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Abstract. In the context of Elastic Computing Service (ECS), ensuring
an adequate supply of physical machines to meet the varying computing
demands is crucial for sustaining high performance and low cost. In in-
dustrial practices, different from the typical resource allocation problem
that allocates the computing demand into servers, provision of physical
servers is a supply chain problem that predicts the future demand for
physical machines based on forecasts derived from historical vCPU us-
age and potential future customer needs, particularly for those customers
with high demand. This provision process encompasses three main stages:
customer text demand analysis, future demand forecasting, and the al-
location of physical servers. However, each stage presents specific chal-
lenges. Firstly, large demands from customers are often ambiguously ex-
pressed. Secondly, the forecasting process is complicated to model due to
the scarce, spiky, and ambiguous nature of the data. Thirdly, the conver-
sion of forecasted vCPU demand into actual physical server quantities
is inefficient and ineffective. To address these issues, we propose a novel
framework for physical server provisioning. Initially, client requests are
aggregated and processed using Large Language Model to extract Po-
tential Future Demand (PFD). Subsequently, future vCPU demand is
predicted based on PFD data through a specialized forecasting model
tailored with PFD-specific optimizations. Finally, physical machine al-
location is executed employing a hierarchical bin-packing algorithm en-
hanced by heuristic selection and integer programming. Extensive ex-
periments demonstrate the effectiveness and efficiency of the proposed
framework with over 60% accuracy improvement and 90% fragment re-
duction on average compared with the baselines. This framework has
been applied to the real industrial scenario of Alibaba Cloud.
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Fig. 1. The challenges in physical machine demand supplement task in elastic comput-
ing service.

1 Introduction

In Elastic Computing Service (ECS), provisioning physical machines to meet
client computing demands is a critical supply-chain challenge [2, 8, 42, 19] dis-
tinct from traditional resource allocation. Unlike static server distribution, this
requires forecasting future infrastructure needs using historical vCPU usage data
and proactive customer demand signals, including support tickets where clients
explicitly request supply solutions for anticipated large-scale requirements or re-
port immediate shortages. These client-initiated communications serve as critical
inputs for procurement planning, enabling timely equipment orders and deploy-
ment scheduling to preempt gaps between supply and demand.

The process of supplying the physical machine in the cloud service consists
of three stages in the industrial practice, as shown in Fig. 1. Firstly, the clients,
especially those with big demand, would request resources ahead of time in
the Orders. The requests will be aggregated and processed to potential future
demand (PFD) focusing on virtual CPU (vCPU) demand. Furthermore, the
future vCPU demand will be predicted based on the historical vCPU demand
and PFD data. Finally, the physical machine supply allocation is executed which
aims to use physical machines with minimum cost to satisfy the predicted vCPU
demand. The generated physical machine could offer a reasonable reference for
the downstream procurement department.

However, the task of supplementing physical machines in real-world industrial
applications is highly complex. As illustrated in Fig. 1, this challenge involves
several pivotal factors: (1) managing ambiguous large demand requests from
the users, (2) effectively processing PFD data to accurately forecast the future
vCPU demand, and (3) optimizing physical machine allocation strategies to re-
duce overall costs. In particular, during the first stage, client-provided requests
are often vague and unstructured, making it challenging to directly extract pre-
cise data points, such as dates, exact vCPU requirements, and the quantity of
instances needed. Moreover, the second stage involves difficulties in integrating
PFD data with predictions concerning future vCPU demand. This complexity
arises due to the characteristics of the PFD data since it is non-zero on only 1%
of data samples (indicating scarcity), the non-zero values tend to be large (indi-
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cating sparsity), and there is often a discrepancy between real demand and the
PFD data (indicating fuzziness). Finally, a gap exists between vCPU demand
and actual physical machine provisioning that translating the demand into a
concrete number of servers while minimizing costs is a complex task.

In this paper, we develop a deployed comprehensive framework aimed at
systematically forecasting and processing future vCPU and physical machine
demand while addressing the identified challenges. Our framework initially em-
ploys LLM-enhanced techniques to accurately interpret and structure requests
provided by clients. Specifically, we utilize the in-context learning ability of LLM
to enhance the understanding of client text inputs. Furthermore, we introduce a
specialized time series forecasting model tailored for PFD-based vCPU predic-
tion. This model includes multiple modules to manage the challenges of scarcity,
sparsity, and fuzziness in vCPU demand prediction respectively. Finally, physi-
cal machine demand is determined using a hierarchical bin-packing algorithm to
meet the forecasted vCPU requirements. Our contributions could be summarized
as follows:

– To the best of our knowledge, we are the first to systematically address the
physical machine demand supplement task in industrial cloud computing
supply-chain applications.

– We propose a supply framework of physical machine demand that seamlessly
integrates algorithms from LLM, time series forecasting, and bin-packing.
This framework effectively addresses challenges related to ambiguous client
requests, complex PFD data, and efficient server provisioning.

– We conduct extensive experiments on real-world industrial datasets of Al-
ibaba Cloud. The results validate the effectiveness of our framework and
significant performance boost in demand prediction and resource allocation.

2 Related Work

2.1 Demand Forecasting

Demand forecasting is essential not only in cloud computing but also in a va-
riety of other domains [1, 24, 32]. In industrial applications, effective forecasting
could enhance resource management and operational efficiency across various
scenarios. For instance, [43] employs an LSTM-based method [12] to forecast
the number of tourists in different countries. Similarly, [9] utilizes ARIMA and
linear models to predict company sales. Moreover, [33] compares statistical and
machine learning methods for daily demand forecasting. However, there is a
noticeable gap in methods tailored for demand forecasting in cloud computing,
where PFD data significantly impacts the demand curve. In the academic realm,
time series forecasting has been extensively studied due to its pivotal role in var-
ious downstream applications such as traffic management [22, 26, 27] and energy
management [13, 18], where its implementation is often facilitated through the
application of graph modeling [16, 17, 25]. Numerous methods have been devel-
oped to enhance time series forecasting, each focusing on different aspects of data
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modeling [23, 7]. Some approaches leverage transformer-based architectures [34]
to capture cross-channel and temporal dependencies. Notable examples include
Autoformer [38], Pyraformer [20], Informer [45], FEDFormer [46], and iTrans-
former [21]. Recently, [40] evaluated the performance of these transformer-based
methods and concluded that linear methods could achieve greater effectiveness
and efficiency. Consequently, linear-based models and convolution-based models
have demonstrated superior performance, such as PatchTST [29], TimesNet [37],
Mamba [10], CMamba [41] and TimeMixer [36]. However, these academic meth-
ods are typically evaluated on datasets related to energy, weather, and traf-
fic, which exhibit high periodicity, stable trends, and similar data distributions
across different nodes. This contrasts sharply with real industrial data related
to vCPU and server demand, which are characterized by high volatility and are
significantly influenced by PFD data.

2.2 Resource Allocation

Resource allocation is a fundamental component of cloud computing, primar-
ily focused on the efficient distribution of computational resources to satisfy
user demands while minimizing operational expenses [19, 28]. Traditional mech-
anisms for resource allocation often rely on heuristic methods such as First-Fit,
Best-Fit, and Worst-Fit algorithms [4]. In addition to heuristic methods, some
approaches employ price-based greedy algorithms, which are applicable in sce-
narios like cloud gaming, where resource allocation decisions are influenced by
pricing strategies [5]. Other methods involve prediction-based algorithms that
dynamically adjust resource allocation based on predicted future demands [39].
Optimization techniques such as integer programming have also been extensively
utilized for resource allocation and scheduling to achieve optimal results [11, 14,
31]. In recent years, deep reinforcement learning (DRL) methods have emerged
as promising solutions for the resource allocation problem [3, 15, 44]. Neverthe-
less, the integration of accurate demand forecasting with resource allocation
remains an underexplored area. While deep learning and optimization methods
have made significant strides in addressing resource allocation challenges, their
effectiveness can be further enhanced by incorporating precise demand forecasts.

3 Preliminary

Definition 1 (Physical Machine). A Physical Machine is a hardware ma-
chine in a data center that provides computational resources, including CPU,
memory, storage, and network bandwidth.

Definition 2 (Virtual CPU). A Virtual CPU (vCPU) represents a portion
of physical CPU resources allocated to a virtual machine (VM). Each vCPU is
scheduled and managed by the hypervisor or virtualization engine. In the in-
dustrial application, we focus on demand forecasting for product-level vCPU to
guarantee the robustness of the prediction result.
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Definition 3 (Potential Future Demand). Potential Future Demand
(PFD) describes the requirement for computational resources based on the mined
order data. PFD is critical for effective demand forecasting, helping to ensure
that supply meets demand while minimizing costs and optimizing performance.

Definition 4 (Instance, Product, Order). An Instance is a single deploy-
ment of a virtual machine configured according to specific customer requirements.
A Product includes a range of cloud service instances with varying computa-
tional ability, as well as consistent configurations of other services such as net-
working and physical machines. An Order refers to a formalized communication,
typically text-based, between the customer and customer support, aimed at ob-
taining additional information or making requests regarding specific products. In
this paper, we aim to forecast vCPU demand at the product level to ensure the
robustness of the results and subsequently divide this forecast to the instance level
for optimized downstream physical machine demand allocation.

Problem 1 (Demand Forecasting). Given T-day historical vCPU demand data
Xt−T+1:t and auxiliary information of the PFD data Pt+1:t+T ′

extracted from
the orders, the aim of demand forecasting is to learn a model f(·) to forecast
future T ′ days vCPU demand data Xt+1:t+T ′

. Formally, it could be formulated:

[Xt−T+1, · · · ,Xt,Pt+1:t+T ′
]
f(·)−→ [Xt+1, · · · ,Xt+T ′

].

Problem 2 (Physical Machine Allocation). Basically, this problem is a vector
bin-packing problem (VBP). Given the forecasted vCPU demand data Xt+1:t+T ′

obtained from the demand forecasting model f(·), the objective of physical ma-
chine allocation is to optimally assign these CPU demands of product-level of
certain day XT ′

to the instances of different type [I0, I1, · · · , In], where each
instance has its size of CPU ci and memory mi. The physical machine alloca-
tion problem is converted to a bin-packing problem that instances [I0, I1, · · · , In]
serve as items and physical machines [S0,S1, · · · ,Sm] serve as bins. Each phys-
ical machine Si has its cpu capacity c̄i, memory capacity m̄i, and cost ōi. The
bin-packing problem can be formulated as min

∑m
j=1 ōjyj , which is subject to

n∑
i=1

ciaij ≤ c̄jyj ,

n∑
i=1

miaij ≤ m̄jyj ,

m∑
j=1

aij = 1, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m},

where aij is a binary variable indicating whether instance i is assigned to server
j (aij = 1) or not (aij = 0) and yj is a binary variable indicating whether server
j is used (yj = 1) or not (yj = 0).

4 Method

In this section, we detail our comprehensive framework for provisioning physical
machines within the elastic computing service, as shown in Fig. 2. Firstly, the
Potential Future Demand (PFD) Extraction Module leverages LLM to extract
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Fig. 2. Illustration of our framework for physical machine supplement.

potential vCPU future demand derived from incoming orders of large demand.
Subsequently, the vCPU Forecasting Module utilizes separate modeling tech-
niques for historical time series data and PFD data to accurately forecast fu-
ture vCPU demand. Finally, the Physical Machine Allocation Module employs
a multi-stage approach to ensure efficient resource allocation.

4.1 PFD Preprocessing Module

Goal: The primary challenge in extracting future demand lies in the ambiguous
nature of the textual input provided by the users with large demand, as depicted
in Fig. 2(a). To address this, the Potential Future Demand (PFD) Extraction
Module employs the ability of in-context learning (ICL) of LLM to convert un-
structured text into structured entity tuples. This structured PFD data can
then be seamlessly integrated into the downstream vCPU forecasting module,
facilitating accurate and reliable demand prediction.

Input & Output The PFD Preprocessing Module processes the textual reports
derived from orders. Example texts of these inputs are provided in Fig. 2(a). This
module translates these ambiguous requests by Qwen2.5-7B 3 LLM into clear
and structured data such as (UserID, Quantity, InstanceType, Date) to enhance
the accuracy of the forecasting process.

Potential Customer Demand Discovery To interpret the requests from
the users, we propose the ICL-enhanced Potential Customer Demand Discovery
module, as shown in Tab 1. The module integrates structured system configu-
rations with contextual learning to extract structured demand tuples (UserID,
Quantity, InstanceType, Date) from heterogeneous inputs, including user infor-
mation and requests. First, it integrates system configurations, such as the
current date and ECS knowledge base defining VM specifications, to ensure tem-
poral relevance and technical grounding. Then, it formalizes a structured ex-
traction task targeting (UserID, Quantity, InstanceType, Date) tuples, explic-
itly bridging user context (e.g., existing instances) and natural language requests.
Subsequently, in-context examples demonstrate schema alignment that collo-
quial expressions like "6.1" are mapped to standardized formats by leveraging
3 https://github.com/QwenLM/Qwen2.5
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Table 1. ICL-enhanced prompt of Potential Customer Demand Discovery.

Potential Customer Demand Discovery

[System Config]
Current Date: {Weekday}, {YYYY-MM-DD}
ECS Knowledge Base: {vm_type_a: this VM contains 4 vcpu and ...}
[Task] Extract (UserID, Quantity, InstanceType, Date) tuples from:
1. User Context → [Existing Resources/Contracts]
2. Current Request → [Natural Language]
[In-Context Examples]
UserID: User1. Context: {User_Instances: None, ...}
Request: "I want 1,000 vm_type_a instances at 6.1"
Output: (User1, 1000, vm_type_a, 2024.6.1)

......
[New Request]
UserID: {UserX}, Context: {User_Summary}, Request: {Natural Language Text}

the system configuration, while VM type definitions from the knowledge base
disambiguate technical terms. Finally, the new request combines summarized
user profiles with raw textual queries, enabling joint reasoning to infer the coming
user request. This hierarchical design supports scalable adaptation to updated
VM types or policies through the knowledge base, ensuring industrial-grade ro-
bustness in demand extraction.

4.2 vCPU Forecasting Module

Goal: As shown in Fig. 1 (b), the main challenges in forecasting the vCPU
demand encompass several critical aspects: (1) the PFD data is scarce, with
only 1% of the dates containing non-zero PFD data; (2) most of the non-zero
PFD data consists of spikes, characterized by sudden, large values; (3) the PFD
demand data is not consistently aligned with the actual demand, as customers
often provide fuzzy future demand requests and fail to purchase instances punc-
tually. Consequently, in this subsection, we propose three modules to address
these challenges separately.

Input & Output The vCPU Forecasting Module takes two inputs: the T-
day historical vCPU demand data Xt−T+1:t and the future T’-day PFD data
Pt+1:t+T ′

. The output generated by this module is the forecasted vCPU demand
for the future T’ days, denoted as Xt+1:t+T ′

.

Fake PFD Augmentation To mitigate the scarcity of the PFD data in train-
ing, we propose the Fake PFD Augmentation Module, as shown in Fig. 3. This
module aims to enhance the volume and variability of the training data, improv-
ing the robustness of the forecasting models. The intuition behind this module
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Fake PFD

Fake demand

Fake Customer

Fig. 3. Illustration of Fake PFD Data Augmentation

is based on the observation that if the customers request a specific amount of
vCPU for a future date, they are likely to purchase a similar amount around that
time. Initially, we randomly select a subset of the existing training samples. For
each selected sample, we generate a fake PFD dataset, denoted as P′, which in-
cludes a small, random number of randomly distributed non-zero entries. These
non-zero values are crafted to replicate the characteristics observed in real PFD
data, such as spikes and variability in magnitude. Subsequently, we incorporate
this synthetic PFD data P′ with the corresponding future vCPU demand data
X of the selected samples by adding the synthetic PFD data with a random
scaling factor. This integration process aims to simulate realistic demand pat-
terns, thereby allowing the model to generalize more effectively and adapt to the
sparsity and irregularities that are typical of real-world PFD data.

Gaussian Smoothing Augmentation The spiked PFD data could harm
the performance of the downstream prediction model since the spike values may
distort the learning process and lead to overfitting or inaccurate predictions. To
alleviate the impact of spiked data in the forecasting process, we introduce the
Gaussian Smoothing Augmentation module. This method aims to smooth the
spike in the PFD data and keep the information of the vCPU demand, thus
helping the models to generate stable output and learn robust knowledge, as
shown in Fig. 2(b). Specifically, each spiked value in Pk is converted into a
Gaussian distribution and aggregated to form P̂, as represented in Eq. 1.

P̂
t
=

T ′∑
k=1

Pk 1

σ1

√
2π

e
− (t−k)2

2σ2
1 (1)

Gaussian Center Parameter Initialization In practice, the PFD data is
fuzzy and often does not precisely align with the actual demand, as customers
may purchase instances approximately around the projected date rather than on
the exact date, as depicted in Fig. 1(b). Consequently, the PFD data is highly
correlated with the actual demand, exhibiting temporal locality where the PFD
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demand of the 2nd day and generate accurate embedding.

at day t (P̂
t
) is significantly related to the actual demand on nearby dates.

To effectively utilize the PFD data for forecasting demand, we incorporate this
temporal locality into the initialization of the model, thereby leveraging prior
knowledge to enhance the training process, as shown in Fig.4. For a linear model
W that encodes the PFD data, we can express this relationship:

P̂
t

out =

T ′∑
i=1

P̂
i
Wit, (2)

where ˆPt
out is the output data of position t. Given the temporal locality of the

PFD data, the parameter matrix should exhibit the following characteristic:

W tt ≥ W it ∀i ∈ {1, 2, . . . , T ′}. (3)

Accordingly, we initialize the parameter matrix using a column-wise Gaussian
distribution. By denoting the t-th column of the parameter matrix as wt, this
initialization can be described as:

wt ∼ N (t, σ2). (4)

Forecasting To model the temporal data, we utilize a forecast-backcast model
based on N-BEATS [30] to generate time embeddings. In each layer of this model,
a Multi-Layer Perceptron (MLP) is used to process the input data Hi (where
H0 = Xt−T+1:t), producing two types of embeddings: forecast embedding foi
and backcast embedding bai at the i-th layer.

foi, bai = MLP (Hi) (5)

The input to the subsequent layer is then computed as the difference between
Hi and bai and the final time embedding is obtained by summing the forecast
embeddings across all layers:

Hi+1 = Hi − bai, Htime =
∑
i

foi. (6)



10 Z. Liu et al.

Finally, the time embedding Htime is combined with the PFD embedding HPFD,
and a final MLP layer is used to forecast the future vCPU demand:

X̂
t+1:t+T ′

= MLP (Htime +HPFD). (7)

For the training of the forecasting model, we use the Mean Square Error (MSE)
as the loss function.

L =

t+T ′∑
i=t+1

(X̂
i
− Xi)2 (8)

4.3 Physical Server Allocation Module

Goal: In the previous subsection, we get the predicted future vCPU demand.
Nevertheless, to supply this demand, the downstream purchasing department
needs the actual physical machine demand and there is a gap between the vCPU
demand and the physical machine demand. Consequently, the Physical Server
Allocation Module is designed to bridge this gap by mapping the predicted vCPU
demand to tangible physical server demand.

Input & Output The input of this module is the predicted future vCPU
demand Xt+1:t+T ′

. In practice, we use the vCPU demand of the final day
Xt+T ′

as the target demand and convert it into the instances of different type
[I0, I1, · · · , In] by the selling ratio of different instances to get a robust estima-
tion. The output of this module is the usage of physical machines, including the
machine list [S0,S1, · · · ,Sm] and indicator y1:m.

Preliminary Optimization In this subsection, we first utilize the instance
demand [I0, · · · , In] and the physical server types [R0, · · · ,Rk] to get a initial
physical server lists [S0, · · · ,Sm]. The primary constraints ensure that the CPU
and memory capacities of the physical servers meet the requirements of the
instances. This is formulated as:

n∑
i=1

ci ≤
k∑

i=1

ĉiNi

n∑
i=1

mi ≤
k∑

i=1

m̂iNi, (9)

where ĉi, m̂i, and Ni represent the CPU, memory, and the number of physical
server types Ri. Additionally, we incorporate a constraint on the fragment space
ratio to ensure that the available fragmented space can ideally accommodate an
instance. This is expressed as:∑k

i=1 m̂iNi −
∑n

i=1 mi∑k
i=1 ĉiNi −

∑n
i=1 ci

≥ r, (10)

where r is the mem/CPU ratio, which is set to 2. By solving this optimization
problem using cvxpy [6], we could get the initial quantities of each physical
machine Ni and subsequently convert it to the physical machine list [S0, · · · ,Sm].
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Heuristic Pre-packing To alleviate the redundancy of the intermediate result,
we formalize the problem to a two-dimensional bin-packing problem. However,
directly optimize the problem with integer programming is highly costly since the
quantity of instance is too large. Consequently, we propose to first use a Heuristic
Pre-packing based on a bin-centric best-fit algorithm to reduce the scale of the
problem. We sort the physical server and pack the server with a larger capacity
first. To pack the server, we compute the cosine similarity between its remaining
capacity and the demand of each instance in both memory and CPU dimensions
and repeatedly. Then, we pack the instance with the highest cosine similarity
to the server. By iteratively applying this heuristic packing method, we can
significantly reduce the scale of the problem and achieve an effective, scalable
solution to the bin-packing problem.

Fine-grained Packing Following the Heuristic Pre-packing phase, the set of
physical servers [S0, · · · ,Sm] may contain some residual fragmentation and re-
dundancy (about 5% of the total servers on average). Consequently, we process
the remaining servers and instances by the integer-programming-based Fine-
grained Packing module to enhance the efficiency. Firstly, Index-Independent
Optimization eliminates instance and server indices, focusing on their quan-
tities. Let n and m be the number of instances and servers, and p and q the
number of instance and server types, with p ≪ n and m ≪ q. Directly pack-
ing instances into servers has a complexity of O(nm), which is impractical. The
Index-Independent Optimization reduces this to O(pq), simplifying the problem.
Then, the Instance Type Merging technique merges instances with similar
CPU and memory capacities, thus reducing the number of instance types from p
to p′, where p′ < p. This further lowers the time complexity of the packing pro-
cess from O(nm) to O(p′q). Finally, we utilize cvxpy [6] to optimize this problem
to get the vector y1:m that indicates whether each physical server is used.

5 Experiment

5.1 Experiment Setting

The framework is evaluated in the real vCPU demand data for 31 different prod-
ucts from Alibaba Cloud, spanning the period from January 2018 to April 2023.
The experiment comprises two parts. All of the experiments were conducted on
an NVIDIA A10 GPU.

– In vCPU Forecasting, we follow the setting of previous time series forecasting
research on benchmark datasets [35, 46] that segment the dataset with con-
tinuous sliding windows of 270 days and utilize historical vCPU data of 180
days to forecast the future vCPU data of subsequent 90 days. We search the
hyper-parameters σ1 and σ2 within the set {1, 3, 7}, and synthesize fake PFD
data using 10% of the training set of the original dataset. Additionally, within
the Fake PFD Augmentation module, we randomly allocate up to three days



12 Z. Liu et al.

Table 2. Overall performance of the vCPU () demand forecasting task on the real
data of Alibaba Cloud from January 1, 2018, to April 1, 2023. The mean and standard
deviation of the results in five runs are shown. In each column, the best result is
highlighted in bold and grey. All numbers are in units of 1k.

Day 7 Day 30 Day 90

RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Autoformer 147.53±14.98 104.25±19.93 81.82±24.64 171.34±8.52 114.70±14.62 82.36±24.84 245.91±20.69 155.71±17.30 89.29±16.12
Pyraformer 546.63±60.09 154.84±17.64 21.54±7.09 504.12±33.92 159.87±27.98 23.93±8.35 483.47±26.35 179.57±10.78 40.87±2.04
Informer 403.77±38.04 135.09±11.50 36.78±8.65 382.19±24.68 131.01±7.86 39.16±8.30 383.61±23.33 151.86±12.45 48.80±4.39

FEDformer 69.50±12.26 46.83±7.56 31.28±4.15 97.09±7.32 58.53±7.93 34.26±6.96 181.78±19.52 83.41±11.56 32.46±7.70
MICN 57.53±5.52 25.46±2.33 9.22±2.47 88.66±2.84 37.31±2.55 12.56±2.74 166.54±6.32 73.83±3.86 28.74±6.68

iTransformer 47.37±3.18 20.48±1.53 6.95±0.33 89.12±4.17 36.24±1.49 10.46±0.38 169.69±2.30 68.54±1.63 20.46±0.75
PatchTST 62.11±19.65 31.30±10.88 9.87±3.67 95.52±8.65 45.39±2.95 13.75±0.35 209.67±23.55 93.44±13.21 27.37±4.91
Mamba 105.80±4.47 51.60±2.65 16.82±1.10 149.29±7.21 73.79±4.11 25.43±1.35 367.35±132.28 134.68±39.77 46.92±27.06
NLinear 26.71±4.04 15.24±6.28 11.27±9.58 64.32±3.10 29.50±6.56 13.28±10.22 158.84±2.00 70.07±3.31 24.04±7.14

Ours 21.79±0.53 8.09±0.39 2.62±0.43 58.16±0.93 22.35±0.33 6.66±0.25 148.10±1.48 57.30±0.63 17.02±0.29

of fake customer demand to each sample. We use Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) as the metrics.

RMSE =

√
1
T ′

∑T ′

i=1(X
i − X̂

i
)2,MAE = 1

T ′

∑T ′

i=1 |X
i − X̂

i
|,MAPE = 1

T ′

∑T ′

i=1 |
Xi−X̂i

Xi |
(11)

– In Physical Server Allocation, we utilize the predicted vCPU as the input.
In practical industrial scenarios, the demands for different products necessi-
tate allocation to distinct types of physical servers. To assess the efficacy and
efficiency of the proposed allocation method, we use the predicted vCPU re-
quirements for the one with largest demand in the 31 products, assigning its
demands to three specific types of physical servers accordingly.

5.2 vCPU Forecasting Overall Performance

Baseline We select nine well-acknowledged baselines to evaluate the perfor-
mance of our proposed module on the vCPU forecasting task. We utilize the
hyperparameter of the original papers for the baseline models. Moreover, these
baselines are fed with the PFD embedding processed by a three-layer MLP.

– Transformer-based methods: These methods employ the Transformer [34] as
the backbone model, incorporating specific optimizations tailored for time se-
ries analysis, including adjustments for trend and seasonal patterns. The com-
parison encompasses models such as Autoformer [38], Pyraformer [20],
Informer [45], FEDformer [46].

– Linear-based methods: These methods utilize the linear network or convo-
lutional neural network (CNN), including MICN [35], PatchTST [29],
NLinear [40], Mamba [10]. Note that when the input is single-channel,
the iTransformer [21] is reduced to the linear model.
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Table 3. Ablation Study of vCPU demand forecasting. The mean and standard devia-
tion of the results in five runs are shown. In each column, the best result is highlighted
in bold and grey. All numbers are in units of 1k.

Day 7 Day 30 Day 90

RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Base 24.56±1.01 9.83±0.25 3.44±0.14 77.44±4.66 31.01±1.31 7.76±0.50 214.75±11.72 84.72±4.87 21.29±1.39
Base+P 23.54±0.37 8.81±0.18 3.09±0.10 66.36±3.05 25.52±1.61 6.91±0.68 177.24±3.02 66.35±1.56 18.97±1.30

Base+P+F 22.79±0.39 8.51±0.13 2.83±0.05 61.15±3.47 23.64±1.37 6.75±0.48 161.42±8.47 62.04±3.84 18.29±2.45
Base+P+F+A 21.79±0.53 8.09±0.39 2.62±0.43 58.16±0.93 22.35±0.33 6.66±0.25 148.10±1.48 57.30±0.63 17.02±0.29

Overall Performance We report the forecasting accuracy of the vCPU de-
mand on days 7, 30, and 90 in Table 2. From the analysis of the table, several
key observations emerge: (1) The proposed framework consistently outperforms
state-of-the-art (SOTA) baselines across all experimental settings. (2) In compar-
ison to transformer-based methods, our framework shows a remarkable improve-
ment: 67.74% in RMSE, 74.99% in MAE, and 79.72% in MAPE. This suggests
that the transformer-based approaches do not align well with the characteristics
of vCPU demand data, likely due to their assumption of a pronounced trend and
seasonal patterns. The observed superior performance signifies that our straight-
forward model effectively captures the underlying patterns in vCPU demand
data, learning robust knowledge from them. (3) When compared with linear-
based methods, our framework exhibits performance enhancements of 38.48%
in RMSE, 47.35% in MAE, and 54.35% in MAPE. Notably, linear-based meth-
ods outperform transformer-based methods, consistent with the findings of [40],
where linear models are noted for their robustness in time series forecasting.
Moreover, the substantial performance gains underscore the efficacy of the spe-
cialized PFD data modeling approach of our framework.

5.3 vCPU Forecasting ablation study

In this section, we will verify the effectiveness of the proposed modules in
the vCPU Forecasting framework. We define Base as a straightforward MLP
model that utilizes raw vCPU time series and PFD data. The enhanced model,
Base+P, incorporates Gaussian Center Parameter Initialization. Further opti-
mizations are defined as Base+P+F, which includes Fake PFD Augmentation,
and Base+P+F+A, which integrates Gaussian Smoothing Augmentation. The
result is shown in Table 3. From the table, we can observe that (1) The inte-
gration of Gaussian Center Parameter Initialization (in the Base+P model)
results in a substantial improvement in performance. This enhancement under-
scores the significance of embedding prior knowledge, which facilitates the model
in acquiring more effective and robust representations. (2) The incremental ad-
ditions of Fake PFD Augmentation and Gaussian Smoothing Augmentation (in
the Base+P+F and Base+P+F+A models, respectively) contribute further
to the accuracy and reliability of the model. These results collectively demon-
strate that each augmentation not only enhances the predictive capability of
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Table 4. The baseline comparison of Physical Server Allocation module. The mean
and standard deviation are reported. In each column, the best result is highlighted in
bold and grey.

Methods
1000 Instances (n = 1000) 5000 Instances (n = 5000) 10000 Instances (n = 10000)

Packing Fragment (%) Solving Packing Fragment (%) Solving Packing Fragment (%) Solving
Density(%) Time (s) Density(%) Time (s) Density(%) Time (s)

First-Fit-B 66.74±7.37 32.73±7.04 1.86±1.90 65.35±5.65 34.54±5.61 6.59±1.79 73.58±4.82 26.36±4.77 12.49±0.87
First-Fit-I 96.56±1.45 2.52±1.30 1.05±0.52 96.52±1.40 3.39±1.44 6.24±1.22 97.84±0.83 2.03±0.74 14.52±4.24
Best-Fit-B 97.31±1.30 1.68±0.98 2.63±1.09 98.06±0.26 1.23±0.60 19.51±2.86 97.42±1.54 2.22±1.98 46.78±9.84
Best-Fit-I 84.89±10.61 4.30±6.67 12.51±12.64 87.36±14.73 2.30±4.22 191.75±37.13 91.66±6.73 5.05±4.46 387.85±33.40

IP 98.71±1.48 0.49±0.57 120.00±0.00 88.96±8.36 5.29±4.22 120.00±0.00 89.09±3.02 5.13±1.54 120.00±0.00
Ours 99.40±0.74 0.05±0.12 11.31±3.09 99.63±0.70 0.06±0.11 23.66±3.18 99.54±0.73 0.05±0.08 43.59±10.37

the MLP but also reinforces the stability and generalization of the forecasting
framework.

5.4 Physical Server Allocation Result

In this section, we will verify the efficacy and efficiency of the proposed Phys-
ical Server Allocation module in different problem scales by employing several
performance metrics:

– Packing Density: Calculated as 1
2 (

Demand_CPU
Supplied_CPU +

Demand_Mem
Supplied_Mem ).

– Fragment: The remaining space ratio that cannot accommodate any instance.
– Solving Time: The average time required to solve each forecasted result.

We compare our module with several baseline methods including both instance-
centric and server-centric algorithms. Specifically, we consider the First-Fit algo-
rithm, which assigns the current instance to the first available server (-I) or places
the first available instance onto the current server (-S); the Best-Fit algorithm,
which allocates the instance to a server (-I) or the server to an instance (-S)
based on the highest cosine similarity in resource capacity; and an Integer Pro-
gramming (IP) approach that directly formulates the instance-server assignment
as a linear programming problem, with a 120-second time constraint imposed to
mitigate computational complexity while maintaining solution feasibility. The
results summarized in Table 4 lead to two key observations: (1) our proposed
module outperforms the baseline methods significantly while maintaining an ac-
ceptable computational cost, and (2) the Packing Density and Fragment metrics
remain robust and stable across various problem scales, thereby substantially
reducing costs.

6 Conclusion

In this work, we introduce a novel framework for provisioning physical machines
in elastic computing services. The framework incorporates a PFD Preprocessing
module to structure PFD data from text inputs, a vCPU Forecasting Module to
precisely predict future vCPU requirements by modeling the PFD data, and a
Physical Server Allocation Module to efficiently translate these vCPU demands
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into actual physical server allocations. In the future, we will aim at further
optimize the efficiency and efficacy of the framework.
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