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Abstract. With the popularity of social media, an increasing number
of users are joining group activities on online social platforms. This elic-
its the requirement of group identification (GI), which is to recommend
groups to users. We reveal that users are influenced by both group-level
and item-level interests, and these dual-level interests have a collabo-
rative evolution relationship: joining a group expands the user’s item
interests, further prompting the user to join new groups. Ultimately, the
two interests tend to align dynamically. However, existing GI methods
fail to fully model this collaborative evolution relationship, ignoring the
enhancement of group-level interests on item-level interests, and suffering
from false-negative samples when aligning cross-level interests. In order
to fully model the collaborative evolution relationship between dual-level
user interests, we propose CI4GI, a Collaborative Interest-aware model
for Group Identification. Specifically, we design an interest enhancement
strategy that identifies additional interests of users from the items inter-
acted with by the groups they have joined as a supplement to item-level
interests. In addition, we adopt the distance between interest distribu-
tions of two users to optimize the identification of negative samples for a
user, mitigating the interference of false-negative samples during cross-
level interests alignment. The results of experiments on three real-world
datasets demonstrate that CI4GI significantly outperforms state-of-the-
art models.

Keywords: Recommender Systems · Group Recommendation · Graph
Neural Networks · Contrastive Learning.

1 Introduction

With the proliferation of social media, joining online groups has become a vital
way for users to share experiences, explore interests and expand social connec-
tions. For example, on the game platform Steam, players participate in mul-
tiplayer battles by joining game groups. Similarly, on the travel community
Mafengwo, users can join groups of interest, find travel partners within the
groups and plan group trips. For users, group participation serves not only as an
effective channel for accessing vertical domain knowledge but also as a critical
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Fig. 1: Illustration of mutual enhancement and dynamic convergence.

hub for establishing social bonds. For the platform, users’ interests in groups
can enhance their engagement and retention. Therefore, the group identification
(GI) task, i.e., recommending groups to users becomes a topic that needs to be
explored. Compared with directly recommending items to users, recommending
groups to users can establish an emotional link between the platform and users
and maintain long-term user stickiness. This paper focuses on the GI task.

We note that the essence of the GI task is to understand users’ interests and
find groups that attract them. Specifically, users are jointly influenced by two lev-
els of interests when joining groups: group-level interests and item-level interests,
which can be learned from their historical participation in groups and historical
interactions with items, respectively. Most importantly, these dual-level inter-
ests are deeply intertwined and exhibit a collaborative evolution mechanism:
users initially select groups based on existing item-level interests, while their
group interactions subsequently expand their item-level interests, because the
items interacted with by the group might become potential item-level interests
for users. This item-level interest evolution drives users to join more relevant
groups, ultimately leading to a dynamic alignment between the dual-level inter-
ests.

The collaborative evolution process between the dual-level interests plays
a crucial role in accurately modeling user interests for the GI task. It can be
modeled from two aspects: i)Mutual Enhancement: On the one hand, joining
groups expands users’ item-level interests. For example, in Fig. 1(a), a user who
typically plays single-player management games also joins a group to participate
in multiplayer shooting games. In this case, the user’s interest in shooting games
within the group becomes a part of the item-level interest. On the other hand,
item-level interests also influence users’ decisions to join groups. Considering
users’ item-wise preferences in GI helps uncover groups that users are interested
in. ii)Dynamic Convergence: There is an overlap between users’ group-level
and item-level interests. As shown in Fig. 1(b), a user plays Minecraft both in
single-player mode and within a group in multiplayer mode. At this point, the
user’s item-level and group-level interests are highly aligned. This property jus-
tifies constructing cross-level preference alignment via self-supervised learning,
thereby enhancing representation quality and recommendation accuracy.
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Existing methods fail to effectively solve the GI task. Traditional recommen-
dation models focus on binary recommendation tasks, such as user-item recom-
mendation, which only model users’ item-level interests and are not suitable for
group identification. Recently, several methods specifically designed for the GI
task have been proposed, such as DiRec [15] and GTGS [17]. While these meth-
ods model both users’ group-level and item-level interests, they fail to fully cap-
ture the collaborative evolution relationship between these dual-level interests.
Specifically, they model users’ group-level and item-level interests separately,
overlooking the enhancement effect of group participation on users’ item-level
interests. What is worse, although these methods employ contrastive learning
to align cross-level interests within a user and push away this user’s interests
from other users’ interests, they overlook interest overlaps among similar users,
crudely pushing away the representations of similar users, which adversely affects
the representation learning and recommendation effectiveness.

To fully model the collaborative evolution relationship between users’ dual-
level interests, we propose a collaborative interest-aware graph learning model
CI4GI. CI4GI leverages the hypergraph convolution network and graph attention
network (GAT) to learn users’ group-level and item-level interests from their his-
torical user-group and user-item interactions. To model the mutual enhancement
between these dual-level interests, we design an interest enhancement strategy
with two key innovations: i) Item Representation Enhancement: we augment
the item representation in the user-item interaction graph based on group-item
interaction information. ii) Contextual Enhancement: The group a user joins
is considered as the context of that user. We identify additional interests from
items interacted with by the groups the user has joined and use them as a supple-
ment to item-level interests. Furthermore, to mitigate false-negative interference
in contrastive learning caused by users with similar interests, we propose a dy-
namic false-negative sample optimized self-supervised learning loss to effectively
align users’ group-level and item-level interests.

Our contributions are summarized as follows.

• We highlight that the key to the GI task lies in understanding users’ dual-
level interests (i.e., group-level and item-level interests) and capturing their
collaborative evolution relationship. To address this, we propose a collabo-
rative interest-aware graph learning model CI4GI.

• We design an interest enhancement strategy that supplements users’ item-
level interests through item representation enhancement and contextual en-
hancement.

• We propose a dynamic false-negative sample identification method based
on the distance between interest distributions of two users to alleviate the
problem of false-negative samples caused by overlapping interests of similar
users.

• We conduct extensive experiments on three publicly available datasets, and
the significant improvement of CI4GI on all datasets demonstrates its strength
in completing the GI task.
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The rest of the paper is organized as follows. Section 2 introduces the related
work and Section 3 describes the model CI4GI in detail. Subsequently, Section 4
gives the experimental evaluation. Finally, the paper is concluded in Section 5.

2 Related Work

The group identification task is first proposed in CFAG [18], and there exist
closely related tasks in the name of group recommendation. Therefore, we pro-
vide a brief introduction to these tasks and emphasize their differences.

The group recommendation aims to recommend items for a group of mem-
bers [3,19,21]. Existing group recommendation models focus on aggregating the
interests of different members to recognize their common interests. Multiple
group recommendation models such as AGREE [1] and SoAGREE [2] propose
different attention-based aggregation methods. Recently, ConsRec [16] models
users and items as nodes, groups as hyperedges, and learns group representa-
tions through the hypergraph neural network. However, these methods mainly
model the item-level interests of users, ignoring users’ group-level interests.

In addition to recommending items to groups, the term ’group recommen-
dation’ in the literature is also used to denote the recommendation of groups to
their potential members. Traditional approaches typically use various algorithms
to reconstruct user-group membership matrices by utilizing additional auxiliary
information, such as the semantic content of group descriptions in CCF [4], visual
information from photos in JTM [11], and user behaviors across different time
periods in DMF [13]. CFAG [18] is the first to define the GI task, which learns the
interaction relationships among users, groups, and items through tripartite graph
convolution layers. DiRec [15] classifies the user’s intention of joining a group
into social intention and personal interest intention, and then combines user and
group representations under these two intention categories for recommendations.
GTGS [17] models the user-group-item relationships using three hypergraphs: a
group hypergraph from the user’s perspective, a user hypergraph from the item’s
perspective, and a user hypergraph from the group’s perspective. However, all
of these approaches model users’ group-level and item-level interests separately,
not only ignoring the extension of group-level interests to item-level interests
but also often improperly aligning two interests through contrastive learning.

On the other hand, our work is related to graph-based recommender sys-
tems (RSs), which can be broadly categorized into three classes from a modeling
perspective: (i) graph convolutional network-based RSs [6,12,14]; (ii) graph at-
tention network-based RSs [10,9]; and (iii) gated graph neural network-based
RSs [5]. Most graph-based RSs focus only on user-item bipartite graphs, and
directly applying these models to the group identification task is inappropriate
due to the fact that they cannot capture the complex relationships among users,
items, and groups. To realize the GI task, new graph-based models need to be
developed.
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Fig. 2: Architecture of CI4GI.

3 Methodology

3.1 Model Overview

Let U , V and G denote the user set, item set, and group set, respectively. There
are three types of observed interactions among users, items, and groups, i.e., user-
item interactions denoted as X ∈ R|U|×|V|, group-item interactions represented
as Y ∈ R|G|×|V|, and user-group affiliations represented as Z ∈ R|U|×|G|. Given
a user ui ∈ U , the goal of the group identification task is to predict the groups
that user ui has not yet joined but is highly likely to be interested in joining in
the future.

For this task, we propose a collaborative interest-aware graph learning model
CI4GI, whose architecture is shown in Fig. 2. CI4GI first employs a hypergraph
to model user-group history interactions to learn group-level interests for users
and groups. Then, CI4GI leverages two graph attention networks to model user-
item and group-item interactions, capturing item-level interests for users and
groups. To model the mutual enhancement between these dual-level interests, we
design an interest enhancement strategy with two types of enhancements. First,
item representation enhancement leverages group-item interaction information
to augment item representations that have learned via the user-item interaction
graphs. Second, contextual enhancement identifies additional interests of users
from the items interacted with by the groups they have joined, serving as a sup-
plement to users’ item-level interests. Further, we propose a contrastive learning
loss with dynamic false-negative sample optimization. It aligns users’ group-level
and item-level interests while alleviating the problem of false-negative samples
caused by overlapping interests of similar users.
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3.2 Embedding Layer

We maintain an embedding layer to initialize the learnable embeddings of users,
items, and groups. For item set V, the learnable item embedding matrix V ∈
R|V|×d is obtained after the embedding layer, where d is the embedding size. For
the users, we represent group-level and item-level interests in two matrices, i.e.,
the group-level interest matrix U(s) ∈ R|U|×d and the item-level interest matrix
U(v) ∈ R|U|×d. Similarly, for groups, there are G(s) ∈ R|G|×d and G(v) ∈ R|G|×d.

3.3 Group-level Interest Learning

We employ a hypergraph to model user-group affiliations. CI4GI defines a user-
group affiliation hypergraph as HUG = (N , EUG), where N = U ∪G denotes the
node set, i.e., a node of HUG is a user in U or a group in G. The hyperedge set
is denoted as EUG, where a hyperedge eUG

k ∈ EUG, k ∈ [1, |G|] connects all user
nodes in the group gk along with the group node gk. The association matrix
TUG = [tUG

ik ] ∈ R(|U|+|G|)×|G| represents the connectivity between nodes and
hyperedges in the hypergraph HUG.

By modeling the hypergraph with a hyperedge connecting the group and
all its members, we preserve the social relationships within the group. We then
employ the classical hypergraph convolution for representation learning:

N (l) = σ(D
− 1

2

N TUGD−1
E TUGT

D
− 1

2

N N (l−1)WUG) (1)

where DN ∈ R|N |×|N| and D
|E|×|E|
E represent the degree matrices of the nodes

and hyperedges, respectively. N (l) ∈ R|N |×d is the node representation of the
l-th layer, N (0) = Concat(U(s),G(s)), WUG ∈ Rd×d is a learnable matrix, σ is
the sigmoid function.

Finally, the group-level interests of users and groups are obtained after L
layers hypergraph convolution: Û(s), Ĝ(s) = N (L).

3.4 Item-level Interest Learning

We learn the item-level interests of groups and users, respectively.
Item-level Interest of Group. We define the group-item interaction graph
as GGV = (NGV , EGV ), where NGV = G ∪ V denotes the node set, an edge
eGV
jk ∈ EGV , j ∈ [1, |V|], k ∈ [1, |G|] denotes the group gk interacting the items
vj . The association matrix TGV ∈ R(|G|+|V|)×(|G|+|V|) represents the connectivity
between nodes in GGV . We use classical GAT [10] for representation learning:

Ĝ(v), V̂ = GATΘGV
([G(v)||V], TGV ) (2)

where GATΘGV
is a stack of L-layer graph attention networks, G(v) and V are

the initial groups’ item-level interest representations and item representations,
Ĝ(v) ∈ R|G|×d and V̂ ∈ R|V|×d are those learned from GAT.
Item-level Interest of User with Enhancement. Similarly, CI4GI defines
the user-item interaction graph as GUV = (NUV , EUV ). The association matrix
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TUV ∈ R(|U|+|V|)×(|U|+|V|) denotes the connectivity between nodes in GUV . We
also apply a graph attention network to learn user-item interactions.

Further, we propose an interest enhancement strategy with two methods:
item representation enhancement and contextual enhancement.

Item representation enhancement aims to enhance the item representa-
tion in user-item interaction graph with the group-item interaction information,
thereby capturing the similarity between the item-level interest of the group and
the user. This helps the model recognize the user’s tendency to join a group
based on their interests in the items. Specifically, we use the item representation
V̂ learned from GGV as the initial item representation for GUV :

Û(v)
µ , V̂′ = GATΘUV

([U(v)||V̂], TUV ) (3)

where GATΘUV
is the graph attention network, U(v) is the initial users’ item-

level interest representations and V̂ is the item representation learned from GGV .
Û

(v)
µ and V̂′ are the user and item representations learned by the GAT.
In group identification scenarios, users’ item-level interests are extended by

joining groups, with items shared within these groups becoming potential inter-
ests for the user. Therefore, we propose a contextual enhancement that treats
the groups the user has joined as their context information, identifying potential
interests from the items that the user has historically interacted with by joining
the group. Specifically, we first identify contextual items by the user-group affil-
iation matrix Z and the group-item interaction matrix Y. Then, we project the
contextual item representation V̂ into the same vector space as the user’s repre-
sentation Û

(v)
µ using a projection matrix WC . Finally, we compute the distance

between the user representation and the contextual items embeddings to obtain
the increment ∆Û

(v)
µ with the following formula:

∆Û(v)
µ = MLP(Û(v)

µ −D−1
ZY ZY × V̂WC) (4)

where DZY ∈ R|U|×|U| is the row degree matrix of the matrix obtained after
multiplying matrices Z and Y, which is used for normalization. WC ∈ Rd×d is
the projection matrix.

The context-enhanced user representation is then obtained by adding the
increment ∆Û

(v)
µ :

ÛC(v)
µ = Û(v)

µ + γ∆Û(v)
µ (5)

where γ is a hyperparameter indicating the weight of the increment.
Further, we represent the users’ item-level interests as independent Gaussian

distributions instead of fixed embeddings, which improves the robustness and
flexibility of users’ interest representations. Specifically, based on the user rep-
resentation Û

(v)
µ learned from Eq. 3 (which is regarded as the mean of the user

interest distribution), the variance of the user interest distribution is computed
by a multilayer perceptron: Û(v)

σ = MLP(Û
(v)
µ ).
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We sample user representations Û(v) from independent Gaussian distribu-
tions Û(v) ∼ N (Û

(v)
µ , Û

(v)
σ ). Since direct sampling prevents gradient backprop-

agation, we apply the reparameterization trick as follows:

Û(v) = ÛC(v)
µ + Û(v)

σ ϵ (6)

where ϵ is randomly sampled from the standard normal distribution N (0, 1).

3.5 Cross-level Interest Alignment

In this paper, we model users’ group-level and item-level interests separately.
Since these interests may overlap in real group identification scenarios, we pro-
pose using contrastive learning to align the cross-level interests. Additionally,
similar users’ interests can overlap, and vanilla contrastive learning may lead to
false-negative samples. To address this, we introduce a dynamic false-negative
sample optimized contrastive learning loss, using Wasserstein distance between
user interest distributions to identify false-negative samples and improve the
quality of cross-level interest alignment.
Vanilla Contrastive Learning. We align the cross-level interests of the same
user by performing conventional contrastive learning on the user’s group-level
interest Û(s) and item-level interest Û(v) via the following InfoNCE [7] loss:

LUserSSL1 = −
∑
ui∈U

log
exp(sim(û

(v)
i , û

(s)
i )/τ)

exp(sim(û
(v)
i , û

(s)
i )/τ) +NU

V1 +NU
S1

(7)

NU
V1 =

∑
ui′∈U−

i

exp(sim(û
(v)
i′ , û

(s)
i )/τ), NU

S1 =
∑

ui′∈U−
i

exp(sim(û
(v)
i , û

(s)
i′ )/τ) (8)

where û
(s)
i and û

(v)
i form a pair of positive samples. U−

i is the set of negative
samples w.r.t. the user ui, which is composed of other users (i.e., ui′ ̸= ui ) within
the same batch. sim(·) is to calculate the similarity of a pair of vectors, which
refers to the cosine similarity in this paper. τ is the temperature parameter.
Dynamic False-negative Sample Optimization. We dynamically identify
false-negative samples by comparing users’ item-level interest distributions. Specif-
ically, for the item-level interest distribution û

(v)
i of user ui, we compute the

Wasserstein distance to the distribution û
(v)
j of any other user uj . If the dis-

tance is less than or equal to a threshold µ, uj is considered a false-negative
sample of ui. Only users with a Wasserstein distance greater than µ from ui are
included in the negative sample set.

N egi = {uj | uj ∈ U and dW2(ui, uj) > µ} (9)

where dW2 denotes the Wasserstein distance, the higher the similarity of two
users’ distributions, the smaller the Wasserstein distance, µ is the threshold,
and N egi is the set of negative samples w.r.t. the user ui.
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To ensure that the false-negative sample set remains adaptive, we dynam-
ically update the set in each batch based on the latest interest distributions.
This allows the contrastive learning process to continuously adjust to evolving
user interests and prevents the model from being misled by static or outdated
negative samples. Then, similar to conventional user contrastive learning, the
following loss is used to align cross-level interest representations of the same
user:

LUserSSL2 = −
∑
ui∈U

log
exp(sim(û

(v)
i , û

(s)
i )/τ)

exp(sim(û
(v)
i , û

(s)
i )/τ) +NU

V2 +NU
S2

(10)

NU
V2=

∑
ui′∈U−

i ∩Negi

exp(sim(û
(v)
i′ , û

(s)
i )/τ), NU

S2 =
∑

ui′∈U−
i ∩Negi

exp(sim(û
(v)
i , û

(s)
i′ )/τ) (11)

3.6 Model Optimization

After obtaining the group-level and item-level interest representations of users
and groups, we can calculate the main loss of CI4GI by three steps. First, the
two types of interests are concatenated for both users and groups to obtain the
final user representation Û and group representation Ĝ:

Û = [Û(s)||Û(v)], Ĝ = [Ĝ(s)||Ĝ(v)] (12)

Then, the dot product similarity is used to compute the probability score sik
of a user ui joining the group gk:

sik = ûi · ĝk (13)

where ûi = Û(i, :) is the final representation of the user ui and ĝk = Ĝ(k, :)
is the final representation of the group gk. Subsequently, we calculate the BPR
loss as the main loss:

Lmain =
1

|T |
∑

(ui,gk,gk′ )∈T

−log σ(sik − sik′) (14)

where T = {(ui, gk, gk′) | zik = 1 and zik′ = 0} is the training set, z ∈ Z is the
element in the user-group affiliation matrix. σ is the sigmoid function.

Finally, we jointly optimize the main loss and auxiliary losses:

L = Lmain + λ1(βLUserSSL1 + (1− β)LUserSSL2) + λ2||Θ||22 (15)

where Θ is all trainable parameters in CI4GI, ||Θ||22 is the regularization loss,
λ1 and λ2 are hyperparameters, and β = 1/(1 + exp(−k(epoch− E))) is the
annealing parameter that controls the weight of the two types of contrastive
learning loss, where k and E are hyperparameters.
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Table 1: Statistics of datasets.
Dataset # Users # Items # Groups # User-Group # User-Item # Group-Item

participation interactions interactions

Mafengwo 1,269 999 972 5,574 8,676 2,540
Weeplaces 1,501 6,406 4,651 12,258 43,942 6,033
Douban 11,099 2,351 1,085 57,654 444,776 23,318

3.7 Complexity Analysis

Space Complexity. In CI4GI, the learnable parameters mainly come from item
embeddings, two user interest embeddings and two group interest embeddings. In
addition, in the hypergraph convolution, the number of parameters of the L layer
is Ld2, and the number of parameters of the two L layers GAT is 2L(d2 + 2d).
The number of parameters in the MLP and the projection matrix is O(d2 + d).
Therefore, the space complexity of CI4GI is O(|V|d+ |U|d+ |G|d+ Ld2 + Ld).
Time Complexity. The computational amount during the training of CI4GI
is mainly concentrated on the hypergraph convolution and GAT. Assuming that
|TUG| denotes the number of non-zero elements of the association matrix TUG,
the time complexity of hypergraph convolution is O(L(|U|+ |G|)d2 +L|TUG|d).
Assuming that |TGV | and |TUV | denote the number of non-zero elements in
the association matrices TGV and TUV , respectively, the time complexity of the
two GATs is O(L(|U|+ |G|+ |V|)d2 + L|(TGV |+ |TUV |)d). Therefore, the time
complexity of CI4GI is O(Ld2(|U|+ |V|+ |G|) + Ld(|TUG|+ |TGV |+ |TUV |)).

4 Experiments

4.1 Experimental Setup

Datasets. We choose three public datasets to conduct experiments.

• Mafengwo. It records the travel history of users on the Mafengwo APP,
where users can create or join groups, taking offline group trips. We use the
dataset published by CFAG [18].

• Weeplaces. It records users’ check-ins on location-based social networks in
major cities of the U.S. We follow the same operations as in GroupIM [8] for
constructing user-POI interactions and group-POI interactions.

• Steam. It records users’ game preferences on the online gaming platform
Steam, where users have their records of games they have played and can
create or join a group. We use the dataset published by CFAG [18].

Table 1 lists the statistics of the three datasets. We randomly split the user
participation in each dataset into training, validation, and test sets with a ratio
of 7:1:2.
Baselines. The following baselines are chosen to compare with CI4GI:
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Three recommendation models: LightGCN4, which is a classical graph-
based recommendation model [6]; SGL5, which introduces contrastive learning
into GNN-based recommendation by generating contrast views through node
dropout, edge dropout, or random walk [14]; SimGCL6, which presents an
embedding-based enhancement method to construct positive sample pairs in con-
trastive learning by adding uniform noise to the embedding [20]. As DiRec[15]
does, we apply them on the GI task by treating each group as an item and thus
only utilizing user-group affiliations.

Two group recommendation models: AGREE7, which is a classical group
recommendation model using an attention mechanism for member aggregation [1];
ConsRec8, the state-of-the-art model for group recommendation, which pro-
poses a hypergraph neural network to learn member-level aggregation and cap-
tures the group consensus on three views [16]. As DiRec[15] does, we adapt them
by replacing their initial group-item BPR loss with user-group BPR loss.

Three GI models: CFAG9, a classical GI model, which constructs a group-
user-item tripartite graph and designs a tripartite graph convolution layer [18];
DiRec10, which divides the user’s intention of joining a group into social in-
tention and personal interest intention [15]; GTGS11, which models the rela-
tionships between users, groups, and items by three hypergraphs, and proposes
transition hypergraph convolution by using users’ preferences for items as a prior
knowledge [17].
Implementation Details. We implement our model in PyTorch. In our model,
L is set to 2, the temperature τ is set to 1, the hyperparameter k in β is set
to 0.1, and the threshold E in β is set as follows: 20 for Mafengwo, 30 for
Weeplaces and Steam, and contextual enhancement representation weight γ is
set as follows: 1 for Mafengwo and Steam, and 1.25 for Weeplaces, and the
Wasserstein distance threshold µ is set as follows: 1.5 for Mafengwo, 2.0 for
Weeplaces and Steam, λ1 and λ2 are set to 1× e−4. For the sake of fairness, we
set the size of all embeddings d to 256, the batch size to 1024 and the learning
rate to 0.005 in all the experiments. For all baselines, the hyperparameters are set
to values corresponding to best performance reported in their respective papers.
Experiments are conducted on NVIDIA RTX3090 GPU with 24G memory. The
implementation code has been released12.
Metrics. To evaluate the performance of recommending groups to users, we
adopt two metrics, i.e., Recall@K and NDCG@K (R@K and N@K for short),
where Recall focuses on whether the user actually chooses the recommended

4 https://github.com/kuandeng/LightGCN
5 https://github.com/wujcan/SGL-Torch
6 https://github.com/Coder-Yu/QRec
7 https://github.com/LianHaiMiao/Attentive-Group-Recommendation
8 https://github.com/FDUDSDE/WWW2023ConsRec
9 https://github.com/mdyfrank/CFAG

10 https://github.com/WxxShirley/CIKM2023DiRec
11 https://github.com/mdyfrank/GTGS
12 https://github.com/ZhaoRui-7/CI4GI
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Table 2: Overall performance. The values in bold and underlined are the best
and second best results in each column.

Dataset Mafengwo Weeplaces Steam

Metric R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

LightGCN 0.2925 0.3607 0.1865 0.2040 0.2490 0.3159 0.1465 0.1646 0.2411 0.3283 0.1333 0.1558
SGL 0.2957 0.3628 0.1937 0.2109 0.2511 0.3124 0.1456 0.1624 0.2327 0.3241 0.1289 0.1524

SimGCL 0.2943 0.3576 0.1890 0.2052 0.2486 0.3140 0.1466 0.1645 0.1872 0.2896 0.0930 0.1189

AGREE 0.1679 0.2302 0.1061 0.1222 0.2312 0.2957 0.1355 0.1529 0.1882 0.2977 0.0996 0.1275
ConsRec 0.3403 0.4312 0.2161 0.2382 0.3451 0.4379 0.2039 0.2288 0.2568 0.3608 0.1359 0.1626

CFAG 0.3007 0.4051 0.1698 0.1965 0.3848 0.4778 0.2251 0.2529 0.2328 0.3427 0.1224 0.1507
DiRec 0.3588 0.4636 0.2231 0.2500 0.3904 0.4843 0.2341 0.2591 0.2738 0.3745 0.1436 0.1696
GTGS 0.3611 0.4672 0.2248 0.2520 0.3813 0.4693 0.2308 0.2547 0.2225 0.3275 0.1110 0.1379

CI4GI 0.3937 0.5016 0.2557 0.2829 0.4179 0.4990 0.2664 0.2879 0.2912 0.3823 0.1605 0.1840
Inprov.(%) 9.02 7.36 13.74 12.26 7.04 3.03 13.79 11.11 6.35 2.08 11.76 8.49

group, NDCG focuses on the ranking of the recommended groups and K is set
to either 10 or 20.

4.2 Performance Comparison

Overall Performance. Table 2 lists the experimental results on the three
datasets. From Table 2, we have the following observations.

Traditional recommendation models perform poorly because they typically
represent user-group affiliations as graphs, capturing only users’ group-level in-
terests while overlooking their item-level interests. Similarly, group recommen-
dation models are not well-suited for the GI task, as they lack the capability to
model the complex user interests in GI scenarios.

In contrast, GI models achieve better performance as they are specifically
designed for this task. However, while they capture both users’ group-level and
item-level interests, they overlook the collaborative relationship between the
dual-level interests, limiting their effectiveness.

Our CI4GI outperforms all baselines on three datasets. Taking NDCG@10 as
an example, compared to the best baseline on each of the three datasets, CI4GI
shows improvements of 11.76% - 13.79%, averaging at 13.09%.
Cold-start Performance. We evaluate the cold-start performance of CI4GI
on Mafengwo and Weeplaces. Specifically, we randomly remove user-group in-
teraction history in the training set, ensuring that each user has joined at most
k groups, where k = 1, 2, 3, 4. We choose DiRec, GTGS, ConsRec and SGL, the
best models from different types of baselines, for comparison.

As shown in Fig. 3, CI4GI outperforms the baselines in all cases. In particular,
CI4GI achieves the best performance even when k = 1, i.e., the user has only one
interacted group in history. This could be because CI4GI applies an interest en-
hancement strategy in the user’s item-level interest learning, which improves the
representation of the user’s item-level interest and alleviates the deficiency of the
user’s group-level interests in cold-start scenarios. As the threshold k increases
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Fig. 3: Cold-start performance comparsion.

Table 3: Ablation study.

Model Mafengwo Weeplaces Steam

R@10 N@10 R@10 N@10 R@10 N@10

CI4GI 0.3973 0.2557 0.4179 0.2664 0.2912 0.1605

(A)w/o group-level interests 0.3351 0.2135 0.3828 0.2349 0.2699 0.1443
(B)w/o item-level interests 0.3203 0.2074 0.3097 0.1954 0.2836 0.1529

(C)w/o enhancement 0.3687 0.2365 0.3873 0.2436 0.2820 0.1592
(D)w/o item enhancement 0.3817 0.2547 0.4069 0.2508 0.2866 0.1602
(E)w/o contextual enhancement 0.3697 0.2426 0.3894 0.2460 0.2838 0.1541

(F)w/o CL 0.3730 0.2484 0.3994 0.2549 0.2765 0.1547
(G)w/o LUserSSL1 0.3818 0.2503 0.4134 0.2649 0.2837 0.1564
(H)w/o LUserSSL2 0.3772 0.2514 0.4115 0.2626 0.2845 0.1565
(I)w/o β 0.3797 0.2525 0.4109 0.2597 0.2826 0.1527

from 1 to 3, the performance of all models improves, indicating that more his-
torical user-group interactions are beneficial to interest learning. However, when
k increases from 3 to 4, some models experience a decline in performance (e.g.,
DiRec on Mafengwo, GTGS and ConsRec on Weeplaces), while CI4GI continues
to improve its performance. This may be because a higher number of user-group
interactions introduce more complex user’s interests, and CI4GI can capture
these intricate interests by identifying the collaborative relationships between
dual-level user interests, thus leading to superior performance.

4.3 Ablation Study

Effect of Dual-level Interest Learning. We design two variants to observe
the impact of dual-level interest learning in CI4GI on performance. Variant A
removes group-level interests in CI4GI, i.e., only item-level interests of users and
groups are used to compute similarity. Variant B removes item-level interests in
CI4GI.

The experimental results on three datasets are listed in the top part of Ta-
ble 3. Removing either interest leads to significant performance degradation,
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which illustrates the effectiveness of dual-level interest modeling in CI4GI. On
Steam, the performance degradation of variant A is more significant, indicating
that group-level interests play a more important role. In contrast, on Mafengwo
and Weeplaces, the performance degradation of variant B is more significant,
i.e., item-level interests play a more important role. This may be due to the fact
that Weeplaces has a very low average number of users per group (fewer than
3), making it difficult to accurately characterize groups using only group-level
interests, leading to a substantial performance drop.
Effect of Interest Enhancement Strategy. We build three variants to ob-
serve the effect of interest enhancement strategy during users’ item-level interest
learning in CI4GI. Variant C deletes the interest enhancement strategy, i.e., di-
rectly uses the user representation obtained through the GAT as the item-level
interest representation of the user. Variant D removes the item representation
enhancement, replacing the item representation in user-item GAT learning with
random initialization. Variant E deletes the contextual enhancement.

The experimental results of these three variants on three datasets are listed
in the middle part of Table 3. The performance of variants D and E is lower
than that of CI4GI, indicating that removing any of the interest enhancement
methods results in a decrease in performance. Among the two variants, variant
E shows the most significant performance degradation, highlighting the effec-
tiveness of contextual enhancement in improving group identification. This is
likely because it identifies the item that motivates the user to join the group as
a potential interest, effectively enriching the user’s item-level preferences. Addi-
tionally, variant C exhibits a significant performance degradation, which suggests
that the simultaneous deletion of the two interest enhancement methods has a
significant negative impact on model performance.
Effect of Contrastive Learning. We build four variants to observe the ef-
fect of contrastive learning in CI4GI. Variant F deletes the entire contrastive
learning(CL) module. Variant G removes the vanilla contrastive learning loss
LUserSSL1, variant H removes the contrastive learning loss with dynamic false-
negative sample optimization LUserSSL2, and variant I deletes the annealing pa-
rameter β used to balance the two contrastive learning losses, setting β to a
constant value of 0.5.

The experimental results on three datasets are listed in the bottom part of
Table 3. Both variants G and H underperform compared to CI4GI, indicating
that removing either contrastive learning loss negatively impacts model perfor-
mance. Variant I experiences a more significant performance degradation com-
pare to variants G and H, as the absence of the annealing parameter prevents the
model from properly balancing the two contrastive learning losses. This causes
the model to rely on the Wasserstein distance for identifying false-negative sam-
ples before it has sufficiently learned user interest patterns and distributional
representations. As a result, the identified false-negative samples are heavily in-
fluenced by random initialization and lack meaningful guidance. Additionally,
variant F shows a substantial performance decline, highlighting the crucial role
of the contrastive learning module in CI4GI.
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Fig. 4: Sensitivity analysis of hyperparameters γ, E and λ1 on Mafengwo dataset.

4.4 Hyperparameter Sensitivity Analysis

We perform experiments on Mafengwo datasets to explore the sensitivity of the
weight of contextual enhancement γ, the thershold E in annealing parameters
β and the wight of contrastive learning loss λ1. We fix other hyper-parameters,
and tune γ, E and λ1 within {0.5, 0.75, 1, 1.25, 1.5}, {0, 10, 20, 30, 40}, {1e−5,
1e−4, 1e−3, 1e−2, 1e−1}, respectively. From the results in Fig. 4, we can observe
that as γ increases from 0.5 to 1, the performance of CI4GI shows an increasing
trend, and when γ exceeds 1, the model performance starts to decrease. This
suggests that appropriate contextual enhancement representation weight helps
to improve the quality of the user representation, which in turn improves the
model performance. The performance of CI4GI first rises and then falls as E
increases. When E is too small, the model is prematurely subjected to unguided
false negative sample identification before it has learned the basic user interests.
Conversely, when E is too large, the weight of contrastive learning with negative
sample optimization is consistently small and fail to guide model optimization.
CI4GI achieves optimal performance when λ1 = 1× e−4. If λ1 is too small, the
contrastive learning loss has little impact, while if λ1 is too large, the weight
of the contrastive learning loss is almost equal to the weight of the main loss,
leading to a decrease in effectiveness.

5 Conclusion

Group identification is a challenging recommendation task, as a user’s decision on
joining a group is jointly influenced by both group-level and item-level interests.
Therefore, effectively capturing these two types of interests and their collabora-
tive relationship is crucial for accurate group identification. We propose a model
CI4GI, which simultaneously models users’ group-level and item-level interests,
and designs an interest enhancement strategy to capture the mutual enhance-
ment of the dual-level interests through item representation enhancement and
contextual enhancement. Meanwhile, we design a contrastive learning strategy
with dynamic false-negative sample optimization to improve the alignment of
cross-level interests. Experimental results on public datasets show that CI4GI
significantly improves the accuracy of group identification.
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