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Abstract. In the context of sequential recommendation, incorporating
auxiliary information has consistently shown improvements in several
scenarios. Some models focus on integrating item and user features, other
approaches include context information. A notable area of growth is the
multi-behavior recommendation, which considers the different user’s be-
haviors to indicate their preferences. Current methods rely on graph-
based models while other sequential multi-behavior models use trans-
formers. However, none of these models take items or user features into
consideration which causes a limited understanding of user preferences
through different actions and item characteristics. In this paper, we pro-
pose an Attribute and Context-aware Multi-Behavior model (ACMB)
for unique item recommendation. This not only accounts for users’ vary-
ing behaviors but also integrates the relevant attributes of items to en-
hance the understanding of user preferences. ACMB encodes the items
with the respective attributes then it applies a hierarchical attention over
the different behaviors separately, followed by attention across the entire
input sequence to generate a comprehensive deep sequence representa-
tion. Extensive experiments on real-world Volkswagen Financial Services
(VWFS) dataset demonstrate the significance of our proposed model over
the current state-of-the-art attribute-aware sequential recommendation
methods.

1 Introduction

In Volkswagen Financial Services (VWFS) Business-to-Bussiness (B2B) settings,
vehicles are sold to dealers through auctions. Auction systems possess unique
characteristics as items are sold in a fixed-price round followed by several bid-
ding rounds. These items are considered unique because each can be sold only
once within the auction system. This scenario can be framed as a sequential rec-
ommendation problem. However, it presents a significant challenge that items
(vehicles) are not identified by fixed IDs but rather by their attributes (features).
This makes the problem highly relevant to attribute-aware sequential models.

Modern platforms increasingly leverage not only transactional data but also
auxiliary information to capture user preferences, enabling the creation of more
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accurate recommendation systems. These systems, often referred to as multi-
relational or multi-behavior recommendation models, integrate additional be-
havioral data to improve performance. For instance, in retail platforms, incor-
porating behaviors such as "add to cart" or "clicks" enhances model accuracy.
Similarly, auction systems provide rich auxiliary information beyond sales data,
such as bid histories and user click interactions. Incorporating these additional
behaviors is crucial for accurately capturing user preferences in such complex en-
vironments. However, existing state-of-the-art multi-behavior recommendation
methods [21, 22, 2] rely heavily on fixed item IDs, which makes them unsuit-
able for unique item recommendation scenarios like auction systems. Addressing
this limitation requires adapting models to work effectively in attribute-based
settings without relying on item IDs.

To address these challenges, we propose an attribute- and context-aware
multi-behavior framework for unique item recommendation. Unlike earlier ap-
proaches to multi-behavior recommendation [7], [19], which depend on item IDs
for item representation, our method eliminates this dependency. Instead, it lever-
ages rich item attributes to construct item representations. Additionally, our
framework integrates interaction context, such as time and user behavior type
to provide a comprehensive understanding of user preferences. This combina-
tion enables our model to effectively tackle the challenges posed by unique item
recommendation in auction systems. Our contributions can be summarized as
follows:

– We propose the first attribute- and context-aware multi-behavior model,
which employs hierarchical attention to capture comprehensive behavioral
representations.

– We introduce a novel approach that leverages item attributes and auxiliary
behaviors to effectively learn user preferences in auction systems.

– Extensive experiments on a VWFS real-world dataset demonstrate that our
proposed model, ACMB, significantly outperforms state-of-the-art attribute-
aware sequential recommendation models.

2 Related work

In our work, we focus mainly on the three branches of research, consisting of
attribute and context-aware recommendation, sequential recommendation, and
multi-behavior recommendation.

Attribute and Context-Aware Models is a substantial sector in rec-
ommendation systems that seek to improve the quality of recommendations by
leveraging both item features and contextual information, moving beyond mere
item IDs. Early approaches utilizing contextual features are the factorization
machine-based methods such as FM [13]. Later the neural factorization machine
(NFM) utilized deep neural networks for learning non-linear feature interactions
[5]. Furthermore, DeepFM [4] is a popular context-aware method that combines
the FM and DNNs for extracting latent representations. More recent approaches
benefit from incorporating the time-aspect, which allows learning the sequential
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pattern in the data along with the contextual features. More recent state-of-
the-art attribute and context-aware sequential methods is CARCA model [11],
which includes contextual information and item attributes. The sequence of pro-
file items and the target items passes through a cross-attention mechanism to
get the final items’ scores. Additionally, ProxyRCA [14] further improves upon
CARCA, by improving the items encoding method.

Sequential Recommendation is a prevalent task in recommender systems
that utilizes the historical interactions of each user to predict the next item the
user will most likely interact with. GRU4Rec [6] is one of the early approaches
that utilize RNNs for mining the sequential behavior in a session-based rec-
ommendation scenario. Another sequential model is Caser [16], which applies
convolutional filters on the time and item embeddings to capture the latent
sequential behavior of users. Additionally, more recent approaches started to
employ transformer architectures such as the SASRec [8] model, which feeds the
item embedding sequence into a multi-head self-attention block to capture the
sequential correlation between historical items. Another method that improves
upon SASRec is BERT4Rec [15], which uses a Bi-directional self-attention mech-
anism to better model the sequential behaviors. Other recent approaches tried
to extend the SASRec model are SSE-PT [23], TiSASRec [10] and S3Rec [17].

With the current massive data sources available for recommender systems, re-
cent models started not only to employ the user-item primary interaction relation
such as purchases but also to use other available click data. Employing auxil-
iary information has different namings in the existing prior work: relation-aware
recommender systems, multi-relation recommendation, and multi-behavior rec-
ommendation.

Many recent multi-behavior recommendation approaches rely on convo-
lutional graph networks by treating the different behaviors as a global hetero-
geneous graph, such as the MB-GCN [7] and MB-GMN [20] models. Addition-
ally, other methods tried to employ transformer encoders in their architecture
for better representation learning. One such example is the memory-augmented
transformer networks (MATN) [18], which uses a transformer encoder followed
by a cross-behavior aggregation layer to model the different behaviors. Moreover,
KHGT [19] is a graph transformer method that captures user-item interaction
characteristics; also, a graph attention layer is employed to understand the item-
item relation further. State-of-the-art advancements include MBHT [21], which
utilizes low-rank self-attention coupled with a hyper-graph neural architecture
to model long- and short-term dependencies. MB-STR [22] introduces a multi-
behavior sequential transformer layer to simultaneously learn sequential patterns
across various historical behaviors. Furthermore, MBSRec [3] learns all behaviors
via a multi-head self-attention block while maintaining the behavior contibution
using weighted binary cross-entropy loss.A dditionally, HMAR [2] employs a
hierarchical attention mechanism to capture dependencies within items of the
same behavior and encode cross-behavior relationships in the input sequence.

Building on these advancements, we propose an attribute- and context-aware
multi-behavioral sequential model that effectively leverages multi-behavior data
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in a sequential manner. Our model goes beyond traditional methods by integrat-
ing item attributes and contextual information, achieving superior performance
in unique item recommendation scenarios.
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Fig. 1: Attribute and Context-aware Model Architecture

3 Methodology

In this section, we elaborate on the model components, describe the training
protocol, model optimization, and provide implementation details.

3.1 Problem Formulation

In the context of unique item sequential recommendation, consider a set of items
I = 1, . . . , I and a set of users U = 1, . . . , U . For each user u ∈ U , there
exists a chronologically ordered sequence of item interactions, denoted as Su =
vu1 , . . . , v

u
|Su|. Each item v is characterized by a set of attributes A = 1, . . . , A.

Users may engage in up to K distinct behaviors, with each interaction in
the sequence corresponding to a specific behavior type. For example, in auction
systems, behaviors might include buying, bidding and navigate/click. Each in-
teraction in the sequence is also associated with contextual information, such as
the interaction time, denoted as tu1 , . . . , tu|Su|, and the behavior type, represented
as cu1 , . . . , c

u
|Su|.
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The primary objective is to predict the next item a user is likely to inter-
act with, focusing specifically on the main behavior. In this case, the buy/sale
behavior is considered is the target behavior. Other behaviors act as auxiliary
signals to provide a richer representation of user activity over time, enabling
more accurate modeling of user preferences.

3.2 Attribute and Context-Aware Multi-Behavior recommendation
(ACMB)

Inspired by the multi-behavior recommendation model HMAR [2], we adapt
a hierarchical attention mechanism to effectively model diverse user behaviors.
Figure 1 illustrates the architecture of the proposed model, which comprises three
main components: input encoding, hierarchical masked attention, and prediction
for calculating item scores.

Input Encoding In auction systems, items are unique since each is sold only
once, making it impractical for the model to rely on item IDs. Instead, each
item is represented by its attributes. The input, therefore, consists of two key
components; item attributes and interaction context (time and behavior). To
derive the latent representation of an item, we first process its attributes vector
vj . The attributes vector of each item in the input sequence are passed through
a fully connected layer to generate embeddings as:

v′j = vjWv + bv (1)

where Wv ∈ R|A|×d is the weight matrix, |A| is the number of items attributes,
and d is the items embedding dimension and bv is the bias term.

A fully connected layer is used for encoding the one-hot vector representing
the interaction behavior as follows:

c′j = cjWbeh + bbeh (2)

where Wbeh ∈ RK×dbeh is the weight matrix, K is the number of behaviors, dbeh
is the embedding dimension and bbeh is the bias term.

Next, items attributes embedding and behavior embeddings are concatenated
to form a combined representation qj . This combined representation is then
passed through another fully connected layer to capture a deeper encoding:

qj = concatcol
(
v′j , c

′
j

)
, gj = qjWq + bq (3)

where Wq ∈ R(d+dbeh)×d is the weight matrix, d is the layer embedding di-
mension, and bq is the bias term. For simplicity, we use the same dimension d
for all embedding layers.
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Attention within behavior Recent approaches often employ graph-based
models to capture multi-behavior information. However, this can come at the
cost of losing the sequential patterns inherent in the input data. To preserve the
chronological order of items while generating latent representations, we draw
inspiration from the model proposed in [2] and employ a hierarchical attention
mechanism on the input sequence.

The first attention block is designed to encode items associated with a spe-
cific behavior. To achieve this, we construct a mask Mu

b from the sequence of
items, filtering out items not corresponding to the aimed behavior b. The item
sequence embedding Gu := [g1, g2, ..., g|Su

t |] is then multiplied element-wise with
the behavior-specific mask Mu

b := [mb
1,m

b
2, ...,m

b
|Su

t |] as shown in Figure 1.
Ideally, the model employs one behavior encoder block per behavior, resulting

in K blocks where K is the number of behaviors. However, when the input
sequence includes a large number of behaviors, creating attention blocks for each
behavior can lead to excessive memory and computational overhead. To address
this, we combine relevant behaviors and process them together through shared
behavior attention blocks. The buy-related behaviors are processed through a
dedicated attention block, while bid-related behaviors are handled separately in
another attention block. Finally, a distinct attention block is assigned to click-
related behaviors, ensuring each behavior type is effectively modeled.

Once the input sequence is masked based on behavior type, the masked
latent embeddings are passed through a fully connected layer to produce Eu

b :=
{eb1, . . . , eb|Su

t |}, computed as follows:

ebj =
(
gj ⊙mb

j

)
We + be, We ∈ Rd×d, be ∈ Rd (4)

Here, ⊙ denotes element-wise multiplication, We is the weight matrix, and be is
the bias term.

The output embeddings Eu
b , are then fed into a multi-head self-attention

block. This block consists of a multi-head attention mechanism followed by a
feedforward layer, enabling the sequential encoding of items with the same be-
havior. The hierarchical attention mechanism ensures that behavior-specific pat-
terns are captured effectively while maintaining the temporal structure of the
input sequence.

Xu
b = SA(Eu

b ) = concatcol
(
Att(Eu

b WQb

h , Eu
b WKb

h , Eu
b WV b

h )
)
h=1:H

(5)

where WQb

h , WKb

h , WV b

h ∈ Rd× d
H represent the linear projection matrices of the

head at index h, and H is the number of heads. Xu
b represents the column-wise

concatenation of the attention heads.
Finally, we have the point-wise feed-forward layers to obtain the component’s

final output representations Fu
b ∈ R|Su

t |×d as follows:

Fu
b = FFN(Xu

b ) = concatrow
(
ReLU(Xu

b,jW
(1)b + b(1)

b

)W(2)b + b(2)
b
)
j=1:|Su

t |
(6)
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where W(1)b , W(2)b ∈ Rd×d are the weight matrices of the two feed-forward
layers, and b(1)

b

, b(2)
b ∈ Rd are their bias vectors. The initial embedding sequence

is added via a ReZero [1] residual connection to the behavior encoder output to
obtain as:

Lu
b = Fu

b + γ (Gu ⊙Mu
b ) (7)

where γ is a learnable weight initialized with zero to adjust the contribution of
(Gu ∗Mu

b ). The output is multiplied by the behavior mask again to mask the
positions of the other behaviors as follows:

Ou
b = Lu

b ⊙Mu
b (8)

We combine the output sequences of each behavior Ou
b := [ob1, o

b
2, ..., o

b
|Su

t |] by
summing them element-wise to generate the first stage multi-behavioral latent
sequence embeddings Ou as follows:

Ou =

NBlocks∑
b=0

Ou
b (9)

where NBlocks is the number of behavior specific attention blocks, Ou
b is the

output of the corresponding block.
As previously mentioned, the contextual component of the data consists of two el-
ements: interaction behavior and interaction time. Before applying the behavior-
specific attention block, we incorporate the behavior type due to its importance
in distinguishing between different behaviors at this stage. To model relationships
across the entire sequence and capture interactions between various behaviors,
we include time information to indicate the sequential order and provide addi-
tional contextual details. Specifically, we extract multiple time-related features
from the date, including year, month, day, week of the year, and day
of the year. These extracted features enrich the sequence representation by
providing temporal context.
The time features are encoded using a fully connected layer, producing embed-
dings that are concatenated with the output of the behavior-specific attention
layer. This combined representation is then processed through another fully con-
nected layer, as defined below:

t′j = tjWt + bt (10)

rj = LeakyReLu
(
concatcol

(
Oj , t

′
j

)
Wr + br

)
(11)

where Wt ∈ RT×dt is the weight matrix, T is the number of time extracted
details, dt is the embedding dimension and bt is the bias term. Wr ∈ R(d+dt)×d

is the weight matrix, d is the layer embedding dimension, and br is the bias term.
For consistency, we use the same embedding dimension d across all layers. Once
the combined representation is obtained, it is passed through the second part
of the hierarchical attention mechanism, which models the relationships across
different behaviors in the sequence.
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Attention across Behaviors Once the sequence comprising all behaviors is
constructed, denoted as Ru, the sequence encoder applies attention mechanisms
across all items in the sequence. This approach allows the model to capture
both intra- and inter-behavioral dependencies, producing a multi-behavior latent
representation for each item. The self-attention mechanism is defined as follows:

Ju = SA(Ru) = concatcol
(
Att(RuWQ

h ,R
uWK

h ,RuWV
h )

)
h=1:H

(12)

where WQ
h , WK

h , WV
h ∈ Rd× d

H represent the linear projection matrices of the
head at index h, and H is the number of heads. Au represents the column-wise
concatenation of the attention heads. Additionally, for the model stability, we
add a residual connection between sequence attention output Ju and sequence
items Gu:

Ju′ = Ju +Gu (13)

Finally, we have the point-wise feed-forward layers to obtain the component’s
output representations Zu ∈ R|Su

t |×d as follows:

Zu = FFN(Ju′) = concatrow
(
ReLU(Ju′W(1)Z + b(1)

Z

)W(2)Z + b(2)
Z
)
j=1:|Su

t |
(14)

where W(1)Z , W(2)Z ∈ Rd×d are the weight matrices of the two feed-forward
layers, and b(1)

Z

, b(2)
Z ∈ Rd are their bias vectors.

3.3 Model Prediction and Training protocol

For item ranking, we calculate the final score by taking the dot product of the last
item embedding z|Su

t | from the sequence encoder and the target item embedding
qo|Su

t+1|
as follows:

Ŷt+1 = σ(z|Su
t | · qo|Su

t+1|
) (15)

Where σ is a sigmoid function.
In multi-behavior datasets, interactions have varying importance for next-

item recommendation. To handle this, we introduce weighting factors αb in the
loss function, one for each behavior. The number and values of αb may differ
based on the dataset’s behavior count and their importance. Thus, our weighted
binary cross-entropy objective for multi-behavior recommendation is as follows:

Lrank = −
∑
Su∈S

|Su|∑
t=0

[αblog(Ŷ
O(+)

t ) + (log(1− Ŷ O(−)

t ))] (16)

where Ŷ O(+)

t are the output scores for the positive samples and Ŷ O(−)

t are the
output scores for the negative samples, S is the set of all sequences, αb indicate
the behaviors weights.
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Model Training Following the training protocols established by the SASRec
[8] and CARCA [11] models, we define a fixed sequence length L for the input
sequence. The input sequence is randomly selected [14] from the user’s entire
item sequence |Su

t |. Depending on the length of the user’s sequence, truncation or
padding is applied to ensure the sequence length matches L. The target positive
item sequence is constructed with the same fixed length L by shifting the input
sequence by one position. In contrast, the negative item sequence is generated
by randomly sampling L unseen items from the dataset.

3.4 Implementation Details

To deploy the training pipeline, we utilize the AWS Step Functions service for
seamless automation. The data on sales, dealers, and auxiliary behaviors is pulled
directly from AWS Athena for pre-processing, after which structured interaction
tuples and numerical features are formed. Afterwards, the training job is de-
ployed using the previously determined best hyperparameters and the model
is then saved on AWS S3. To ensure reliability, we include multiple validation
checks at each step of the pipeline. Figure 2 provides an overview of the entire
training pipeline.

Start

Query Athena

End

Gather Model Parameters

Get Training Information

Auxiliary
Behavior Sales Dealers

Start Inference

Create Training Job

Create Preprocess Job

Create Model

Fig. 2: Model Training Pipeline

Our proposed model is scheduled for deployment in the near future, leveraging
AWS SageMaker to precompute all dealer-vehicle scores, which will be stored in
Amazon S3 on a weekly basis. When a recommendation request is initiated from
the front end for a specific dealer, the API gateway will facilitate the retrieval
of the corresponding precomputed scores. Additionally, we intend to conduct a
comparative performance analysis between the newly developed ACMB model
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and the currently deployed CARCA-based model using A/B testing methodolo-
gies. Key performance indicators (KPIs) such as buy-through rate, bid-through
rate, and click-through rate will be systematically monitored and evaluated to
assess the efficacy of the models.

4 Experiments

In this section, we present the offline evaluation results of our model, including
ablation studies to assess the effectiveness of our approach and the importance
of individual model components. This analysis aims to address the following
research questions:

– RQ1: How does the ACMB model perform compared to attribute-aware
sequential recommendation models?

– RQ2: How do auxiliary behaviors impact the model’s performance?
– RQ3: How does each model component contribute to overall performance?
– RQ4: How do hyper-parameters influence the model performance?

4.1 Experimental Settings

Dataset The dataset represents a B2B setting where vehicles are sold to deal-
ers. Collected between January 1, 2016, and December 31, 2023, it includes data
from 5,916 users (dealers) and documents 1,224,364 sales interactions, each cor-
responding to a unique vehicle. Each vehicle is characterized by 109 distinct
features, such as model, brand, color, and gear type.

In addition to sales data, the dataset contains 4,949,049 bid interactions,
which serve as supplementary information for each user. As shown in Table 1,
the dataset also includes front-end interaction data collected between Decem-
ber 31 2022 and December 31, 2023 that captures various behaviors within the
framework. These behaviors include sale-dialog, which represents a dialog dis-
played before a sale is finalized, similar to the bid-dialog for bidding interactions.
The certificate behavior indicates that the user accessed detailed vehicle infor-
mation. Furthermore, bookmark behavior, denotes vehicles were saved by users
for future reference. Finally, navigate behavior, refers to click interactions on
specific vehicles.

All user and dealer data has been anonymized, ensuring confidentiality and
compliance with GDPR regulations.

4.2 Evaluation Protocol

We employ a leave-one-out evaluation strategy, where the model is trained and
validated using the full interaction sequence, except for the final interaction,
which is reserved for testing. To assess performance, we sample 2,000 negative
items (Ntest) from the same month as the corresponding positive item. Model ef-
fectiveness is measured using Hit Ratio (HR@N) and Normalized Discounted Cu-
mulative Gain (NDCG@N), with higher values indicating superior performance.
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Behavior Interactions date
Sale 1,224,362 01.01.2016 -31.12.2023Bid 4,949,049

Sale Dialog 171,612

31.12.2022 -31.12.2023
Bid Dialog 523,191
Certificate 1,213,960
Bookmark 450,186
Navigate 4,662,995∑

Sum 13,195,355 -
Table 1: Dataset statistics

To ensure statistical robustness, we report the mean and standard deviation
from three independent runs.

Method Model type HR@10 NDCG@10
Multi-behavior Sequential

MultiRec [12] ✓ ✗ 0.1329 ± 2.3e−3 0.0917 ± 4e−4

SASRec [8] ✗ ✓ 0.1556 ± 6e−4 0.0740 ± 3e−4

CARCA [11] ✗ ✓ 0.1808 ± 7e−4 0.0966 ± 1.1e−3

ProxyRCA [14] ✗ ✓ 0.2135 ± 9.2e−3 0.1168 ± 2.8e−3

ACMB (ours) ✓ ✓ 0.3304 ± 1.5e−3 0.1918 ± 3e−4

Improv.(%) 54.75% 64.21%

HR@25 NDCG@25 HR@50 NDCG@50
0.2153± 2.7e−3 0.0917 ± 8e−4 0.2941 ± 4.3e−3 0.1068 ± 1.4e−3

0.2751 ± 1.5e−3 0.1031 ± 4e−4 0.3750 ± 1.3e−3 0.1223 ± 1e−4

0.2892 ± 3.4e−3 0.1229 ± 4e−4 0.3742 ± 6.2e−3 0.1393 ± 3e−4

0.3396 ± 8e−4 0.1475 ± 6e−4 0.4477 ± 2.9e−3 0.1683 ± 1e−3

0.4742 ± 5.7e−3 0.2268 ± 1.1e−3 0.5857 ± 3.3e−3 0.2483 ± 9e−4

39.63% 53.76% 30.82% 47.53%

Table 2: Model performance and comparison against baselines on VWFS dataset.
The best results are reported in red and the second best in blue.

Baselines We evaluate our proposed method against several attribute-aware
sequential recommendation models that rely solely on item attributes, without
utilizing item IDs.

– MultiRec [12]: A multi-relational model designed specifically for unique
item recommendation in auction systems. It leverages item attributes and
bid interactions to enhance recommendation accuracy.

– SASRec [8]: A self-attention-based model that captures sequential patterns
in user interactions. In our setting, we modify the original model by replacing
item IDs with item attributes to adapt it for unique item recommendations.
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– CARCA [11]: A context-aware sequential recommendation model that em-
ploys cross-attention between user profiles and item representations for score
prediction. For this experiment, we remove item IDs from the model to make
it applicable to unique item settings.

– ProxyRCA [14]: A state-of-the-art attribute-aware model that introduces
proxy-based embeddings, enabling less frequent items to benefit from repre-
sentations of more frequently occurring ones. In our setup, we exclude item
IDs to align with the unique item recommendation scenario.

4.3 Results

Model performance against baselines The unique-item recommendation
task is fundamentally challenging, with limited prior research addressing this
problem. One notable work is MultiRec [12], a multi-task model that leverages
both sales and bid interactions. However, as shown in Table 2, our proposed
ACMB model significantly outperforms MultiRec by not only utilizing sales and
bid data but also incorporating auxiliary user behaviors through an efficient
hierarchical attention mechanism.

Additionally, we compare our model to SASRec [8], a highly effective se-
quential recommendation model capable of integrating item attributes instead
of item IDs. While SASRec focuses solely on the primary behavior, our ACMB
model outperforms SASRec, highlighting the importance of incorporating multi-
behavioral information to enhance user preference learning.

Furthermore, we evaluate our model against state-of-the-art attribute-aware
sequential models, including CARCA [11] and ProxyRCA [14]. While these mod-
els effectively leverage item attributes, they lack the ability to incorporate aux-
iliary behaviors. As demonstrated by our results, ACMB achieves an HR@10
of 0.3304, significantly outperforming CARCA (0.180) and ProxyRCA (0.213).
This clearly illustrates the effectiveness and superiority of our proposed model
in addressing the attribute- and context-aware multi-behavior recommendation
problem.

The effect of auxiliary behaviors on the model performance Auxiliary
behaviors provide valuable insights into user preferences; however, their contri-
bution to model performance varies. As shown in Table 3, certain behaviors, such
as sale dialog and bid dialog, have a negligible impact, with their effects falling
within the standard deviation of the model’s results. In contrast, behaviors like
bidding and navigation play a more significant role in enhancing performance.
This is further supported by their frequency, as bids and navigation interactions
are the most dominant behaviors, making them crucial for capturing user intent
and improving preference learning.

The effect of model components on the model performance Table 4
highlights the importance of including time information in the input sequence.
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Model HR@10
ACMB w/o Bids 0.3103

ACMB w/o Sale Dialog 0.3273
ACMB w/o Bid Dialog 0.3292
ACMB w/o Certificate 0.3231
ACMB w/o Bookmark 0.3167
ACMB w/o Navigate 0.3127

ACMB w/ Only Sale&Bid 0.2794
ACMB w/ Only Sale 0.2480

ACMB 0.3304
Table 3: Auxiliary behaviors effect on the model performance

When time information is excluded, the performance drops to 0.3167, underscor-
ing the critical role of temporal data in capturing interaction patterns. Addition-
ally, the model employs attention blocks to capture dependencies between items
within the same behavior. Removing these attention blocks leads to a notice-
able decline in performance, with the metric decreasing from 0.3304 to 0.3213.
This demonstrates the importance of modeling intra-behavior dependencies for
optimal performance.

Finally, we examine the effect of incorporating one-hot encoding of the be-
havior type as contextual information (BehCxt). While the impact of this com-
ponent is less pronounced compared to factors like time, it still results in a
relative performance drop of 1.8%. This indicates that while behavior type en-
coding contributes to the model’s performance, its influence is relatively minor
compared to other components.

Model HR@10
ACMB w/o Time 0.3167

ACMB w/o BehCxt 0.3243
ACMB w/o BehAtt 0.3213

ACMB 0.3304
Table 4: Model components effect on the model performance

The influence of hyper-parameters on the model performance Model
hyperparameters play a critical role in determining the performance of a ma-
chine learning model. In this work, we investigate the sensitivity of the model
to two key hyperparameters: sequence length and embedding size. As illustrated
in Figure 3, the sequence length significantly impacts model performance, espe-
cially when including several behaviors. Increasing the sequence length allows
the model to capture more historical information from the user’s behavior, lead-
ing to improved performance. However, this comes at a cost: longer sequences
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Fig. 3: Effect of sequence length on the HR@10 and NDCG@10

increase the computational complexity and resource requirements of the model.
On the other hand, the embedding size is another crucial hyperparameter, as
shown in Figure 4. In our dataset, each vehicle is represented by 109 distinct
features. A larger embedding size enables the model to better encode these fea-
tures, enhancing its ability to capture complex patterns. In our experiments, an
embedding size of 650 yielded the best results. However, reducing the embedding
size to 600 only slightly decreased performance, with the metric dropping from
0.3337 to 0.3275. This suggests that the model is relatively robust to moderate
changes in embedding size, allowing for some flexibility in tuning this parameter
to balance performance and computational efficiency.
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Fig. 4: Effect of embedding size on the HR@10 and NDCG@10
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5 Hyperparameters Settings

Our experiments were conducted on an AWS EC2 P3.8xlarge instance equipped
with an NVIDIA Tesla V100 GPU, an Intel Xeon E5 CPU, and 244 GB of RAM.
We implemented the models using TensorFlow3. For hyperparameter optimiza-
tion, we leveraged AWS Bayesian optimization across the following ranges: latent
embedding size [50–700], learning rate [0.000005–0.000025], maximum sequence
length [50–250], number of attention heads [1–3], number of blocks [1–3], and
dropout rate [0.2–0.6]. The best performance was achieved with a batch size
of 128, two attention blocks, and one attention head. The optimal embedding
dimension was 667, with a learning rate of 0.0000146, dropout rate of 0.11, and
a maximum sequence length of 194. We trained the model for 3,400 epochs.
Additionally, we performed a grid search to tune the αb parameter for differ-
ent behaviors within the range [0,1]. The optimal values were: 0.8 for sale/buy
behavior, 0.5 for sale dialog, 0.2 for bid and bid dialog, and 0.1 for certificate,
bookmark, and navigate behaviors. Finally, we used the Adam optimizer [9] for
model optimization.

6 Conclusion

In this work, we proposed an attribute- and context-aware multi-behavior
(ACMB) recommendation model designed specifically for unique item recom-
mendation in auction systems. Unlike traditional approaches that rely on item
IDs, our model leverages item attributes for representation learning. The ACMB
model employs a hierarchical attention mechanism, first capturing dependencies
among items within the same behavior group, followed by cross-behavior atten-
tion to model sequential patterns and auxiliary user behaviors. This approach
enhances user preference learning by incorporating richer behavioral context. Ex-
periments on the real-world VWFS dataset demonstrate the superiority of our
model compared to state-of-the-art attribute-aware sequential recommendation
methods.
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