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Abstract. Laser processing is a rapid, versatile, and low-cost technology
to print images on large surfaces. When applied to very thin films em-
bedded with disordered metallic nanoparticles, known as quasi-random
plasmonic metasurfaces, it generates colors that vary with the observa-
tion mode, making it valuable for visual security applications. Predicting
these colors in different modes from the knowledge of laser processing
parameters and the initial state of the metasurface can accelerate the
industrialization process. However, there is no general physical model
able to make this prediction accurately in various modes. In order to ad-
dress this issue, this paper proposes a data-driven approach for learning
deep models on experimental data able to predict the colors observed in
different environments for a large range of laser processing parameters.
We leverage a framework that learns jointly a shared latent space for
multiple environments together with a contextual representation specific
to each. This contextual representation is generated by an hypernetwork
conditioned on an interpretable context vector. This context vector can
be learned from few data allowing fast adaptation to new environments.
This approach demonstrates that a single model can learn to predict a
large range of colors across different environments. Its effectiveness is
demonstrated through its ability to rapidly adapt to new scenarios with
minimal data and to serve as an improved weight initializer for fine-
tuning when larger datasets are available. Source code and datasets are
available on Gitlab 4.

Keywords: Deep Learning · Hypernetwork · Domain Adaptation · Nanoplas-
monic · Color science.

1 Introduction

Metasurfaces are ultrathin optical surfaces made of periodic metallic or dielec-
tric nanostructures that strongly interact with light, and have found applica-
4 https://gitlab.univ-st-etienne.fr/gt101872/ECML25-Hypernetwork-

ColorPrediction-metasurface
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tions such as nano-antennas, sensors or optical filters [3,4,25]. Introducing dif-
ferent types of disorder into optical metasurfaces can enhance their performance
or create unique optical properties [14]. The use of lasers to control the opto-
geometrical properties of random optical metasurfaces provides the flexibility to
shape their optical properties at the micrometer scale over large areas in a rapid
process [27]. Laser processing is mainly used on plasmonic metasurfaces since
metallic nanostructures can be reshaped and reorganized through photo-induced
physical and chemical mechanisms [17,19]. Laser-induced self-organization mech-
anisms can also introduce order in initially random distribution of metallic nanos-
tructures as demonstrated with continuous-wave [6,15], and femtosecond lasers
[16]. The resulting quasi-random plasmonic metasurfaces feature dichroic colors
that have been recently used to create multiplexed images observable under white
light [7]. Image multiplexing is based on the ability to create sets of metasurfaces
that show the same colors in some observation modes and different colors in oth-
ers, and to organize these metasurfaces appropriately on the surface to display
different images in the different observation modes. This laser-induced printing
technology has great promise in visual security applications for the protection
of secure documents from counterfeiting [5].
The industrial application of this technology requires the ability to reproduce
on different substrates the laser-induced colors observed in different modes with
an accuracy that is below the smallest color difference perceived by the human
eye. Since the laser-induced colors depend on the initial state of the random
plasmonic metasurface, and since this state may vary slightly over time due to
uncontrolled variations in the fabrication process, it is useful to predict accu-
rately the colors that can be produced on a given sample from a limited number
of measurements. Unfortunately, due to the complex physical and chemical pro-
cesses that occur in the metasurface during laser processing, physical models do
not precisely predict the morphological transformations of the metasurface and
thus the colors it may ultimately display in different observation modes.

One solution is to consider data driven models. Deep learning-based methods
have been successfully used in nanophotonics to infer possible designs from given
optical responses [11,12,18,21,22,30] or to predict optical properties [1,8,10,26].
In the context of color prediction, one solution has been developed in [20] with a
deep learning model for predicting color spectra from laser parameters. However,
this model is not able to generalize to new environment such as novel initial state
of the substrate, requiring to learn a specific model for each setting.

In order to overcome this drawback, we propose in this paper a new frame-
work for efficient prediction of laser-induced colors on plasmonic metasurfaces.
Our contribution is three-fold. We first propose to learn a deep learning model
that predicts the colors directly in the CIE LAB color space from laser pa-
rameters. This model is used to provide a shared latent space among training
environments. Second, we use a contextual hypernetwork to adapt the shared
representation to new environments. Inspired by previous works on adaptive dy-
namics [13], this hypernetwork is parametrized by a context vector modeling the
peculiarities of a particular environment and that can be learned efficiently from
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Fig. 1: Color production rationale. (a) Colors are produced by scanning a laser
over the thin film. (b) Processed surface are observed in different modes such
as transmission (1), specular reflection (2) or diffraction (3) displaying different
ranges of colors.

few data. Finally, we provide an experimental study on real data showing the
interest of the proposed setup for multi-environment color prediction.

The paper is organized as follows. The problem definition and the related
work are introduced in Section 2. We present in Section 3 our hypernetwork-
based deep learning architecture. Section 4 is dedicated to our experimental
study. We conclude in Section 5.

2 Problem Definition and Related Work

2.1 Color Production Rationale

Quasi-random plasmonic metasurfaces of square shape and micrometer area are
created by laser processing of a thin layer of TiO2 containing silver nanoparticles
[5]. Each square is laser printed with a specific set of laser paremeters and the
color of the squares is measured in different observation modes (see Fig. 1).
Production rationale is detailled in Appendix Sec.2.

2.2 Color Prediction Problem

The color prediction problem consists in learning a model capable of mapping
the produced color of a quasi random metasurface from d laser processing pa-
rameters. Colors are computed, with respect to the D65 illuminant, from the
measured and normalized spectra in several observation modes which are ex-
pressed in CIE LAB space, a 3-dimensional perceptually uniform color space
(See Appendix Sec.1 for further details on color theory and color spaces). The
learning problem can then be formalized as follows. Let X ⊂ Rd,Y ⊆ R3 be
respectively the space of laser processing parameters and the color coefficients
in the CIE LAB space. We denote by De a dataset of colors from X ×Y that can
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Fig. 2: Evolution of measured color shifts with ∆E94 for similar but different
pair of colors modeled by their LAB coordinates, illustrating the necessity to be
close to 1 to minimize perceived color differences (best viewed in color).

be obtained from a particular observation environment e. We denote by E , the
set of all possible environments, each environment corresponding to a particular
experimental configuration where the colors are measured.

The objective is to learn a neural network model fθ : X → Y, parameterized
by a weight vector θ. Given a dataset of N elements De = {(xe,i, ye,i)}Ni=1, the
loss function is defined with respect to the ∆E94 measure, a weighted RMSE
loss allowing to measure human perceived color differences.

L(θ,De) =

N∑
i=1

∆E94 (ye,i, fθ(xe,i)) . (1)

Illustrated in Fig.2, the goal is to learn a model able to make target color
prediction with a small ∆E94. A value below or at least close to 1 corresponds
to situations where the colors are indistinguishable by a human eye.

2.3 Related Work

Deep Learning is widely used to solve design and properties prediction problem
in nanophotonics applications, mainly from simulated datasets. As highlighted
in [2] in the context of plasmonic color prediction, learning from experimental
data is difficult. Data acquisition is by nature costly and subject to experimental
noise which may lead to small datasets of low quality. In this context, transfer
learning has already been used for simulated optical properties [24] or inverse de-
sign prediction [32]. However, there is no widely known work in this community
considering a learning process based entirely on experimental data and transfer
learning. By the lack of simulation model for our random plasmonic metasur-
faces, we aim at solving a fully experimental data-driven transfer problem.

In domain adaptation, feature-based methods such as DANN [28] or DA-
DETR [31], aims at learning robust intermediate representations across different
domains or tasks to improve transfer accuracy. While popular, these approaches
are not directly adapted to our setting since we have a small number of input
features that remain the same across the different environments. Instance-based
adaptation methods such as WANN [23] learns a reweighting model to correct
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the co-variate shift between domains or samples but this assumption is not di-
rectly adapted to our setting. Multi-task learning has the objective to deal with
multiple tasks but adaptation to new tasks exists essentially for classification
[29]. Meta-learning approaches such as [9], which aims to adapt to a new do-
main with few (gradient) adaptation steps, are very appealing in the context of
low data regimes. Recently, CoDA [13] proposed a generalization of these ap-
proaches with the use of an hypernetwork allowing efficient adaptation with few
samples to new domains in the context of dynamical models. In this paper, our
objective is to adapt this strategy to our real problem of color prediction across
different environments.

3 Hypernetwork for Contextual Adaptation

This section introduces the adaptation rule used to train our hypernetwork and
how parameters are updated in the training and adaptation phase.

3.1 Architecture and Adaptation Principles

Our model follows a similar strategy as CoDA [13]. The principle is to allow the
color prediction model fθ to adapt to colors induced in different environments.
The idea is to condition the model on observed samples from environment De.
This conditioning is done by using a network Aϑ parametrized by a set ϑ con-
taining weights variation for fθe to adapt to an environment e with respect to:

θe = Aϑ(De) = θs + δθe, ϑ = {θs, {δθe}e∈E}, (2)

where θs ∈ Rdθ is a vector of shared parameters and δθe ∈ Rdθ corresponds to
a vector of parameters specific to an environment De. The set ϑ represents the
parameters to be learned by the network. The environment-specific parameters
will be obtained by a contextual hypernetwork introduced in the next subsection.

3.2 Contextual Hypernetwork

The Hypernetwork principle is illustrated in Fig.3. The idea is to estimate δθe

from the linear decoding of a context vector specific to an environment De and
denoted κe ∈ Rdκ . Let W ∈ Rdθ×dκ the matrix parameter of the linear decoder,
the adaptation problem can be rewritten as:

Aϑ(De) = θs +Wκe, ϑ = {W, θs, {κe}e∈E}. (3)

We consider dκ ≪ dθ. This allows us to learn a low-dimensional subspace
of specific parameters which is better suited to limit overfitting, in particular
in low data regimes. From an adaptation point of view, considering that the
shared parameters θs and W have been learned, adapting to a new environment
e implies to learn only κe which represents very few parameters to infer to adapt
the color prediction model to this environment.
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Fig. 3: Principle of the approach. During the training phase (a) the model learns
parameters from all the training environments. In the adaptation phase, the
model can explore the induced latent space freely to find the best context vector
coordinates to adapt to a new task. Adapting to a given task is always obtained
by combining the shared parameters between all the environments with the
addition of a specific variation conditioned by the context vector κe (c).

3.3 Learning and Adaptation Loops

In this part, we introduce two important aspects of the method: the training
phase and the adaptation one.

From given training samples of a set of training environments Etr ⊆ E , the
training phase aims at learning the shared initial weights, the shared decoder and
the context vectors according to the following optimization problem in Eq. 4:

min
θs,W,{κe}e∈Etr

∑
e∈Etr

(L(θs +Wκe,De) + λκ||κe||22 + λW

dθ∑
i=1

||Wi,:||2 (4)

with an L2 regularization on the context vectors and a mixed L2,1 regularization
on the W matrix to induce sparsity, λκ and λW serve as hyperparameters.

Once the model is trained, θs and W are fixed, so that only the context
vectors κe of a set of new environments Eadapt ⊆ E need to be learned during
the adaptation phase with Eq. 5:

min
{κe}e∈Eadapt

∑
e∈Eadapt

L(θs +Wκe,De). (5)

Where L refers to the ∆E94 introduced in Eq. 1 The pseudo code Alg. 1
shows how the model is trained. Note that in practice we initialize the shared
weights θs by optimizing the loss

∑
e∈Etr L(θ

s,De) leading to the initialization
θinit which can be seen as a pre-trained network without contextual information.

4 Experiments

This section is devoted to our experimental study. We first introduce the used
datasets, how they are pre-processed and prepared for the different learning ex-
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Algorithm 1 Model training and adaption pseudo-codes
Training:
1: Input: Etr ⊂ E, {Detr}etr∈Etr
2: ϑ = {W, θs, {κetr}etr∈Etr} where W ∈ Rdθ×dκ , θs ∈ Rdθ

3: Randomly initialize W , and set ∀etr ∈ Etr, κetr = 0 ∈ Rdκ , θs = θinit ∈ Rdθ

4: while stopping criterion is not reached do
5: ϑ← ϑ− η∇ϑ

(∑
etr∈Etr

(
L(θs + Wκetr ,Detr ) + λκ||κetr ||

2
2 + λW

∑dθ
i=1 ||Wi,:||2

))
6: end while
Adaptation on a new environment:
1: Input: eadapt ∈ Eadapt ⊂ E; Deadapt

2: Trained W ∈ Rdθ×dκ , θs ∈ Rdθ and κeadapt = 0 ∈ Rdκ

3: while stopping criterion is not reached do
4: κeadapt ← κeadapt − η∇κeadapt

(
L(θs + Wκeadapt ,Deadapt )

)
5: end while

periments. Then, we present our learning setup before presenting the results,
which are then analyzed both quantitatively and qualitatively. Finaly, we pro-
pose an ablation study and a context size study to substantiate our parameters
selection. Note that the code and the dataset are available as supplementary
material and on Gitlab .

4.1 Dataset

We use the dataset presented in [20] that contains a set of real colors measure-
ments obtained from the principle introduced in Section 2.1. Among the existing
observation modes, we consider two modes presented in Fig.1: the unpolarized
transmission (Tunpol) and the Backside Reflection (BR). The data are obtained
by varying 5 laser parameters: the laser power, the laser repetition rate (frep),
the laser scan speed, the interline distance between laser lines and the laser
polarization5 state. Both datasets contain 9600 samples with the exact same
laser parameters linked to their respective color L*a*b* coefficients. Additional
information are given in Appendix Sec.2.

We define different sub-environments of observation according to the laser
polarization state parameter which corresponds to 4 possible laser polarization
angles: 0, 30, 60 and 90 degrees. Then, the laser prediction consists in predicting
the colors in the CIE LAB space according to the other 4 laser parameters
across the different laser polarization environments. For each of the two datasets,
we define 4 specific environment subsets: D{Tunpol,BR}{0,30,60,90} , each of them
containing 2400 samples. As illustrated in Fig.4, the color shifts between different
subsets is different enough to require an adaptation, we can note that the BR
mode is more challenging than the Tunpol one.

To minimize the influence of the experimental noise during the learning pro-
cess, a two-step pre-processing method is applied on the L*a*b*/scan-speed

5 Note that the laser polarization used to process the metasurface should not be con-
fused with unpolarized transmission which refers to the non polarization of the illu-
minant used to acquire the dataset.

https://gitlab.univ-st-etienne.fr/gt101872/ECML25-Hypernetwork-ColorPrediction-metasurface
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Fig. 4: Mean color shifts and their respective standard deviation between each
sub-dataset in each observation mode with respect to the laser parameters. A
path (i) indicates the average ∆E94 between the colors obtained with respect
to the two laser polarization angles linked by the path, for each of the two
observation modes. For example (2) compares the colors between the 30◦ and
60◦ polarization angles for the same laser parameters.

(a) (b)

Fig. 5: Evolution of color coefficients over Scan speed (a) and Power (b). Chroma
is defined as C =

√
a∗2 + b∗2.

correlation curves. A Hampel filter (Alg.2) removes outliers and a polynomial
filter (Alg. 3) enforces smoothness to color coefficients according to their laser
processing parameters. Illustrated in Fig.5, outliers within correlation curves are
removed while preserving the natural evolution of the colors. Laser processing
parameters are minmax-normalized (with scan-speed log-normalized) and the
color coefficients are normalized according to the defined bounds of each chan-
nel with L∗ ∈ [0, 100] and a∗, b∗ ∈ [-128, 128] allowing adaption on partially
known environments. Model learning is done by a train/validation/test split fol-
lowing a 80/10/10 ratio for each specific environment dataset. Splitting is done
at the laser parameters level ensuring that the same parameters appear in the
same split for each environment. Each experiment is repeated 4 times.

4.2 Experimental Setup

We present in this section the different learning setups considered in our study.
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Adaptation setup. Given one observation mode, we consider the 4 settings where
three of the four datasets are given as training environments and the last one is con-
sidered for the adaptation phase corresponding to the target environment.

Base-architecture. The architecture of our color prediction model corresponds
to a 8 layer feed forward neural networks with 128 neurons on each layer. The size of
the context vector is fixed to 3.

Pre-training. We first begin to pre-train the shared parameters θs on a sample
where we associate to each laser parameters the mean of the colors of the 3 datasets
used in training6. Training is achieved over 800 epochs and a batch size of 64, using an
Adam optimizer with a step scheduler after 300 epochs and a learning rate of 0.0015.

Hypernetwork training and adaptation (Hnet). For the training phase, θs is
initialized with pre-trained weights mentioned above. The hypernetwork parameters
and context vectors are then adjusted with the mean response of the three datasets
and then frozen7. The training uses the same learning parameters as pre-training with
λκ = 1e-3 and λW = 1e-6 for the regularization hyperparameters.
Adaptation is performed with a small data regime on the adaptation dataset with in-
creasing data size drawn from its associated training sample: [5,10,20,40,80,160,320],
these include laser parameters already seen in training phase by construction. Here, in
addition to the test error that measures the generalization over unseen laser parameters
during training, we also measure the error on half of the training sample of the adapta-
tion environment that is not used during adaptation to measure the generalization to
laser parameters unseen during adaptation but considered during training. Adaption
is made on 100 epochs using Adam with no scheduling and a learning rate of 0.003.

0-shot and Fine-Tuning (0-shot, FT). 0-shot consists in evaluating each pre-
trained model without updating any weights. We also perform a fine-tuning on all the
models parameters for 500 epochs using Adam and step scheduling after 300 epochs.
We use the same increasing data as for the adaptation phase of the hypernetwork.

Hypernetwork adaptation and Fine-tuning (HnetFT). Models obtained after
the adaptation phase of the hypernetwork are also fine-tuned following the aforemen-
tioned protocol using exactly the same datafold as in adaption. Epochs are reduced to
400 with scheduling starting at 200 to align with fine-tuning tasks.

Training from target with low data (Target). A model is trained using only
the data available in the adaptation phase with 40 and 320 samples, following the
pre-training learning setup.

Instance based WANN (WANN). An adaptation is performed using the WANN
model [23] and is tested using 40 and 320 samples from the target environment of the
adaptation phase. The weighted network used is a 3 layer network with 64 neurons
each using ReLU activation. Learning parameters are the same as in fine-tuning.

Metrics. To monitor the performance of the model in each adaptation scenario
three metrics are considered: the accuracy defined as the percentage of color predictions
that have a ∆E94 below to 1.5 with respect to the ground truth, the average ∆E94
mean values over the test sample and the associated ∆E94 standard deviation. Results
are averaged on the 4 repetitions.

6 On Tunpol dataset, using only ∆E94 could occassionaly make the model diverging.
As a workaround model’s parameters are updated with MSE during the first epoch
and the rest of the training is done with ∆E94.

7 We have noticed nevertheless that it is more efficient to freeze the shared weights after
the pre-training than learning them together with the other two sets of parameters.
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4.3 Unpolarized Transmission

Results comparing FT models and Hnet models in Tunpol are displayed in Fig.6 and
7. In the very low data regimes, the Hnet based models are able to provide the best or
a competitive performance. Fine-tuning the different models improves the results when
the number of target data increases. The HnetFT model provides always for the best
result for all data sizes. It must be noticed that using the Hnet model only reaches a
plateau justifying the need for a subsequent model fine-tuning, but we can notice that
the Hnet models provide a relevant initialization for fine-tuning. Generalization to
unseen laser parameters during training is rather good for all models. Tab.1 provides
numerical values on two problems for fixed target learning data sizes. The HnetFT
models lead to the best accuracy with a variance reduction trend in terms of ∆E94.
The evolution of the mean ∆E94 in validation and test shown in Fig.8 highlights a
reduction of overfitting for Hnet and HnetFT compared to FT making them more
invariant to the used data-folds. Finally, the performance decrease between the best
model with 320 data folds and the fully train one (Full results in Appendix Sec.3) is of
73% for 0◦ and 60% for 60◦.

(a) (b)

Fig. 6: Transfer results in Tunpol for 0◦ and 30◦ laser polarization states. Smooth
bars correspond to results on test samples, hatched ones to unseen laser param-
eters during adaptation phase.

4.4 Backside Reflection

Results comparing FT models and Hnet models in BR are displayed in Fig.9 and 10.
The same observations made for Tunpol can be made for BR, i.e. HnetFT always
provides the best adaption model. Numerical results in Tab.2 confirm that HnetFT
leads to best accuracy with better variance. Test and validation curves in Fig.11 show
the same benefits as depicted in Tunpol. The performance decrease between the best
model with 320 data folds and the fully train one is similar to Tunpol with 73% for 0◦
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(a) (b)

Fig. 7: Transfer results in Tunpol for 60◦ and 90◦ laser polarization states. laser
polarization angles. Smooth bars with thick edge-lines correspond to results on
test samples, hatched with thin lines ones to unseen laser parameters during
adaptation phase.

To 0◦ To 60◦

Exp Name ∆E94 mean ∆E94 std Accuracy (%) ∆E94 mean ∆E94 std Accuracy (%)
0-shot 1.30±0.03 0.74±0.04 69.90±1.42 0.98±0.04 0.79±0.013 84.69±1.33

Target-320 0.86±0.07 0.83±0.19 56.98±3.23 0.92±0.07 0.85±0.12 71.09±3.78
FT-320 0.57± 0.03 0.52±0.12 95.28±1.86 0.57±0.05 0.47±0.08 95.21±2.12

Hnet-320 1.23±0.04 0.75±0.08 73.61±2.27 0.80±0.02 0.57±0.03 89.34±0.55
HnetFT-320 0.55±0.05 0.45±0.03 96.04±0.90 0.56±0.03 0.45±0.07 95.76±1.33
WANN-320 1.26±0.03 0.71±0.05 71.66±2.52 1.05±0.03 0.85±0.10 82.93±1.33
Target-40 1.98±0.10 1.57±0.19 49.01±6.05 2.08±0.27 1.64±0.32 46.46±5.97

FT-40 0.95±0.06 0.78±0.12 85.00±2.69 0.81±0.05 0.47±0.08 89.69±2.42
Hnet-40 1.24±0.04 0.76±0.09 73.39±2.27 0.82±0.02 0.58±0.03 89.30±0.96

HnetFT-40 0.93±0.09 0.73±0.06 85.44±2.51 0.79±0.05 0.58±0.07 90.48±2.32
WANN-40 1.27±0.03 0.71±0.05 71.67±2.57 1.05±0.03 0.85±0.10 82.93±1.50

Table 1: Test results of different models in Tunpol for adaptation to 0◦ and 60◦

degrees environments. Evaluation is done between Hnet and the finetuned pre-
trained models. WANN uses the weights resulting to the best 0-shot adaptation.

and 54% for 60◦(Full results in Appendix Sec.3). The results are nevertheless less good
than the ones obtained in transmission confirming the difficulty of the task.

4.5 Qualitative Analysis on the learned Environments

In this section, we provide a qualitative analysis of the context vectors learned with
Hnet models by displaying their projection in 2D in Fig.12 and Fig.13. The heatmap
indicates the adaptation error in terms of ∆E94 in the considered space. For each
adaptation task, even in the smallest data regime, the learned context vector is close
to the one corresponding to the best ∆E94 (green diamond). As the data quantity
increases, context vectors get closer to the optimal one while becoming less and less
scattered across the latent space. Two behaviors can be identified: one where the op-
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(a) Transfer to 0◦ (b) Transfer to 60◦

Fig. 8: Evolution of ∆E94 in test and validation in Tunpol every 100 epochs.
Hnet epochs are extended up to 300. More results in Appendix Sec.3.

To 0◦ To 60◦

Exp Name ∆E94 mean ∆E94 std Accuracy (%) ∆E94 mean ∆E94 std Accuracy (%)
0-shot 3.00±0.19 1.81±0.11 22.29±2.42 2.00±0.09 1.18±0.04 38.12±5.72

Target-320 1.68±0.18 1.30±0.12 56.98±3.23 1.60±0.18 1.30±0.12 60.21±2.47
FT-320 1.22±0.04 0.87±0.07 72.19±1.66 1.15±0.04 0.84±0.08 75.87±2.93

Hnet-320 3.00±0.18 1.79±0.10 21.88±2.70 1.78±0.02 1.06±0.05 47.01±1.47
HnetFT-320 1.21±0.06 0.86±0.06 74.44±3.53 1.13±0.04 0.84±0.10 76.32±2.78
WANN-320 3.09±0.13 1.86±0.13 19.60±2.58 2.02±0.03 1.32±0.08 38.75±1.78
Target-40 6.23±1.03 4.13±0.92 8.19±2.45 5.88±0.65 3.73±0.44 5.65±2.71

FT-40 2.14±0.13 1.38±0.14 39.08±3.98 1.78±0.09 1.08±0.09 48.08±4.53
Hnet-40 3.05±0.17 1.79±0.12 20.79±3.11 1.82±0.06 1.07±0.05 45.35±3.02

HnetFT-40 2.08±0.14 1.35±0.15 40.76±4.41 1.65±0.09 1.01±0.09 52.71±4.40
WANN-40 3.10±0.13 1.87±0.13 18.75±2.95 2.03±0.03 1.32±0.09 37.92±2.54

Table 2: Test results for different model in BR for adaptation to 0◦ and 60◦

polarization states. Evaluation is done between Hnet and the finetuned pre-
trained models. WANN uses the weights resulting to the best 0-shot adaptation.

timum is between two training environments as in Fig.12b or Fig.13b, and one where
the optimum is close to one training environment such as in Fig.12a or in Fig.13a.
These behaviors are directly related to the proximity of the training environments to
the target ones. For example in Tunpol from Fig.6, when transferring to 0◦ the best
model performs closely to the fine-tuned 30◦ model and this is what is found in Fig.12a,
while the reverse is not true for adaptation to 30◦(See Appendix Sec.4.). This shows
that learned context vectors can be interpreted to give some insights on the closeness
of different environments. Predicted colors are also closer to the expected color varia-
tions using Hnet as seen in Fig.14a and b for low data regime adaptation. With only
five datapoints, Hnet has already reproduced some of the mapping compared to the
Finetuned model. In BR, 0-shot delivers better performance which is consistent with
previous numerical results. This highlights the capability of the model to quickly match
new color trends.

4.6 Ablation Studies

The study is performed to highlight the impact of the introduced regularization and
pre-training on the adaptation quality. The adaption task used is toward 60◦ in Tunpol
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(a) (b)

Fig. 9: Transfer results in BR for 0◦ and 30◦ laser polarization angles. laser
polarization angles. Smooth bars with thick edge-lines correspond to results on
test samples, hatched with thin lines ones to unseen laser parameters during
adaptation phase.

(a) (b)

Fig. 10: Transfer results in BR for 60◦ and 90◦ laser polarization angles. laser
polarization angles. Smooth bars with thick edge-lines correspond to results on
test samples, hatched with thin lines ones to unseen laser parameters during
adaptation phase.

and BR. Evaluation is done on Hnet with datafolds of size 320. Results are reported
in Tab.3. If it is clear to see the benefits of pretraining and freezing on the adapta-
tion results, it is hardly the case for the different regularizations. However, adding a
regularization during the training helps to reduce the variance of each metrics, so that
adaptation becomes more invariant to the datasets used to generate the latent space.
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(a) Transfer to 0◦ (b) Transfer to 60◦

Fig. 11: Evolution of ∆E94 in test and validation in BR every 100 epochs. Hnet
epochs are extended up to 300. More results in Appendix Sec.3.

(a) Transfer to 0◦ (b) Transfer to 60◦

Fig. 12: Shared latent space visualization in Tunpol using PCA projection. More
results in Appendix Sec.4.

It is chosen to apply a regularization on both decoder and context vector but a more
in-depth hyperparameters tuning could enhance adaptation quality.

4.7 Context Vectors Size Study

We use the same learning condition as for the ablation study on frozen pretrained
weights. Context size varies from 1 to 4 and results are showed in Tab.4. As performance
increases an optimum is found at size 3 with less variance on the metrics compared to
size 2 and 4.

5 Conclusion

This work introduces adaptative color prediction models for nanophotonics applica-
tions based on a contextual hypernetwork. In a real-world experimental case scenario,
the proposed model demonstrates its ability to adapt quickly and automatically to un-
seen environments in low data regimes while preventing strong overfitting. Our study
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(a) Transfer to 0◦ (b) Transfer to 60◦

Fig. 13: Shared latent space visualization in BR using PCA projection. More
results in Appendix Sec.4.

(a)

(b)

Fig. 14: Tunpol (a) and BR (b) colors comparison between real data and pre-
dicted ones given at 60◦ for repetition rate of 300kHz and interline distance of
2µm. More results in Appendix Sec.4.

indicates that the model needs to be refined by a fine-tuning procedure but its quality
is good enough to ensure a good adaptation. The visualization of the context vectors
can be interpreted to identify similar environments which could help the practitioner
to identify close tasks. In low data-regime, the model matches more closely to ground
truth’s color variations than the other methods. Overall, this work provides a general
framework for color adaptation that can offer many application perspectives for learn-
ing adaptive models. Future work aims at integrating a priori physical knowledge to
help the model to adapt faster to a wider range of environments.
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Tunpol BR
Exp Name ∆E94 mean ∆E94 std Accuracy (%) ∆E94 mean ∆E94 std Accuracy (%)

no-pretraining
no reg 7.88±0.23 5.18±0.37 3.44±2.32 8.04±3.40 4.20±1.31 4.20±3.66

Only λW 10.24±7.69 3.30±2.18 10.31±12.42 8.55±1.52 3.98±1.52 5.07±7.11
Only λκ 11.58±6.69 10.66±1.66 1.94±1.54 11.74±8.02 3.19±1.67 7.78±12.33
λW andλκ 9.53±7.62 2.93±2.16 19.62±31.75 11.00±1.03 4.98±0.33 0.83±0.59

pre-training
no reg 1.16±0.20 0.77±0.17 75.73±9.70 1.84±0.06 1.02±0.08 43.06±4.18

Only λW 3.17±2.91 2.26±2.20 47.64±30.29 1.84±0.03 1.01±0.06 43.06±2.49
Only λκ 1.55±0.66 1.03±0.35 64.69±20.59 1.91±0.05 1.07±0.10 41.08±1.66
λW andλκ 1.70±0.24 1.00±0.07 50.00±11.86 1.82±0.04 1.02±0.06 44.51±1.34

frozen-pretraining
no reg 0.81±0.01 0.57±0.17 90.21±0.52 1.74±0.02 1.04±0.05 49.41±3.47

Only λW 0.80±0.02 0.57±0.03 90.07±0.99 1.77±0.04 1.04±0.08 46.42±2.49
Only λκ 0.79±0.01 0.55±0.02 91.18±0.77 1.75±0.01 1.03±0.06 48.12±2.33
λW andλκ 0.80±0.02 0.57±0.03 89.34±0.55 1.78±0.02 1.06±0.05 47.01±1.47

Table 3: Test results for ablation study.

Tunpol BR
Exp Name ∆E94 mean ∆E94 std Accuracy (%) ∆E94 mean ∆E94 std Accuracy (%)

context size : 1 0.99±0.04 0.61±0.05 83.82±2.80 1.78±0.04 1.02±0.04 45.17±3.26
context size : 2 0.80±0.02 0.56±0.02 90.42±0.62 1.77±0.03 1.07±0.06 47.71±2.68
context size : 3 0.80±0.02 0.57±0.03 89.34±0.55 1.78±0.02 1.06±0.05 47.01±1.47
context size : 4 0.80±0.02 0.57±0.03 90.17±1.48 1.75±0.03 1.05±0.07 47.64±3.06

Table 4: Test results for context Vector Size study.

Algorithm 2 Hampel filter algorithm
X, k refer respectively to a 1D or 2D signal and the sliding window size.

1: Input: X = {xi}i∈{0,...,N},N∈N , k ∈ N∗

2: for xi ∈ X do ▷ Boundary conditions are taken into account for i > N + k and i < k + 1
3: m ←median(xi−k, ..., xi, ..., xi+k)
4: σ ← κmedian(|xi−k −m|, ..., |xi −m|, ..., |xi+k −m|) ▷ here σ

κ refers to the median
absolute deviation and κ ≈ 1.4826

5: if |xi −m| > nσ then xi ← m endif
6: end for

Algorithm 3 Savitsky-Golay filter algorithmX, k, P refer respectively to a 1D or 2D signal, the
sliding window size and the maximum polynomial order.

1: Input: X = {xi}i∈{0,...,N},N∈N , (k, P ) ∈ N∗2

2: ŷ ← [ ]
3: for xi ∈ X do
4: y ←

∑P
p=0 αpx

p

5: Minimize
∑k

i=−k

(
yk+i −

∑P
p=1 αpx

p
k+1

)2

6: ŷk ←
∑P

p=0 αpx
p
k

7: end for

Impact Statement Our work focuses on a machine learning model for the prediction
of laser-induced colors in nanophotonics. This work is essentially an applicative work
for an engineering task. There are many potential consequences of using our work on
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