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Abstract. Bayesian optimization (BO) has become indispensable for
black box optimization. However, BO is often considered a black box
itself, lacking transparency in the rationale behind proposed parame-
ters. This is particularly relevant in human-in-the-loop applications like
personalization of wearable robotic devices. We address BO’s opacity
by proposing ShapleyBO, a framework for interpreting BO proposals by
game-theoretic Shapley values. Our approach quantifies the contribution
of each parameter to BO’s acquisition function (AF). By leveraging the
linearity of Shapley values, ShapleyBO can identify the influence of each
parameter on BO’s exploration and exploitation behaviors. Our method
gives rise to a ShapleyBO-assisted human-machine interface (HMI), allow-
ing users to interfere with BO in case proposals do not align with human
reasoning. We demonstrate these HMI’s benefits for the use case of per-
sonalizing wearable robotic devices (assistive back exosuits) by human-
in-the-loop BO. Results suggest that human-BO teams with access to
ShapleyBO outperform teams without access to ShapleyBO.910
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9 Open Science: ShapleyBO as well as code and data to reproduce findings available
at https://github.com/rodemann/ShapleyBO.
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1 Introduction

In artificial intelligence (AI) and machine learning (ML), the black-box na-
ture of increasingly complex models poses serious challenges to end-users and
researchers alike. The terms explainable AI (XAI) and interpretable machine
learning (IML) – often used interchangeably – describe efforts to help illuminate
decision-making processes of ML algorithms, see [6,10] for an overview of this
emerging field. While the interpretability of ML models has been extensively
studied, less attention has been given to the explanation and interpretation of
optimization methods, which, given their frequent use in decision making prob-
lems, may benefit particularly from increased transparency.

This paper expands the focus of interpretability to Bayesian optimization
(BO) with Gaussian Processes (GPs), an optimization method, frequently used
in black-box applications such as hyperparameter optimization of ML models,
the sequential design of expensive computer simulations or, real-word experi-
ments, for which gradients are difficult to compute. However, BO algorithms are
often perceived as black boxes themselves. Understanding and interpreting such
optimizers can increase trust in domains such as human-AI interaction, miti-
gating the risk for algorithmic aversion [19,13]. In addition, we will show that
IML techniques can help accelerate the optimization in collaborative setups be-
tween humans and AI. Here, a human can intervene by rejecting or rectifying
the proposals made by BO [48]. A better understanding of the algorithm fosters
more efficient human-machine interaction, which is key in such applications, as
we demonstrate in this work.

We present a method to interpret the BO’s proposed parameter configura-
tions through Shapley values, a concept from cooperative game theory that has
gained much popularity in IML. Our framework ShapleyBO informs users about
how much each parameter contributed to the configurations proposed by a BO
algorithm. The key idea is to quantify each parameters’ contribution to the Ac-
quisition Function (AF) – rather than to the model’s predictions, as is customary
in IML [28]. Loosely speaking, the AF describes how “attractive” BO considers
a given parameter configuration. A Shapley value can thus inform the user how
much a single parameter contributes to this attractiveness. Since Shapley values
are linear in the contributions they explain, see Axiom 3 in Section 2, they can
be used to inform us about how much each parameter contributed to each com-
ponent of any additive AF, such as the popular confidence bound, which is a
weighted sum of the predicted mean and standard error. AFs play a critical role
in BO as they define a decision metric based on which the optimization proceeds
to the following iteration. In forming this decision metric, AFs balance explo-
ration of regions with high uncertainty and exploitation of regions with high
expected reward. Efficiently managing this exploration-exploitation trade-off is
a central objective behind BO.

Bayesian Optimization has become particularly appealing for applications
in which objective function samples are costly to obtain. A prominent example
is Human-in-the-Loop (HIL) optimization to customize assistance settings for
wearable robotic or prosthetic devices [54,5,20]. The goal of such HIL experi-
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ments is to find a set of control parameters that maximize the efficacy of the
provided assistance. This efficacy is often evaluated through physiological per-
formance metrics such as (reductions in) metabolic demand or muscles dynamics
and more recently expanded to subjective metrics such as user preference. Com-
mon to all, it is typically unclear to the user (or researcher), why a certain new
parameter combination was chosen by the BO algorithm.

To address this, we propose a Human-Machine Interface (HMI) that allows
users to better understand BO’s proposals and utilize this understanding in de-
ciding whether to intervene and rectify proposals if they seem undesirable for
some reason, e.g., because they do not align with human preferences. Experi-
ments on data from a real-world use case, personalizing assistance parameters
for a wearable back exosuit [42,5], suggest that such an understanding can in-
deed help to intervene more efficiently than without the availability of Shapley
values.

We summarize our contributions as follows.
(1) We explain why parameters are proposed in BO by quantifying each

parameters’ contribution to a proposal through Shapley values.
(2) We further distinguish between parameters that drive exploitation (mean

optimization) and exploration (uncertainty reduction) in BO, utilizing the lin-
earity of Shapley values.

(3) Exploratory uncertainty reduction is in turn disentangled into aleatoric
uncertainty on the one hand and different epistemic sources of uncertainty on
the other hand, which fosters theoretical understanding of BO.

(4) We test ShapleyBO on both noisy and noise-free optimization problems
and illustrate its practical benefits, see Section 5.

(5) To compute the Shapley values, we adopt a traditional MC sampling
strategy, supplemented by a novel algorithm, designed to accurately determine
an adequate sample size for Shapley value estimation in BO contexts. This in-
creases the computational efficiency of ShapleyBO, see supplementary material.

(6) We apply our ShapleyBO-based HMI to exosuit customization through
human-in-the-loop BO and demonstrate that our method can speed up the pro-
cedure through more efficient HMI in a simulation study, see Section 6.

2 Background

Bayesian Optimization: BO is a popular derivative-free optimizer for func-
tions that are expensive to evaluate and lack an analytical description. Its origin
dates back to [30]. Modern use cases of BO cover engineering, drug discovery and
finance as well as hyperparameter optimization and neural architecture search in
ML, see e.g. [22,34,43]. BO approximates the target function through a surrogate
model (SM). In the case of real-valued parameters, the SM typically is a GP.
BO then combines the GP’s mean and standard error predictions to construct
an AF, which is then optimized to propose new points. Algorithm 1 summarizes
BO applied to the problem of minimizing (w.l.o.g.) an unknown (“black-box”)
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objective function11 Ψ : Θ → R,θ 7→ Ψ(θ), where Θ is a p-dimensional deci-
sion (parameter) space. In the human-in-the-loop setup, a user can intervene
by either rejecting a proposal (line 4 in Algorithm 1) or an update (line 6 in
Algorithm 1) or by proposing another configuration (line 6 in Algorithm 2), see
Section 6 for details.

Algorithm 1 Bayesian Optimization
1: create an initial design D = {(θ(i), Ψ (i))}i=1,...,ninit

2: while termination criterion is not fulfilled do
3: train SM on data D
4: propose θnew that optimizes AF (SM(θ))
5: evaluate Ψ on θnew

6: update D ← D ∪ (θnew, Ψ(θnew))
7: end while
8: return argminθ∈D Ψ(θ)

Shapley Values: Shapley values are a concept from cooperative game the-
ory, originally introduced by [41], that can be used to measure the contribution
of each feature to an ML model prediction [45]. The key idea is to consider each
feature as a player in a game where the prediction is the game’s payoff, and
to distribute this payoff fairly among the players according to their marginal
contributions. Shapley values have several desirable properties that make them
appealing for interpreting optimization problems. In general, given a set of play-
ers P = {1, . . . , p} and a value or payout function v : 2P → R that assigns a
value v(S) to every subset (called a coalition in game theory) S ⊆ P (such that
v(∅) = 0), the Shapley value ϕj(v) of player j is defined as the weighted average
of their marginal contributions across all possible coalitions [32]:

ϕj(v) =
∑

S⊆P\{j}

|S|! (p− 1− |S|)!
p!

[v(S ∪ j)− v(S)] (1)

The Shapley value can be justified axiomatically through the properties of dummy
player, efficiency, linearity, and symmetry.

– Dummy Player: If v(S ∪ {j}) = v(S) for player j and ∀S ⊆ P\{j}, then
ϕj(v) = 0

– Efficiency:
∑p

j=1 ϕj(v) = v(P )− v(∅)
– Linearity: Given two games (P, v1) and (P, v2) and any a, b ∈ R, the following

holds: ϕj(av1 + bv2) = aϕj(v1) + bϕj(v2)

– Symmetry: If v(S ∪{j}) = v(S ∪{l}) for players j, l and every S ⊆ P\{j, l},
then ϕj(v) = ϕl(v)

11 Also referred to as target function.
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The payout function does not require any specific properties and the Shapley
value can hence be used in many different applications [23, p.3]. We will partic-
ularly rely on the linearity of Shapley values when applying them to AFs in BO,
see section 4.

Compared to other IML methods, such as the permutation feature impor-
tance [12,21] or the partial dependence plot [24], Shapley values have the main
advantage of fairly distributing feature interactions among all involved features
to quantify feature contributions. While the features become the players, the
payout function is typically set to the expected output of the predictive model
conditioned on the values of the features in a coalition, see [28,45] or [1, Equa-
tion 2]. Formally, let f̂ : Θ → R be a prediction model on feature space Θ and
θ̃ ∈ Θ the instance to explain. Then the worth of a coalition of features S ⊆ Θ
is given by v(S) = E[f̂(θ)|θS = θ̃S ], where θS , θ̃S ∈ S are the feature vectors
θ, θ̃ projected onto S.

3 Related Work

As mentioned in Section 2, there are only quite mild regularity conditions for
a function to be explainable by Shapley values. Consequently, there exists a
broad body of research on deploying Shapley values beyond classical prediction
functions. Examples comprise the explanation of predictive uncertainty [50] or
anomaly detection [46]. There is some work on Shapley-based explanations of
optimization algorithms such as evolutionary algorithms [49] or differentiable ar-
chitecture search (DARTS) in deep learning [52]. There are even efforts to utilize
Shapley values to improve optimizers similar to our Shapley-assisted human-BO
team. For instance, [51] solves fuzzy optimization problems by integrating Shap-
ley values with evolutionary algortihms and [9] use Shapley values to speed up
multi-objective particle swarm optimization grey wolf optimization (PSOGWO).

Generally, there has been a lot of interest in how to incorporate human knowl-
edge in optimization loops recently [7,4,48,2,53,8] and what role IML can play
in this regard [31]. This growing interest is not only sparked by fine-tuning large
language models through reinforcement learning from human feedback [35], but
also by chemical applications [17]. The method we apply to exosuit personal-
ization partly builds on [18], who proposed to interpret BO by Shapley values
first. Very recently, Adachi et al. [3] introduced Collaborative and Explainable
Bayesian Optimization (CoExBo), building on GP-SHAP (Shapley Values ex-
plaining Gaussian Processes) [15], for lithium-ion battery design, a framework
that integrates human knowledge into BO via preference learning and explains
its proposals by Shapley values. Contrary to our approach, CoExBo first aligns
human knowledge with BO by preference learning. In a second step, it then
proposes several points and allows the user to select among them based on ad-
ditionally provided Shapley values, while our Shapley-assisted human-BO team
directly uses Shapley values to align a single BO proposal with human proposals.

[14] recently proposed TNTRules, a post-hoc rule-based explanation method
of BO. TNTRules finds (through clustering algorithms) subspaces of the param-
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eter space that should be tuned by the user. Similar to our work, it emphasizes
the benefits of XAI methods in human-collaborative BO. Contrary to our work,
it is a post-hoc method (ShapleyBO works online) and focuses on explaining the
whole parameter space rather than single BO proposals.

4 Explaining Bayesian Optimization via Shapley Values

In this section, we introduce ShapleyBO10 that allows to interpret BO propos-
als by Shapley values. Transitioning from ML models to AFs, the utilization of
the Shapley value becomes remarkably straightforward, as an AF essentially
represents a transformed version of a surrogate model’s prediction function.
Consequently, the Shapley value can be employed with any AF to evaluate the
contribution of selected parameter values. Among an array of AF options, the
confidence bound appears particularly suited for our approach, due to its intu-
itive functional form and additive nature. The confidence bound (CB) of a
parameter vector θ ∈ Θ is defined as

cb(θ) = µ̂(θ)− λσ̂(θ), (2)

where µ̂ and σ̂ are mean and standard error estimates by the SM (here: GP),
respectively; λ > 0 is a hyperparameter controlling the exploration-exploitation
trade-off. The rationale behind the confidence bound is fairly intuitive: a point
is deemed desirable if either (i) the mean prediction µ̂ is low (indicating an anti-
cipation of a low target value, thus exploiting existing knowledge) or (ii) the
uncertainty prediction σ̂ is high (indicating limited information about the target
function in that area, thus exploring this region of the parameter space). Propos-
ing new samples boils down to optimizing this confidence bound. To this end,
let minimizing (w.l.o.g.) the confidence bound be a cooperative game along the
lines of Section 2. It shall be defined as (P, cb), or as two separate games (P, µ̂)
and (P, σ̂), with P being the grand coalition of parameters and µ̂ and σ̂ the
payout functions, respectively. According to the linearity axiom, the cb contri-
bution of any parameter j of the parameter vector θ̃ to be explained can then be
decomposed into the mean contribution ϕj(µ̂) and the uncertainty contribution
ϕj(σ̂):

ϕj(cb) = ϕj(µ̂− λσ̂) = ϕj(µ̂)− λϕj(σ̂) (3)

Thus, we can not only evaluate the overall contribution of each parame-
ter θj , but also examine how both contributions ϕ(µ̂) and ϕ(σ̂) impact and
drive the selection of proposed parameter values, shedding some light on the
exploration-exploitation trade-off. On the background of recent work on uncer-
tainty quantification [26,33,27], we further aim at disentangling the uncertainty
contribution ϕj(σ̂) of a parameter θj into its epistemic (reducible) and aleatoric
(irreducible) part. Aleatoric uncertainty is typically caused by noise. This is
particularly relevant in BO if the noise is heteroscedastic, i.e., dependent on
θ, since decision makers are often risk-averse. In other words, when deciding
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among two parameter configurations with equal mean target, most humans tend
to opt for the one with lower variation. This motivates a risk-averse optimiza-
tion problem: minθ∈Θ f(θ)− α · ϵ(θ) with ϵ(θ) some noise that is non-constant
in θ and α the degree of risk-aversion. [29] propose risk-averse heteroscedastic
Bayesian optimization (RAHBO) which entails minimizing (w.l.o.g.) the risk-
averse confidence bound (racb):

racb(θ) = µ̂(θ)− τ · σ̂(θ) + α · ϵ̂(θ), (4)

where ϵ̂(θ) is an on-the-fly estimate of the noise. Due to racb’s additive structure,
ShapleyBO can identify each parameter’s contribution to epistemic uncertainty
reduction through −τ · σ̂(θ) and to aleatoric uncertainty avoidance through
α · ϵ̂(θ). By filtering out these exploratory contributions, the remainder of a pa-
rameter’s overall Shapley value can be identified as the parameter’s contribution
to mean optimization through µ̂(θ) (exploitation).

θ4=0.2473

θ3=0.1589

θ2=0.1923

θ1=0.3557

−40 −20 0 20
phi (cb)

cb decomposed (iter 59) 
Actual: −1.4090, Average: 71.1346

i

θ4=0.2473

θ3=0.1589

θ2=0.1923

θ1=0.3557

−40 −20 0 20
phi (cb)

Actual cb: −1.4090
Average cb: 71.1346

ii

θ4=0.2711

θ3=0.22

θ2=0.3229

θ1=0.3294

−40 −20 0 20
phi (cb)

cb decomposed (iter 59) 
Actual: −19.8338, Average: 24.5737

iii

θ4=0.2711

θ3=0.22

θ2=0.3229

θ1=0.3294

−40 −20 0 20
phi (cb)

Actual cb: −19.8338
Average cb: 24.5737

iv

contribution mean se

Fig. 1. ShapleyBO results in iteration 59 of BO on f(θ). Plots i and ii for λ = 1 and
plots iii and iv for λ = 10. Contributions (phi) are averaged over 30 restarts for each λ.
On the right, the overall contribution of the parameters is displayed (cb contributions),
and on the left the decomposition into µ̂ (red, “mean”) and σ̂ (blue, “se”) contributions.
Recall that cb is minimized. Vertical axis includes the average distance of the proposed
configuration from their optimum for a better interpretation. Error bars show one
standard deviation. Actual: cb of actually proposed point. Average: Mean cb over all
parameters.
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Fig. 2. Contributions curves for hyper ellipsoid optimization. Plot on top displays cb
contributions for parameters (vertical) and λ (horizontal); beneath its decomposition
into µ̂ (red, “mean”) and σ̂ (blue, “se”) contributions, averaged over 30 restarts, error
bars show one standard deviation. The black dot-dashed line in the λ = 10 plots
displays the average contribution of the parameters in the λ = 1 run.

5 Experimental Validation

A deployment on synthetic functions allows us to validate our method, because
we can formulate concrete expectations for the contributions based on the known
functional form of the synthetic target function. We select a hyper-ellipsoid func-
tion, where the parameters’ partial derivatives grow in j. Thus, we expect the
Shapley values of parameters in BO to be higher the higher their j.

Hyper-Ellipsoid Function: Firstly, we select a hyper-ellipsoid function
(Equation 5), where the partial derivatives of the parameters grow with j. Thus,
we expect ShapleyBO to identify parameters with higher j as more influential in
BO. We illustrate ShapleyBO by optimizing

f : [−5.12, 5.12]4 → R+
0 ;θ 7→ f(θ) =

4∑
j=1

j · θ2j (5)

where f is separable and strictly convex with a unique minimizer θ∗ = (0, 0, 0, 0)T

with f(θ∗) = 0. To control for the stochastic behavior of BO, 30 repetitions of the
optimization process with a bugdet of 60 function evaluations are run. Results
in each iteration are then averaged over all repetitions.

As expected in light of the partial derivatives of f(θ), the contribution of θj
grows with j, see Figures 1 and 2. In contrast, uncertainty exhibits a diminutive
and adverse effect. The uncertainty measurement σ̂ for the recommended setup
falls below the average, thus yielding a positive payout (negative contributions).
Opting for a setup with an uncertainty estimate beneath the average is deemed
a strategic compromise towards enhancing mean values at the expense of explo-
ration. ShapleyBO facilitates a nuanced allocation of this trade-off across param-
eters, see both Figures 1 and 2. We also study how the contributions change in
the course of the optimization. Respective contribution paths are shown in Fig-
ure 2. Throughout the optimization process, the emphasis shifts from reducing
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Fig. 3. Contour plots of noisy ellipsoid function g(θ) + ϵ(θ), see Equations 6 and 7.
Red: low values of g(θ)+ϵ(θ); blue: high values of g(θ)+ϵ(θ). It becomes evident that
the noise ϵ(θ) varies more w.r.t. θ1, while g(θ) is stronger affected by θ2.

iteration j ϕj(µ̂) ϕj(σ̂) ϕj(ϵ̂) ϕj(racb)

1 θ1 -100.2 2.4 -13.9 -111.8
1 θ2 -163.1 2.2 1.5 -159.4
2 θ1 -87.8 2.4 -37.7 -123.1
2 θ2 -165.6 1.6 3.3 -160.3

Table 1. Results of ShapleyBO for ex-
emplary iterations 1 and 2 of BO with
risk-averse confidence bound (Equation 4)
on heteroscedastic target function g(θ)
(Equation 7).

j ϕj(µ̂) ϕj(σ̂) ϕj(ϵ̂)

1 -48.48 4.20 -87.27
2 -157.73 6.88 0.24

Table 2. Results of ShapleyBO aver-
aged over all 60 iterations and all 30 BO
restarts with risk-averse confidence bound
(Equation 4) on heteroscedastic target
function g(θ) (Equation 7).

uncertainty to prioritizing mean reduction, leading BO to favor configurations
that perform well over those with high uncertainty. This transition is marked by
a crossing in the contribution curves, see Figure 2, indicating a preference for
mean reduction over uncertainty reduction.

Heteroscedastic Target Function: Secondly, we illustrate ShapleyBO on
a two-dimensional ellipsoid function with noise depending on θ, see Section 4 for
details. That is, we minimize g(θ) + ϵ(θ), where

g : [−15, 15]2 → R+
0

θ 7→ g(θ) =

2∑
i=1

i · θ2i
(6)

and
ϵ(θ) = 30 · |θ1 − 15|+ 0.3 · |θ2 − 15|. (7)

The noise grows strongly in θ1, but only moderately in θ2. Figure 3 shows con-
tours of g(θ)+ϵ(θ). It becomes evident that the function varies stronger w.r.t. θ2
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than w.r.t. θ1, while the noise is strongly affected by θ1 and almost constant in
θ2. Hence, we expect the respective Shapley values for aleatoric (see Equation 4)
uncertainty contributions to be high for θ1 and low for θ2, and vice versa for
exploitation (mean optimization).

We run BO on g(θ) + ϵ(θ) with risk-averse confidence bound (racb), see
Equation 4; we again average over 30 restarts of BO with 60 iterations each.
ShapleyBO delivers contributions for each θj to each of racb’s components in
each of BO’s iterations. Table 1 has the results for exemplary iterations 1 and
2. Table 2 shows the contributions averaged over all i ∈ {1, . . . , 60} iterations
and all r ∈ {1, . . . , 30} restarts. For instance, the averaged mean contributions
of parameter j are

ϕj(µ̂) =
1

30

30∑
r=1

1

60

60∑
i=1

ϕj,r,i(µ̂). (8)

It becomes evident that θ2 is more important for the mean minimization than
θ1, while the latter contributes more to aleatoric uncertainty (noise) avoidance.

Summing up, the applications on both homo- and heteroscedastic target
functions demonstrated that ShapleyBO manages to disentangle contributions
of different parameters to different objectives of BO, thus providing valuable
insights both into BO’s inner working (see Figures 1, 2 and Table 1) and about
the target function itself (see Table 2).

6 Shapley-Assisted Human Machine Interface

The ability to interpret BO can be particularly useful for Human-In-the-Loop
(HIL) applications, where users observe each step in the sequential optimization
procedure. In this case, ShapleyBO can inform users online; that is, while the
optimization is still running, about why certain actions were chosen over others,
instead of providing such explanations after the experiment has concluded. More
specifically, we consider a human-AI collaborative framework [14,25,48,4,11], in
which users can actively participate in the optimization by rejecting BO propos-
als and instead take actions on their own.

As demonstrated in Section 5, Shapley values can provide structural insights
on the relative importance of parameters for the optimization by filtering out
uncertainty contributions, see ϕj(µ̂) in Table 2 for instance. Our general hypoth-
esis is that basing the decision to intervene on this information will speed up
the optimization. The underlying idea is that users can reject proposals in case
the respective Shapley values do not align with the user’s knowledge about the
optimization problem.

To test this hypothesis, we benchmark a ShapleyBO-assisted human-AI team
against teams without access to Shapley values. To better illustrate this, we
consider the real-world use case of personalizing control parameters of a wearable,
assistive back exosuit by BO.
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6.1 Personalizing Soft Exosuits

Wearable robotic devices, such as exoskeletons and exosuits, have emerged as
promising tools in mitigating risk of injury and aiding rehabilitation [42,47].
With an increase in use cases and accessibility to a broader community, it has
become apparent that the benefits of such devices can vary substantially be-
tween individuals. Besides design choices, which have to be made early on and
are therefore often guided by (average) user anthropometrics, important factors
influencing device efficacy are the magnitude and timing of assistance.

Fig. 4. A: Assistive soft back exosuit. B: Force profile example for preference learning.
Subjects are asked to compare controllers setting 1 (pink) to 2 (blue). Each option
varies in the amount of lowering gain (θlow) and lifting gain (θlif ), see [5].

To understand which settings work best for an individual, many studies follow
HIL frameworks. These approaches comprise a feedback loop in which the im-
pact of a controller modification on the objective function of interest is measured
in real-time, and used to determine a set of control parameters that are likely to
improve upon the current optimum in the subsequent iteration. Given that under
such conditions there is typically no known analytical relationship between con-
trol inputs and objective function outputs, sample efficient, query based methods
like BO have had considerable success for such applications [54,20].

6.2 Experimental Setup

Here, we explore the potential of ShapleyBO for the use-case of preference-based
assistance optimization for a soft back exosuit, see Figure 4. To this end we
consider a dataset in which 15 healthy individuals performed a simple, stoop
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Algorithm 2 Human-AI Collaborative BO
1: create an initial design D = {(θ(i), Ψ (i))}i=1,...,ninit

2: while termination criterion is not fulfilled do
3: train SM on data D
4: propose θnew that optimizes AF (SM(θ))
5: If intervention criterion is fulfilled
6: θnew ← θhuman

7: End If
8: evaluate Ψ on θnew

9: update D ← D ∪ (θnew, Ψ(θnew))
10: end while
11: return argminθ∈D Ψ(θ)

lifting task with a light (2kg) external load [5]. Details on the dataset can be
found in the supplementary material. Preference was queried in a forced-choice
paradigm. That is, within each iteration, participants were consecutively exposed
to two control parameter settings and asked to indicate which of the two options
they preferred for completing the given task. Each of the settings comprised two
parameters, referred to as lowering gain θlow and lifting gain θlif , which govern
the amount of lowering and lifting assistance provided by the device, respectively,
see also Figure 4.

This preference feedback was used to compute a posterior utility distribution
over the considered parameter domains, relying on a probit likelihood model
and a GP prior over the latent user utility as described in [16]. The experiment
comprised three separate optimization blocks, in each of which the optimization
was running for 12 iterations. To test ShapleyBO on this dataset, we averaged
the three utility functions for each participant and interpolated by another GP
to simulate the user’s ground truth utility function. The detailed specifications
for both the original BO and the auxiliary BO modeling the human can be found
in the supplementary material and in our codebase.

The remaining setup in our experimental study closely follows the one in
[48]. That is, the human can intervene in BO by rectifying proposals made by
the algorithm, see pseudo code in Algorithm 2. We will compare our ShapleyBO-
assisted human-BO team against the team in [48, Algorithm 1] and three other
baselines (human alone, BO alone, human-BO team with different intervention
criterion). We model human decisions by another BO, following [11,48]. This
means that θhuman = (θhuman

lif , θhuman
low )T is found by optimizing an AF modeling

human preferences. We use a BO with the same SM and AF as for the outer loop,
but with different exploration-exploitation preference and different initial design,
representing differing risk-aversion and knowledge of the human, respectively.

All agents (A0, A1, A2, A3, A4) are equal to each other, the only difference
being that the ShapleyBO-assisted agent intervenes based on Shapley values
(A4), while the other agents intervene in each k-th iteration (A3) [48], based on
the proposed parameters (A2), always (A1) or completely abstain from interven-
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Agent A0 A1 A2 A3 A4
BO Human Param-Team Venkatesh et al. [48] Shap-Team

IC never always θnew
lif , θnew

low k-th iteration ϕnew
lif (µ̂), ϕnew

low (µ̂)
Table 3. Intervention Criteria (ICs) for ShapleyBO-assisted A4 and baselines A0-A3.

ing (A0), see overview in Table 3. A4 has access to ShapleyBO and bases their
decision to intervene (line 5 in Algorithm 2) on the alignment of the Shapley
values of a BO proposal θnew = (θnewlif , θnewlow ) with the agent’s knowledge. More
precisely, A4 accepts a BO proposal θ (does not intervene) if

1

β
<

ϕnew
lif (µ̂)

ϕnew
low (µ̂)

/ 1

T

T∑
t=1

ϕhuman
lif (µ̂)t

ϕhuman
low (µ̂)t

< β, (9)

where t ∈ {1, . . . , T} are iterations of the BO modeling the agent and ϕ(µ̂) the
Shapley mean contributions of (θlif , θlow), i.e., the exosuit’s lifting and lowering
gain, respectively. We discuss different Shapley-based intervention criteria in
the supplement. For A2’s intervention criterion we consider the alignment of
(θnewlif , θnewlow ) with the agents knowledge based on the parameter values itself.
That is, A3 accepts a BO proposal (does not intervene) if

1

β
<

θnewlif

θnewlow

/ 1

T

T∑
t=1

θhuman
lif,t

θhuman
low,t

< β. (10)

6.3 Results

We simulate 40 personalization rounds with 10 iterations and initial design of size
3 each for all five agents. We compare them with respect to optimization paths,
which show best incumbent target values (utility) in a given iteration. The BO
uses GP as AM and cb with λ = 20 as AF; the BO modelling human proposals
uses GP and cb with λ = 200 and prior knowledge of 90 data points. For further
details on the experiments, please refer to the supplementary material.

Figure 5 exemplarily summarizes results for individual 1; results for remain-
ing 14 individuals as well as experimental details can be found in the supplement.
For all 15 subjects, ShapleyBO-assisted A4 (Shap-team) on average outperforms
human and BO baseline as well as [48] and a team that bases their decision to
intervene on the proposed parameters. This latter comparison particularly con-
firms that Shapley values are a meaningful measure for human-BO alignment
that cannot be replaced by another notion of alignment without loss of efficiency.
For 10 (among whom is subject 1, see Figure 5) out of 15 subjects the observed
outperformance of the ShapleyBO-assisted A4 over competitors is significant at
95% confidence level.
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Fig. 5. Results of Agents A0-A4 (see Table 3) in human-AI collaborative BO for sim-
ulated exosuit personalization (individual 1) with 10 iterations and 3 initial samples
each. Error bars indicate 95% confidence intervals; k = 2 for A3, β = 2 for A2 and A4.
Results for remaining individuals can be found in the supplementary material.

7 Discussion

By quantifying the contribution of each parameter to the proposals, ShapleyBO
aids in the communication of the rationale behind specific optimization decisions.
This interpretability is not only crucial for trust in HIL applications, it also
enhances their efficiency in a human-AI collaborative setup. The use case of
customizing exosuits illustrates the practical benefits of this approach, suggesting
that ShapleyBO is a valuable practical tool for personalizing soft back exosuits.

More generally and beyond exosuits, we conclude that ShapleyBO fosters
more efficient human-AI collaboration by serving as an explanation interface
between the optimization algorithm and humans.

Our paper opens up a multitude of directions for future work. The simulation
results in Section 6 based on real-world data motivate the actual deployment of
Shapley-assisted human-in-the-loop optimization of exosuits in a user study. To
this end, the intervention logic used in the simulation study could benefit from
an intuitive or visual explanation interface.

On the methodological end, extensions of ShapleyBO to multi-criteria BO ap-
pear straightforward, as long as additive AFs are used. Moreover, the stability of
the Shapley attributions under different BO settings (e.g., kernel or mean choice
in Gaussian process, noise, random seeds) might be investigated. A sensitivity
analysis along the lines of [36,37,38,39,40] could yield fruitful insights into the
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robustness of ShapleyBO. Moreover, a direct integration of preferences similar to
CoExBo [3] might increase the efficiency of human-machine interaction further
in a collaborative BO setup.

What is more, a thorough mathematical study of the sublinear regret bounds
of BO with confidence bound [44] under Shapley-assisted human interventions
might foster theoretical understanding of why Shapley-assisted teams outper-
form competitors. The theoretical results on general human-AI collaborative
BO [48], technically relying on Sobolev spaces, can serve as a starting point for
an extended study that explicitly accounts for the ShapleyBO-assisted human-
machine interface.
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