniques, evolutionary algorithms such as genetic algo-
rithms (GA) are widely used to handle complex optimizations and have proven
to be a reliable technique for inertial district energy systems optimization [39,
34|. Another recent approach for control of energy systems employs deep rein-
forcement learning (RL) and showcased promising results [14, 26]. For example,
a soft actor-critic (SAC) agent achieved 5.79% reduction in fuel costs compared
to rule-based control (RBC) over a two-days horizon in [14]. However, the study
did not assess performance over longer horizons or across different periods of the
year, limiting the results to the selected days.

Our work extends the previously reviewed research by introducing an ap-
plication agnostic methodology to accelerate predictive control of multi-source
district energy systems. The modularity of our framework is also demonstrated
through its coupling with various optimizers, including both learning-based and
evolutionary-based approaches. The surrogate model leverages spatio-temporal
graph neural networks [22] and benefits from recent demonstrations showing that
‘time-then-space’ architectures offer superior expressivity compared to ‘time-
and-space’ representations [17]. To further enhance generalizability, a physics-
informed approach is used in training, where a mass conservation constraint,
applicable to all inertial district energy systems, is added to the loss function.

3 Methodology

3.1 State-space surrogate model

Inertial district energy networks consist of several producers delivering energy to
consumers via a network of pipes and control valves as shown in Fig. 2a. These
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Fig. 2: Figure (a) illustrates a generic graph representation of the physical com-
ponents of an inertial district energy system. Figure (b) depicts the surrogate
model (PI-STGCN) architecture which integrates past state variables (z*), fu-
ture control signals (u*) and disturbances (d%).

2

systems can be modeled as a graph G = (V, &), where nodes V represent produc-
ers, consumers, storage or valves, and edges £ correspond to pipes. Each graph
entity holds multiple interconnected physical features, nodes are characterized
by state variables (e.g. x = temperature) and the pipes by descriptive features
such as their length and diameter. Moreover the entire system is influenced by
exogenous variables, classified as disturbances (e.g. d = weather) or control vari-
ables (e.g. u = mass flowrate). Modern district energy networks incorporate
diverse producer types at various locations [24]. Thermal energy storage further
enhances flexibility by enabling asynchronous production and peak shaving.

The finite horizon optimal control problem in Eq. 1 seeks to optimize system
trajectories while satisfying constraints. It minimizes a cost function C (e.g. fuel
costs) over control variables v within the time horizon H°P'. Here, the system
dynamics (f in Eq. 1, computationally heavy) are replaced by a deep learning
model fy (i.e., inference function), where 6 represents model parameters. Due
to system inertia and long-duration constraints on producers, predictive mod-
els require not only future control inputs and forecasted disturbances, but also
historical state observations. This motivates the use of an autoregressive model
formulation:

xilsm _ fa (ajr;__[sm7 urj’__[sm, dilsm) . (2)

Where H®™ is the predictive range of the surrogate model, typically shorter
than the optimization horizon H°P'. The symbol + indicate predicted variables,
meaning values from the current time ¢ to t + H®™. Symbol — indicates past
observations or measurements of state variables, meaning values from ¢ — H™
to t. The surrogate model parameters 6 are optimized through supervised learn-
ing using a dataset generated from a high-fidelity physical simulator validated
against real-world data. This dataset captures the system response (i.e. state
variables) to various control inputs and disturbances. The inference function fp
is a result of the surrogate model architecture shown in Fig. 2b. In addition to
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the past state variables, the future control variables u and disturbances d are dif-
fused to each node so that the contained information is available to all network
components. Next, these node inputs go through the encoder-processor-decoder
where gated recurrent units (GRU) are used for encoding and graph convolution
(GCN) for message passing. Fig. 2b also introduces three hyperparameters that
will be optimized: number of GRU layers, the hidden size (HS) and the number
of GCN layers. The surrogate model is trained as the following optimization

problem:
2

. 1 Z
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In Eq. 3, the loss term is weighted (via A > 0) with a physical constraint term
represented by F,,. This term is the mass flow rates conservation over the net-
work: the sum of the mass flow rates sent to the consumers must be equal to
the sum of mass flow rates sent by the producers. The loss is averaged and cal-
culated over a batch of size NV, and across all the nodes in the network V. This
surrogate model (PI-STGCN) is compared to other approaches, namely vector-
autoregressive (VARx), a multi-layer perceptron (MLP) and a recurrent neural
network based on gated recurrent units (RNN).

3.2 Training and validation pipeline

The training and validation pipeline explained in this section is schematized in
the right block of Fig. 1. To construct the training dataset, historical measure-
ments are in general available for such systems, specially weather, heat demand
and control variables. Therefore, data samples (i.e., {z7¢™, 2™ W¥™ a7t })
are constructed by sliding over the training dataset as shown in Fig. 3a by a
number of time steps called ‘stride’, its minimum value corresponds to the phys-
ical simulation time step, and the impact of choosing larger values is analyzed
in section 5.

The training dataset is constructed following the augmentation procedure
schematized in Fig. 3b. In fact, the effectiveness of deep learning models de-
pends on large training datasets. However, labeled data in many real-world time
series applications are often scarce [37]. In model predictive control, the system
response (i.e. state variables) are influenced by both the control variables and
the external disturbances, via physical equations and constraints (recall Eq. 1).
Therefore, the surrogate model must effectively capture the hidden dependen-
cies between the state variables and the exogenous ones. This is the core idea
schematized in Fig. 3b where the latter variables are augmented using the follow-
ing procedure. We propose to augment time series by combining Gaussian scaling
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Fig. 3: Figure (a) illustrates dataset construction using a sliding window, with the
‘stride’ hyperparameter discussed later. Figure (b) presents the augmentation
method based on state-space formulation. The original dataset, derived from
real-world exogenous variables (R), is used as a baseline. Each exogenous variable
is then independently augmented (7") and simulated using a high-fidelity physical
digital twin.

and window warping [37,32]. Let 2441 = [2¢, 241, - - -, 2e4%] denote a time se-
ries sample spanning k time steps, starting from ¢, the resulting augmented time

. aug . e
series z;, 7, 18 computed via:
T [Zt\tJrk] = [70 TRty V1L Rt Ay VG Rt A VG Zt-l—k]a (4)
N—— —

A window A window

where v ~ N (1,02,,), N is the normal distribution, and 1 < A < k is a fixed
time window. A acts as the sampling frequency for scaling coefficients, meaning
the data is scaled every A steps. State variables cannot be directly augmented,
as their evolution is governed by physical laws. Instead, only control (u) and
disturbance (d) inputs are augmented, thus, the resulting state trajectories are
implicitly augmented through simulation of these inputs. The dataset is then
scaled using min-max normalization and split to three distinct sets: training,
validation and test (see Fig. 3b). The PI-STGCN model is trained using AdamW.
Moreover, hyperparameters optimization is performed using the asynchronous
successive halving algorithm (ASHA) from [23]. The considered hyperparameters
and their corresponding range are given in Tab. 1 (a). The best model is then
trained to reach its optimal performance, all experiments are performed on a

48 GB NVIDIA A40 GPU.

3.3 Optimization techniques

As shown in Fig. 1, the model predictive control leverages the trained surrogate
model to perform control optimization. The complexity of the studied system
dynamics requires reliable and robust optimizers. In the literature, evolutionary
algorithms such as genetic algorithms (GA) and particle swarm optimization
(PSO) were widely adopted [5,28,39]. Recently, deep reinforcement learning
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Fig. 4: Schematic of the real-world system and its graph representation, including
biomass and gas boilers, solar field with thermal storage.

has also demonstrated its ability to handle the complex optimization of such
systems [14, 26]. Therefore we implement four optimizers:

— Evolutionary algorithms: genetic algorithm (GA) and particle swarm op-
timization (PSO) are implemented using pymoo package [6]. The first is
known for its robust exploration which avoids local optima, the second is
used for its faster convergence rate [16].

— Deep reinforcement learning: the two on-policy and off-policy paradigms
are tested by implementing proximal policy optimization (PPO) and soft
actor-critic (SAC) respectively [31].

The optimal control problem in Eq. 1 can be directly solved using evolutionary
algorithms, as they handle cost minimization and constraints separately. For RL,
optimization constraints are added as penalty terms in the reward function.

4 Experiments

4.1 Study case description

The real-world system is illustrated in Fig. 4 and we have access to a physical
simulator developed in Dymola, along with real consumption data and weather
history . It incorporates three producers: biomass boiler, gas boiler, and a solar
field connected to thermal storage. Several valves can be seen between the solar
field and the storage, they allow different cycles: charging or discharging the
storage, or direct injection from the solar field to the network. This system
has several constraints, making it a representative case that requires complex
control strategies: A) The biomass boiler must remain on for at least 72 h when
started and off for at least 12 h when stopped. Besides, power variations are
limited with ramp constraints. B) Solar energy must be used when available
to avoid overheating and maximize renewable integration. C) Producers must
supply sufficient heat to meet demand while maintaining temperature levels
above a fixed threshold.

In the state-space formulation, mass flow rates are state variables for boilers
and control valves. Boiler mass flow rates are proportional to power output,
while valve flow rates indicate open or closed states. For consumers and storage,
fluid temperature is considered as the state variable. In storage, temperature
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reflects stored heat, while consumer temperatures indicate the heat demand.
The system also depends on external disturbances: solar irradiance Gy, and
ambient temperature Ty, which affect solar energy production, as well as heat
demand in the northern Qn and southern QS clusters. The predictive control
optimizes energy source usage, determining when to activate sources, set power
levels, and adjust flow rates. To do so, the network operators control the mass
flow rates sent to each cluster, which updates Eq. 1 as follows:

u(t) = [mn(t), ms(t)], and d(t) = [Girr(t), Texi (1), Qu(t), Qs(t)| . (5)

The cost function C' is set to the economic operational cost of the network and
can be written as:

ty . '
Clty, u) = /0 Chio * Qbio(t) + Cgas - Qeas(t) dt. (6)

Where cpio and cgas are fuel costs (in €/kWh) and Q the energy provided by
biomass and gas respectively. Moreover, the optimal control must satisfy two
constraints:

2
(u”d?tl) <y, and X4 > T VEE HOPE i€ {n,s}. (7)

The first constraint limits control variable variations to protect hydraulic pumps,
while the second ensures outlet temperatures stay above a threshold for comfort
and safety. As outlined in section 3.3, constrained optimizations must be adapted
to align with the reward-learning framework of RL agents. Accordingly, both
PPO and SAC were trained using the following reward function:

e e
Ci

Au Ug,t — Uqt—1 ? Az Tmin—Ti,t
C* 'Hsmgg < dt ) _Hsmgge . (8)

This formulation balances three terms: minimizing economic costs (normalized
by the RBC cost C*), enforcing smooth control variations (weighted by A, ), and
ensuring temperature constraints (weighted by A,).

re = —

4.2 Scalability test cases

Confidentiality limits access to real-world district energy network data, especially
for large, variable-sized networks. While the studied system (in section 4.1) is
representative in terms of energy sources and constraints, the lack of publicly
available data makes synthetic testing essential. To address this, we introduce
a synthetic dataset to evaluate scalability, focusing on the number of connected
nodes?.

3 Link to dataset: https://doi.org/10.17605/0SF.I0/ZBJ5W
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Fig. 5: Synthetic use cases for surrogate model scalability assessment. The num-
ber of nodes is 4 in (a), 6 in (b), 14 in (c¢) and 100 in (d).

A dynamic simulator was used to generate a one-year simulation for each net-
work in Fig. 5 using a 10, 15 and 20-minute time step. The used open-source
physical solver (TESPy [38]) has been validated on different use cases [18, 11].
The networks include consumers with different usage profiles -residential, com-
mercial, administrative- generated using the demandlib package [30].

Each node has four state variables: inlet/outlet pressure and inlet/return tem-
peratures. Disturbances include heat demand per consumer and ambient temper-
ature, while control variables are supply temperature and mass flow rate of the
producer node. Therefore, the scalability evaluates multiple aspects: adaptabil-
ity to networks of varying sizes and the flexibility of the architecture in handling
different numbers of state variables, control variables and disturbances.

5 Results

The prediction performance of the proposed surrogate model is evaluated using
multiple regression metrics. All models are tested on the same dataset, consisting
of the fully augmented year (recall Fig. 3b). Examples of augmented inputs are
shown in Fig. 6a and 6b. To ensure realistic signals, augmentation is applied every
A = 3 hours, with 04,4 calibrated so that v; € [0.9, 1.1], keeping input variations
within feasible bounds, especially for control variables like pumps flow rates.
Two accuracy metrics are used: the mean squared error (MSE), which quantifies
overall absolute prediction error on normalized data, and the symmetric mean
absolute percentage error (SMAPE), which expresses the mean absolute error as
a percentage. For precision, the coefficient of determination (R?) is computed,
and the percentage of mass balance compliance (F,,) is reported.

5.1 Prediction performance

In the following, results are shown for the best model configuration found through
hyperparameters optimization. The ASHA samples 150 different configuration
from the search space specified in Tab. 1 (a). Unless pruned earlier by the op-
timizer, each configuration was trained for a maximum of 30 epochs. The top
two configurations in Tab. 1 (b) share the same architecture, differing only in I,
and A, with 3.2M trainable parameters. Other surrogate models are set to the
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Fig. 6: Figures (a) and (b) show typical examples of solar irradiance and control
variable augmentation over a one-day period.

same parameter count for performance comparison, except for VARx, which has
a fixed number of parameters. The stride hyperparameter is set to the smallest
possible value (stride = 10 min).

Table 1: Hyperparameter search space and results. For (b): MSE is x1072, [,
is x10~* and H*™ = 12 h (i.e., same for all 5 configurations).

(a) ASHA search space (b) Top 5 configurations
hyperparameter search space rank mse gru/gen I, A HS Ny
Batch size (Ny) {64, 128} 1 1.163 2/1 0.7 1 512 128
Hidden size (HS) {128, 256, 512} 2 1.164 2/1 0.40.1 512 64
GRU & GON layers {1, 2, 4} 3 1.171 4/4 0.50.1 128 64
Horizon (H*™) {6h, 12h, 24h} 4  1.183 4/1 0.60.3 256 64
I € [107%, 107 A€[1072, 1] 5 1.184 2/4 1.20.1 256 64

In Fig. Ta-7c, the proposed surrogate model (PI-STGCN) outperforms all
other models. Specifically, sMAPE is around 1.3%, and mass balance F,, is sat-
isfied for 99% of tested samples. The impact of including F,,, in the loss function
(Eq. 3) is clear when comparing with STGCN, which shows degraded perfor-
mance across all metrics. The MLP model performs significantly worse than the
others, as it lacks both temporal dependencies (captured by all the others) and
spatial dependencies (captured by STGCN and PI-STGCN).

The sensitivity analysis in Fig. 7b highlights the benefits of dataset augmen-
tation. Training with 1 real year (RY) and 2 augmented years (AY) reduces
sMAPE by 30%, MSE by 10%, and increases R? by 4% compared to using only
1 RY. Fig. 7d examines the impact of the ‘stride’ hyperparameter from Fig. 3a.
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Fig. 7: Figures (a) and (c) compare the PI-STGCN model with other approaches
using the real-world case from Fig. 4. Figures (b) and (d) analyze the model’s
sensitivity to the augmented dataset size (RY: real year, AY: augmented year)
and the stride hyperparameter (10, 30 and 60 minutes) respectively.

Three stride values were tested using the optimal model and 1RY+2AY dataset.
The smallest stride (10 min) matches the real sampling frequency of weather
data and numerical simulations. Results show a 42% lower sMAPE with s = 10
min vs. 1 h. In fact, a smaller stride increases training samples and enhances the
model’s ability to capture fast dynamics, particularly mass flow rates. However,
high performance is still maintained across all tested strides, demonstrating ro-
bustness to different sampling rates. An example of PI-STGCN predictions on
a test sample are shown in Fig. 8.

It can be seen that different dynamic patterns are well captured, both fast
(8a) and relatively slow (8b) evolutions are learned. Moreover, the on/off behav-
ior of control valves (8¢c) is precisely learned, this makes the model remarkably
accurate. More quantitatively, the mean absolute errors (MAE) are in acceptable
range for network operators: the supply temperature error remains below 1 K,
the return temperatures below 1.5 K, and biomass/gas flow errors stay under
2 kg/s. Finally, the surrogate model achieves this high accuracy while reduc-
ing computational time by four orders of magnitude per data sample (speed-up
factor 1.9 - 10*) compared to Dymola physical simulator.

The results of the scalability assessment (using the networks of Fig. 5) are
reported in Tab. 2.
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Fig.8: An example of PI-STGCN predictions (red dotted curve) compared to
high-fidelity simulation (black curve) over an illustrative period. The model ac-
curately captures system dynamics, with prediction errors within an acceptable
range for network operators.

Table 2: PI-STGCN scalability evaluation on the test cases from Fig 5.

Network V=4 V=6 V=14 Y =100
MSE 12-107° 12-107° 1.9-107* 8.1-107°
sMAPE 0.21 0.18 0.15 0.10

R? 0.98 0.99 0.97 0.98
Simulation/sample 27 s 41 s 203 s 665 s
Inference/sample 20 ms 23 ms 52 ms 330 ms
Simulation/node 6.7 s 6.8 s 14.5s 6.7 s
Inference/node 5 ms 3.8 ms 3.7 ms 3.3 ms

The surrogate model maintains high accuracy across all tested networks, with
R? consistently above 0.97 and MSE decreasing as network size increases, indi-
cating robustness in larger test cases. Physical simulations become increasingly
expensive, with per-sample run-time rising from 27 s to 665 s, while surrogate
inference remains efficient, increasing only from 20 ms to 330 ms. On average,
this corresponds to a three order of magnitude reduction, which is lower than the
1.9-10* reduction observed when comparing inference to Dymola simulations. In
fact, TESPy simulation used here includes certain physical simplifications, mak-
ing it less computationally intensive than Dymola. On a per-node basis, inference
time decreases with network size, from 5 ms to 3.3 ms, whereas simulation time
remains stable around 6.7 s per node. This suggests that the surrogate model’s
inference time scales sub-linearly with the number of nodes.

5.2 Application to control optimization

After validating the learned state-space model, we demonstrate its use in optimal
control. As shown in Fig. 1, the surrogate model estimates objective function
values for control scenarios generated by the optimizers. To evaluate performance
across seasons, optimal control is run over a full year using a sliding window
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with H°P* = 3 days, illustrated in Fig. 9a. GA and PSO were executed until
cost variations remained within a 5 euros tolerance for at least 10 generations
or until the maximum number of iterations (200) was reached. PPO and SAC
explored optimization periods until reaching a maximum cumulative reward,
requiring 1.5 million (2h 40min) and 1 million (5h 55min) iterations, respectively.
Prior to training, reward weights (A, A\;) in Eq. 8 were optimized using ASHA
with Optuna’s multi-objective framework [1]. The search space was [1073,1] for
each weight, and the best pair was selected to maximize cost reduction while
minimizing penalty terms (see details in Appendix. A.1).

"—‘H Hort ) 35 ;
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20
l o
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%
o

Cost reduction
=

Past state Optimization
variables GA PSO PPO
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Fig.9: Figure (a) illustrates the sliding window control deployed. Figure (b)
summarizes the cost reductions results for the four implemented optimizers.

The optimization results are summarized in the box plot in Fig. 9b, showing

cost reductions only for periods where optimizers were effective. During high-
demand winter periods, when the boilers are at full capacities, cost reduction
margins are smaller, with optimized costs just 0.1% lower than RBC, so they are
not reported here. In contrast, mid-season periods showed greater savings due
to the increased flexibility offered by solar energy and the variable heat demand.
GA achieved the highest reductions, up to 33% with a median of 7%, followed by
PPO (6%), SAC (4.5%), and PSO (3%). The two evolutionary-based methods
show contrasting behavior: PSO had a faster convergence rate but tended to get
stuck in local optima, explaining its lower performance. For RL agents, some
periods with higher cost reductions were excluded due to violations of temper-
ature constraints (Eq. 7), thus, the reward function needs further refinement.
Another alternative is a hierarchical architecture with two agents: one enforcing
constraints, the other optimizing cost.
A key feature of our methodology is the significant reduction in computation
time. For instance, a single period optimization using GA or PSO takes about
10 minutes, while it would require more than 24 hours if Dymola simulator was
used. This improvement enables real-time optimal control and underscores the
advantages of deep learning models in accelerating the optimization and deploy-
ment of inertial district energy systems.
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6 Conclusion

In this work, we presented a deep learning-based methodology for optimal con-
trol of computationally intensive multi-source inertial district energy networks.
We provide an system-agnostic framework for training and validating a physics-
informed surrogate model, leveraging historical data augmentation and hyperpa-
rameters optimization. The dynamics were precisely learned, with sMAPE values
lower than 1.3% and R? values over 0.97. Furthermore, the trained model modu-
larity is demonstrated by leveraging it with both evolutionary-based optimizers
and reinforcement learning agents. Our results demonstrate significant improve-
ments, with cost reductions of up 30% in mid-season and a drastic decrease
in computational time (up to four orders of magnitude). Future lines of work
will address the current limitations: Improve the reward function to increase the
effectiveness of RL strategies and include stochastic forecasts to better capture
real-world noise and variability. Another perspective is considering cases with un-
usual disturbances (e.g. extreme weather) and/or equipment failures, followed
by an analysis of the control strategies found by the optimizers.
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A Appendix

A.1 RL hyperparameters optimization

For each agent, ASHA samples 25 configurations. SAC is trained for 150,000
steps, while PPO runs for 250,000 steps due to slower convergence. Each term
in the reward function (Eq. 8) is evaluated as a separate metric: the negative
cost reduction (%), the temperature penalty, and the flowrates penalty (both
normalized). The optimization minimizes these three metrics, and the resulting
Pareto fronts are shown in Fig. 10.

The optimal hyperparameters (\,, A;) are selected as the closest point (dis-

tance wise) to the "ideal" minimum for each objective individually. The other
hyperparameters are taken from RL Zoo* and are reported below in Tab. 3.

* https://github.com/DLR-RM/rl-baselines3-zoo
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Fig. 10: Hyperparameter optimization results. Each subplot shows a projection
of the 3-objective Pareto surface for SAC and PPO.

Table 3: Other hyperparameters for SAC and PPO.

Hyperparameter SAC PPO
Shared

Batch size (V) 128 64

Discount factor (7) 0.99

Learning rate 3.107*
SAC-Specific

Buffer size (Ng) 10* -

Training frequency & Gradient cycle 1 -

Target smoothing coefficient 0.006 -

Target update interval 100 -
PPO-Specific

Number of collected steps (Nsteps) - 1920

Gradient cycle (Nepochs) - 10

Actor & Critic Networks
Number of hidden layers 2 2
Number of hidden units 256 64

Non-linear activations ReLU Tanh




