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Abstract. Automatic transaction categorization is crucial for enhanc-
ing the customer experience in QuickBooks by providing accurate ac-
counting and bookkeeping. The distinct challenges in this domain stem
from the unique formatting of transaction descriptions, the wide variety
of transaction categories, and the vast scale of the data involved. Fur-
thermore, organizing transaction data in a relational database creates
difficulties in developing a unified model that covers the entire database.
In this work, we develop a novel graph-based model, named Rel-Cat,
which is built directly over the relational database. We introduce a new
formulation of transaction categorization as a link prediction task within
this graph structure. By integrating techniques from natural language
processing and graph machine learning, our model not only outperforms
the existing production model in QuickBooks but also scales effectively
to a growing customer base with a simpler, more effective architecture
without compromising on accuracy. This design also helps tackle a key
challenge of the cold start problem by adapting to minimal data.

Keywords: Transaction Categorization · Relational Deep Learning ·
Financial Applications.

1 Introduction

QuickBooks offers essential bookkeeping and accounting capabilities tailored to
the needs of small and medium-sized businesses. It enables them to efficiently
manage critical aspects of their business operations, including accounting, pay-
roll, payments, and inventory. A key feature of QuickBooks is its ability to catego-
rize financial activities captured through invoice descriptions, bank statements,
etc. flexibly to enhance insights into business performance and to streamline tax
compliance. By automating labor-intensive and error-prone tasks, QuickBooks
allows business owners to focus on driving growth and increasing revenue.

At the core of QuickBooks’s functionality is its advanced bookkeeping expe-
rience. Most business transactions today are processed through financial insti-
tutions, and QuickBooks integrates seamlessly with these institutions, enabling
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businesses to link their accounts and synchronize data. This connectivity triggers
an influx of transactions—approximately 6.2 billion annually into QuickBooks.
Having business owners or accountants manually review transactions would be
an ineffective use of their time. Automating the processing of such a vast volume
of transactions is crucial.

To facilitate its sophisticated accounting features, QuickBooks organizes trans-
actions into specific categories or accounts. For example, a fuel purchase at an
ExxonMobil station might be categorized under “Transportation”, while an elec-
tricity bill could be classified as “Utilities”. This paper addresses QuickBooks’s
transaction categorization challenge, employing state-of-the-art methods in nat-
ural language processing [4] and graph machine learning [3] to solve this as a
link prediction problem [5] within a relational database. Drawing inspiration
from Relational Deep Learning [8], we propose a unified approach to effectively
model the transaction database through interconnected relational tables, intro-
ducing modifications specific to the unique challenges and practical requirements
of QuickBooks.

1.1 Problem statement

In QuickBooks, effective bookkeeping relies on the accurate categorization of
transactions into specific accounts. Businesses have unique needs and prefer-
ences for how transactions are categorized. QuickBooks facilitates this by allow-
ing customization of account names. This feature enables different companies to
maintain both common and distinct account names based on their individual
requirements. To further refine the organization of financial data and support
compliance with tax regulations, QuickBooks allows users to classify these ac-
count names into a structured hierarchy of more abstract account types. This
system not only personalizes the accounting experience for each business but also
guarantees the accurate recording of financial activities. The more abstract ac-
count type, referred to as Code, corresponds to the IRS tax code, while the more
granular account name, Category , is user-defined. For example, Category “Air-
fare” and “Internet” can both be grouped into a more abstract Code “Business
Expenses”.

The primary task we address in this paper is predicting the appropriate Cat-
egory for any new transaction imported into QuickBooks. In addition to deliv-
ering the most likely categorization for a new transaction, we explore providing
the Top-5 probable Categories. This approach is predicated on the likelihood
that the company’s preferred Category is more often found within the Top-5
predictions rather than solely the top prediction. Offering a selection of proba-
ble Category can significantly enhance user trust in QuickBooks’s capabilities,
fostering a stronger reliance on QuickBooks for critical financial management
tasks.

The data supporting this transaction categorization task is managed within a
relational database, where various tables are interconnected through primary and
foreign keys. The database schema, detailed in Figure 1a, includes the following
critical tables:
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1. Transaction table: Stores records of all transactions across different com-
panies.

2. Category table: Contains all specific account names used by QuickBooks
users.

3. Code table: Includes the abstract account types aligned with overarching
tax codes, that facilitate the organization of Category .

4. Company table: Contains information about companies utilizing Quick-
Books.

1.2 Related Works

Transaction categorization is fundamental to the user experience in QuickBooks.
There are several ways to solve and productionize transaction categorization
in accounting systems. To date, two major approaches have been deployed to
effectively solve the task in QuickBooks.

The first approach, known as IRIS [12], categorizes incoming transactions
based solely on a company’s historical data. It begins by extracting business en-
tity names from transaction descriptions using a rule-based normalization pro-
cess that includes case folding and digit folding. IRIS then queries the company’s
historical transactions for similar business entities, defining similarity via Jac-
card similarity—entities are considered similar if they are frequently categorized
together. A weighted voting mechanism is then employed to determine the most
likely Category for the new transaction. While IRIS is an efficient system capable
of managing large datasets and ensuring quick database queries, its reliance on
a company’s historical data limits its utility, especially for new users with little
to no transaction history.

The second methodology is embodied in the work by [13] in QuickBooks. This
work addresses the limitations of IRIS by enhancing performance for users new to
the system (cold-start users) with a populational model. It utilizes a Word2Vec-
based [14] encoding for transactions and Category , and applies a contrastive
learning framework to maximize the matching pairs of transaction-Category and
minimize the non-matching pairs. It also employs a logistic regression classifier
to enable personalized categorization for each company. During inference, the
calibrated population and personalized model is applied to predict the category
of a new transaction. Although this method has demonstrated effective perfor-
mance in practice, maintaining an individual logistic regression classifier for each
company introduces significant overhead and risks of overfitting. Additionally,
calibrating two models can lead to suboptimal performance due to challenges in
effectively leveraging strengths of both models.

1.3 Challenges and Contributions

Challenges. The transaction categorization task in QuickBooks presents several
core challenges. Firstly, transaction data is stored in a relational database com-
posed of multiple tables, making it difficult to effectively apply a single unified
machine learning model without explicitly engineering features to consolidate
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Fig. 1: (a) The schema of the relational database of QuickBooks transactions.
(b) Training paradigm of Txn-Bert.

the tables. Secondly, the transaction description field, crucial for identifying the
semantic meaning of a transaction, often follows the formatting standards of fi-
nancial institutions rather than natural language. This necessitates an effective
method to encode transaction data, capturing nuances such as business entity
names and financial acronyms. Thirdly, the vast scale and skewed distribution
of Category labels result in a highly imbalanced learning scenario. The catego-
rization is highly personalized so that one transaction can be put into different
Category by different users. Traditional multi-class classifiers can struggle with
effectiveness and generalizability on this task. Last but not the least, the large
volume of transactions processed by QuickBooks requires a balance between
model capability and computational efficiency to ensure real-time performance.

Contributions. The design choices of the proposed pipeline are geared towards
tackling one or more of these challenges. The salient contributions are summa-
rized as follows:

1. To model the relational database of the transaction data, we transform
the database to a heterogeneous graph and apply a unified graph model,
Rel-Cat, to effectively represent the relationships within the data and sup-
port both new and old users of QuickBooks.

2. To encode the transaction data with unique linguistic characteristics, we
integrate a trained-from-scratch text encoder Txn-Bert into Rel-Cat, which
effectively captures the semantics of the transaction data.

3. To handle large-scale transaction data efficiently, we introduce practical tech-
niques to improve Rel-Cat’s scalability, including a similarity-based neighbor
sampling, edge direction dropping, and Top-K Nearest Neighbor early exit.
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2 Txn-Bert: Text Encoder trained from scratch

In this section, we introduce Txn-Bert, a text encoder developed specifically
for encoding transaction descriptions into fixed-length embeddings. The entire
encoder is trained from scratch, recognizing the unique linguistic patterns found
in transaction data. We begin with the rationale behind pretraining a new lan-
guage model, followed by the detailed process of the training of the transformer
model.

2.1 Unique Linguistic Characteristics of Transaction Data

To effectively convert transaction text data into embeddings, it is essential to
first examine the unique characteristics of this data.

Transaction descriptions, found in banking statements, serve as crucial iden-
tifiers for financial activities within businesses. These descriptions adhere to
formatting standards set by financial institutions. For instance, Visa mandates
that business entity names in transaction descriptions be no longer than 25 char-
acters, requiring abbreviations as necessary.3.

Such descriptions, therefore, consist predominantly of abbreviated business
names, a feature markedly distinct from the more fluid and expansive natural
language. This distinctiveness necessitates a specialized approach for encoding
transaction. The conventional language models, typically pretrained on generic
natural language datasets, do not suffice for capturing the nuances of transaction
descriptions. This inadequacy forms the core motivation for developing Txn-Bert
from the ground up, ensuring it is finely tuned to the specific lexicon and syntax
of transaction language.

2.2 Training the transformer model

We start by building a custom tokenizer to fit the specific vocabulary of trans-
action descriptions. Once we have built the custom tokenizer, the next step is
to train our text encoder. We train the model to classify new transactions into
specific Category solely based on the information from that transaction—like its
description, amount, and any additional memo—without considering the histor-
ical patterns of the company. We model our training approach after Sentence-
Bert [17], treating it as a sentence pair matching problem to match transactions
to Category . The training paradigm of Txn-Bert is shown in Figure 1b. We
adopt a Siamese network architecture, where a shared text encoder indepen-
dently processes a pair of a transaction and its corresponding Category .

We format each transaction by combining its key fields into a single sentence.
We include the <description>, <amount>, and <memo>. We also add a <po-
larity> field, which labels the transaction as “received” if the amount is positive
or “paid” if it’s negative. The complete transaction text looks something like
3 https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-

data-standards-manual.pdf
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Fig. 2: The overview pipeline of Rel-Cat.

this: “Transaction <polarity> $<amount> for: <description> <memo>.” For
the Category labels, we use them just as they are.

The text encoder is a transformer [18], which will refine the representation of
each token iteratively through the transformer blocks. After processing through
these layers, we take a mean pooling strategy to get a single representation for
the whole sentence.

The training objective mirrors the CLIP approach [16], optimizing for high
cosine similarity between matched transaction-Category pairs and low similarity
for unmatched pairs. We use a symmetric cross-entropy loss. Specifically, given
a batch of N transaction-Category pairs {(Ti, Li)|1 ≤ i ≤ N}, and our text
encoder f(·), the training loss is:

L = − 1

N

N∑
i=1

log

(
eSim(f(Ti),f(Li))∑N
j=1 e

Sim(f(Ti),f(Lj))

)
+ log

(
eSim(f(Ti),f(Li))∑N
j=1 e

Sim(f(Tj),f(Li))

)
where Sim(v, w) = v·w

|v|·|w| represents the cosine similarity.This method leverages
all non-matching pairs within a batch for contrastive learning, thus eliminating
the need for explicit negative sampling. This effective training allows Txn-Bert
to robustly encode transaction and Category data for use in downstream tasks.

3 Rel-Cat: Modeling relations within database

In this section, we introduce Rel-Cat. We outline our approach for preprocessing
a relational database into a heterogeneous graph, thereby redefining the trans-
action categorization task as a link prediction problem within this graph. We
then describe Rel-Cat, a hybrid method combining rule-based early exit (TopK
NN) with a robust heterogeneous graph neural network (GNN). The overview
pipeline can be found in Figure 2.

3.1 Build a heterogeneous graph from a relational database

The transaction data in QuickBooks is organized within a relational database
comprising multiple interconnected tables, each representing different facets of
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the transaction data. To unify modeling across this multi-table architecture, we
employ the concept of Relational Deep Learning [8], transforming the relational
database into a heterogeneous graph. We provide an overview of this transfor-
mation process with a conversion diagram depicted in Figure 3.

Conversion overview Referencing Figure 1a, the relational database for trans-
action data consists of four key components:

1. Multiple tables: The database is structured into several tables, each de-
tailing a specific aspect of the transactions.

2. Rows within tables: Each table comprises multiple rows, each row encap-
sulating a distinct transaction or fact.

3. Foreign-primary key relationships: Rows across different tables are in-
terconnected via foreign-primary key associations, facilitating relational ref-
erences among them.

4. Row attributes: Each row includes attributes that describe its elements,
such as the transaction description in the transaction table or the company
name in the company table.

These elements of the relational database are mapped to the components of
a heterogeneous graph as follows:

1. Node types: Each table in the database is treated as a distinct node type
within the graph.

2. Nodes: Individual rows within a table are represented as nodes with the
node type corresponding to their table.

3. Edges: Connections between rows (nodes) across tables, facilitated by foreign-
primary key pairs, are represented as edges in the graph.

4. Node attributes: Attributes of each row, particularly textual data, are
utilized as node attributes in the graph.

Following the method described in [8], we convert a relational database (T ,L)
into a heterogeneous graph G = (V, E , ϕ, ψ). The relational database consists of
tables T = {Ti}, each containing rows that become graph nodes v ∈ V, with node
types assigned by table origin via ϕ. Attributes xv of each row v are encoded
using Txn-Bert embeddings. Edges E between nodes represent primary-foreign
key relationships across tables defined by links L, with relation types R = L∪L−1

accounting for both original and inverse relations via ψ.

Transform to a link prediction task In the heterogeneous graph we’ve con-
structed, historical transaction nodes v ∈ Ttransaction, that have already been
categorized form links with corresponding Category nodes, such that pv′ ∈ Kv

where v′ ∈ TCategory . However, new transactions that have not yet been cate-
gorized enter the graph without any existing links to Category nodes (pv′ /∈ Kv

where v′ ∈ TCategory). This scenario redefines the transaction categorization
task. Instead of assigning a Category to each new transaction, our task shifts to
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predicting which Category node in the graph should be linked to the new trans-
action node. Essentially, the categorization challenge is transformed into a link
prediction task as shown in Figure 3a, where the objective is to determine the
most appropriate connections for uncategorized transaction nodes based on the
graph’s existing structure and the attributes of its nodes. This design also allows
us to address the cold start problem, a key challenge for our task, by mapping
a transaction from a new user to a relevant Category based on the historical
similarity from other similar businesses.

3.2 Model the heterogeneous graph

This section details how Rel-Cat models the heterogeneous graph G. We employ
a message-passing Graph Neural Network (GNN) [10], specifically a variant of
GraphSAGE [11], to encode node representations. Given the graph’s diverse
node and edge types, we adapt our approach to model message-passing along
different edge types separately. Each message type is initially processed through
a homogeneous GNN. Messages from various edge types are then combined using
a second-level aggregation function to get a comprehensive node representation:

h(i+1)
v =tϕ(v)

(
h(i)
v ,AGGHeter({AGGHomo({gR(h

(i)
w ) | (1)

w ∈ NR(v)})
∣∣∣ ∀R = (T, ϕ(v)) ∈ R})

)
,

where NR(v) = {w ∈ V | (w, v) ∈ E and ψ(w, v) = R} is the neighborhood of
node v under the specific edge type R. Here, AGGHomo employs a mean oper-
ator to normalize message contributions within the same type, while AGGHeter
uses attention mechanism [18] to dynamically weight the importance of different
message types, improving the model’s prioritization of relevant messages

Two-hop connections for transaction nodes Our initial node representation
learning framework in Rel-Cat, as outlined in Equation 1, aggregates messages
from immediate neighbors within the graph G. While effective, this approach
can introduce issues inherent in GNNs such as over-squashing [1] and limited
expressiveness [20], which we address through graph data augmentation.

Graph data augmentation. When GNNs learn the node representation of the
target transaction in Figure 3b, they have to propagate at least two rounds of
message passing to receive the information from the historical transactions of the
same company. To enhance node representation, especially for the target trans-
action node, we introduce an additional type of edge within transaction nodes,
effectively making historical transactions direct neighbors of the target transac-
tion. This adjustment allows the target transaction to aggregate messages from
historical transactions in just one message-passing iteration. The augmented
graph with these new connections is shown in Figure 3c. For this new edge type
(transaction to transaction), we utilize the GATv2 [2] as the aggregation oper-
ator (AGGHomo). While applying GATv2 to all edge types can lead to GPU
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(a) (b) (c)

Fig. 3: Transformation of a relational database into a heterogeneous graph for
transaction categorization. (a) A new transaction enters the system without
a foreign key connection to the Category table. (b) The heterogeneous graph is
built from the relational database, where transaction categorization is formulated
as a link prediction task. (c) Two-hop connections for transaction nodes mitigate
over-squashing and improve model expressiveness.

memory issues, using it for this specific edge type does not significantly increase
memory requirements.

Specifically, we introduce an extra set of edges Eaug into the original graph:

Eaug = {(v1, v2) ∈ V × V | v1, v2 ∈ Ttransaction, ∃vc ∈ Tcompany, pc ∈ Kv1 ∩ Kv2}.

The edge set Eaug is the set of transaction pairs if they are from the same
company. Next, we discuss how this modification can mitigate the two issues.

Addressing over-squashing. GNNs learn the node representation iteratively from
the local neighborhood. However, due to this recurrent learning paradigm, GNNs
often face a challenge where the information from a growing receptive field is
compressed into a fixed-length vector, potentially losing valuable information.
This phenomenon is prevalent in the transaction graph G. For the target trans-
action in Figure 3b, the message from its historical transactions is equally com-
pressed into one fixed-length vector. Since this message is not conditioned on
the target transaction, it cannot adjust itself so that the signals more impor-
tant to the target transaction are preserved. By rewiring the graph and applying
a weighted message aggregator like GATv2, it can effectively enable the tar-
get transaction’s incoming message to keep the most relevant information [1],
enhancing the effectiveness of the prediction.

Enhancing expressiveness. GNNs essentially simulate the Weisfeiler-Lehman
graph isomorphism algorithm [20]. This limits their expressiveness in terms of
distinguishing non-isomorphic graphs. By directly connecting two-hop neigh-
bors (historical transactions) as immediate neighbors to the target transaction
in graph G, our model approximates a K-hop GNN approach [7]. This augmenta-
tion not only improves expressiveness but does so without significantly increasing
computational costs, thus maintains a balance between accuracy and efficiency.
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3.3 Training objective

The transformation of the relational database into the heterogeneous graph G
redefines our task as a link prediction challenge. In essence, link prediction in
this context is a ranking problem where the model is expected to rank the correct
node pair (the ground truth link) higher than other node pairs (non-connected
links). Specifically, for a transaction node vi and its corresponding Category
node vj in graph G, the score of (vi, vj) should be higher than that of any
other Category node pair (vi, vk), where vk represents any Category node not
connected to vi. We utilize the inner product as the scoring function between
transaction and Category nodes, employing AUCLoss [19], a surrogate for AUC,
as the training objective of Rel-Cat:

L =
∑

(vi,vj)∈E+,(vi,vk)∈E−

(1− (hi ∗ hj) + (hi ∗ hk))
2
, (2)

where hv denotes the final representation of either a transaction or Category
node from Equation 1. The set of positive node pairs E+ is chosen as:

E+ ⊆ {(vi, vj) ∈ Ttransaction × TCategory | pvj ∈ Kvi
}. (3)

The set of negative node pairs, E−, includes non-connected links, defined as:

E− ⊆ {(vi, vk) ∈ Ttransaction × TCategory | pvj /∈ Kvi}. (4)

Weighted negative sampling The set of negative node pairs, E−, consists of
non-connected links. Due to the impracticality of enumerating all potential neg-
ative pairs, we employ a negative sampling strategy. For a transaction node vi
and its corresponding positive Category node vj , simple uniform sampling from
TCategory \ {vj} would be suboptimal due to the long-tail distribution of Cat-
egory . This could prevent effective learning if those Category nodes vk, which
rarely appear as positives, are sampled as negatives. To address this, we em-
ploy a weighted multinomial distribution for negative sampling, where weights
are assigned proportional to the normalized frequency of Category appearances,
enhancing the relevance and challenge of the sampled negatives.

Selective Loss Computation via Diversity Filtering During the loss com-
putation and backpropagation over a batch - not all samples contribute equally
to learning, some being too easy (providing little gradient signal) or redundant
(leading to inefficient updates). Thus, we propose a selective loss computation
strategy, where all samples undergo a forward pass, but only a subset of chal-
lenging or informative samples contribute to the loss and gradient computation,
i.e., a full-forward partial-backward strategy. This strategy retains the benefits
of large-batch inference while ensuring that gradient updates focus on samples
that are most challenging and diverse. Since all samples contribute to feature
extraction during the forward pass, the model benefits from seeing a broader
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distribution of the data. This results more accurate hard sample identification,
targeted gradient updates, and improved generalization. To select the subset of
diverse samples, we compute the dot product similarity of transaction feature
representation. From this distribution, we gradually refine the selection over
epochs, choosing samples with lower similarity scores and only use those for loss
computation. Initially, we utilize 100% of the samples, then gradually decrease
this proportion in stages until reaching 40% , maintaining a core set of diverse
samples throughout training. Experiments show that this provides us with the
optimal diversity samples for loss computation in a batch, providing highest
gradient signals during back-propagation.

3.4 Scalability and practical designs

In this section, we detail several scalability improvements to Rel-Cat, designed to
effectively manage the extensive volume of transaction data encountered in real-
world applications. We discuss practical designs to reduce neighborhood sizes
for transaction and Category nodes during node representation encoding and
introduce a rule-based early exit method, Top-K Nearest Neighbor, to efficiently
manage the workload on GNNs.

Reducing neighborhood size Given that GNNs encode node representations
by aggregating features from local neighborhoods, large neighborhoods can pose
significant scalability challenges, particularly in terms of memory consumption.
To address this, we implement a node-wise neighbor sampling strategy. Different
from existing methods [11,9,21], we further take node types into consideration
to optimize the receptive field of the GNNs. We employ distinct strategies for
transaction nodes and Category nodes:

Similarity-based neighbor sampling for transaction nodes. For transaction nodes,
{v | v ∈ Ttransaction}, the local neighborhood typically includes all historical
transactions associated with the company, which can be extensive. For exam-
ple, there are companies owning over 2000 transactions within just one year.
To manage this, we utilize similarity-based neighbor sampling, which reduces
neighborhood size while preserving relevant information.

We compute the cosine similarity between the text embeddings of the tar-
get transaction node and its historical counterparts. Historical transactions are
then sampled based on their similarity scores, prioritizing those most relevant
to the target. This approach not only constrains computational overhead but
also ensures that the most informative connections are maintained in Rel-Cat’s
neighborhood. Techniques like Faiss [6] can be employed to enhance the efficiency
of these computations.

Edge direction dropping for Category nodes. Category nodes, {v | v ∈ TCategory},
often have neighborhoods that include a huge set of transaction nodes linked to
them. The popularity of some Category can lead to extremely large neighborhood
sizes, which are not only impractical to process, but also ineffective to model.
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To mitigate this, we discard all incoming edge connections from transaction
to Category nodes. This adjustment significantly reduces the computational load
by limiting the receptive field to exclude transaction nodes, while outgoing con-
nections from Category to transaction nodes are kept. This approach not only
simplifies the computation required to encode Category node but also ensures
consistency in Category node representation during inference, as the computa-
tional graph remains unchanged regardless of new transactions being added.

Top-K Nearest Neighbor Despite the sophisticated capabilities of Rel-Cat,
equipped with GNNs to perform predictions based on graph structure G, real-
world scenarios often present varying degrees of prediction difficulty [15]. Many
transactions imported into QuickBooks by users are very similar or even identical
to past entries due to routine business activities. In such cases, users frequently
reuse the same Category as in previous transactions. Consequently, a significant
portion of transactions could be accurately categorized without necessitating full
GNN processing. To capitalize on this, we utilize the streamlined and effective
early exit method through Top-K Nearest Neighbor (TopK NN).

Upon the arrival of a new transaction, while we still prepare the graph G
for subsequent GNN processing, we first assess if sufficiently similar historical
transactions might already provide reliable predictions. Utilizing the similarity
scores computed during the similarity-based neighbor sampling of transaction
nodes, we identify a subset of historical transactions that exhibit a similarity
score exceeding a cutoff, set at 0.8 for our experiments.

From this subset, we directly derive Category from the top-K most similar
transactions. Given that our categorization task aims to predict the 5 most likely
categories, Rel-Cat will output these labels directly if 5 distinct Category are
available from this subset. If fewer than 5 categories are available, the graph G
is then processed by the GNNs to generate the remaining predictions.

4 Experiments

4.1 Experimental setup

Dataset To evaluate the performance of Rel-Cat comprehensively, we curated
a dataset from active QuickBooks users as of November 2023. We randomly se-
lected 7.5K companies and used their two most recent transactions with labeled
Category post-November 2023 as our test set, resulting in a total of 15K trans-
actions. The training set consisted of 3000K transactions having 100K Category
across 15K companies reflecting a wide range of user preferences and patterns.

Experimental settings We benchmark the performance of Rel-Cat against
the current production models in QuickBooks, namely Shorthair and Lynx.
Shorthair is a population model that employs contrastive learning and Word2Vec
embeddings, whereas Lynx, built on top of Shorthair is a logistic regression model
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customized to a company. We assess the models using the metrics of Top-1, Top-
2, and Top-5 accuracy, which measure whether the correct label is among the
Top-k predictions of the model, ranked by the Category scores. We conduct
evaluations under two distinct settings:

Zero Shot: In this setting, categorization is based solely on the information
from the new transaction itself, without any contextual data from the owning
company or its historical transactions. Both Shorthair and Txn-Bert are eval-
uated under this setting.

Few Shot: This setting incorporates not only the data from the new transac-
tion but also contextual information from the owning company and its historical
data. Lynx, TopK NN, and Rel-Cat are assessed under this framework.

4.2 Results

The experimental results are presented in Figure 1. In the Zero Shot set-
ting, Txn-Bert outperforms the production Shorthair model significantly. The
Txn-Bert model with 6 layers achieves a Top-1 accuracy boost of 7.76% and a
Top-5 accuracy of 74.12%, indicating that our trained-from-scratch text encoder
effectively captures the semantics of transaction descriptions and maps them
accurately to the corresponding Category . The 12-layer Txn-Bert model shows
only marginal improvement over the 6-layer model, suggesting that a lightweight
language model pretrained from scratch is sufficient for encoding transaction
data.

Table 1: Transaction categorization
evaluated by accuracy under Zero
Shot and Few Shot settings.

Methods Top-1 Top-2 Top-5

Zero Shot
Shorthair 36.07 - -
Txn-Bert (6 layers) 43.83 57.96 74.12
Txn-Bert (12 layers) 45.52 59.47 75.46

Few Shot
Lynx 62.49 - -
TopK NN 65.80 73.63 78.55
Rel-Cat (GNNs only) 63.38 74.60 84.89
Rel-Cat 68.67 78.97 88.04

Ablation Study
Rel-Cat (GNNs only) 63.38 74.60 84.89
w/o Txn-Bert 55.46 64.02 73.16
w/o two-hop connections 47.07 61.16 76.58
w/o similarity sampling 56.39 67.89 80.63
w/o diversity filtering 61.74 73.18 83.85

Table 2: Performance breakdown in dif-
ferent scenarios. Acc is the overall Top-1
accuracy, HS is the accuracy on Histori-
cal Seen subset, and HU is the accuracy
on Historical Unseen subset.

Methods Acc HS HU

TopK NN 65.80 79.72 0.16
Rel-Cat (GNNs only) 63.38 72.25 22.05
Rel-Cat 68.67 78.64 20.84

Methods (GNNs only) Acc HS HU

Rel-Cat (GNNs only) 63.38 72.25 22.05
w/o Txn-Bert 55.46 66.24 4.83
w/o two-hop connections 47.07 51.36 26.93
w/o similarity sampling 56.39 65.26 14.73
w/o diversity filtering 61.74 70.46 20.75

In the Few Shot setting, Rel-Cat demonstrates substantial performance ad-
vantages. It achieves a Top-1 accuracy of 68.67% and a Top-5 accuracy of 88.04%,
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significantly outperforming the Lynx model. Additionally, the TopK NN method,
which uses text embeddings from Txn-Bert, achieves a Top-1 accuracy of 65.80%,
surpassing the performance of Rel-Cat with GNNs alone. This result highlights
the effectiveness of TopK NN in identifying recurring transactions in a user’s his-
tory, thereby enhancing Top-1 accuracy of Rel-Cat.

However, when the transaction categorization must be inferred beyond the
user’s most similar historical transactions, the GNN component of Rel-Cat ex-
hibits superior generalizability, achieving nearly 85% in Top-5 accuracy. This
demonstrates that while TopK NN is highly effective for repeated transactions,
the GNN module of Rel-Cat provides a broader and more accurate categoriza-
tion capability for diverse transaction scenarios.

4.3 Seen vs Unseen Category in a Company’s History

In this section, we discuss why Rel-Cat is designed as a hybrid model, namely
a combination of TopK NN and GNNs. In Table 2, we not only report our overall
accuracy, but further break down the performance of Rel-Cat into Historical
Seen and Historical Unseen scenarios. For Historical Seen, we choose the test
samples such that their ground-truth Category is present within the company’s
own history as context. For Historical Unseen, we choose the samples whose
Category are present in the overall dataset but unseen to that company’s history.

We note that TopK NN, while having the best performance at repeated labels,
has no predictive power for unseen labels. For this subset, Rel-Cat’s GNN is able
to detect the labels with over 22% accuracy, highlighting its generalizable ability.
Given that most transactions in production systems belong to the historical seen
category, Rel-Cat has the best overall performance, balancing between both the
subsets, thereby demonstrating the need for GNN and TopK NN hybrid model.
Furthermore, analyzing these trends over the ablation studies, we note that each
design choice adds to the overall accuracy, augmenting performance for either
or both the seen and unseen subsets.

4.4 Ablation Studies

In this section, we delve deeper into the validation of the effectiveness of various
design choices in Rel-Cat.

In Figure 1, we report ablation studies to validate if the proposed components
in Rel-Cat can enhance the predictive power of transaction categorization. For
the ablation studies, we only include the GNNs module for Rel-Cat.

w/o Txn-Bert (Sec 2): Replacing Txn-Bert with off-the-shelf Sentence-
Bert [17], we observe a decrease in performance, underscoring the necessity of a
trained-from-scratch text encoder tailored to transaction data. We further note
the steep drop in performance for the unseen subset.

w/o two-hop connections (Sec 3.2): This ablation study emphasizes the criti-
cal role of explicit graph augmentation. It demonstrates that directly connecting
the target and historical transactions as neighbors significantly enhances perfor-
mance. This finding underscores that merely converting a relational database to
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a heterogeneous graph without strategic modifications is inadequate for max-
imizing the model’s effectiveness. While this setting has the best performance
for the unseen subset, it comes at the expense of significant decline in overall
performance.

w/o similarity sampling (Sec 3.4): Testing the impact of neighbor sampling
based on semantic similarity, we find that sampling similar historical transactions
in GNN’s computation graphs allows Rel-Cat to leverage relevant information
effectively for accurate predictions. We note that this setting also suffers from
lack of generalizability.

w/o diversity filtering (Sec 3.3): here we report the results without the di-
versity filtering, when all samples pass through the backward pass during GNN
training throughout the training. We note that while the drop in the unseen
subset performance is to be expected without this filtering, we also note a drop
across all metrics, suggesting the effectiveness of selective backpropagation.

4.5 Time complexity

We have assessed the processing time for various components within Rel-Cat,
with the results detailed in Table 3. We report the processing time as time taken
in milliseconds (ms) per 1, 000 transactions. The entire pipeline of Rel-Cat is
designed to operate effectively on both CPU and GPU environments, catering
to different production system requirements.

Table 3: Inference times for 1, 000 transactions.
Walltime (ms) CPU GPU

Txn-Bert 1400 67
Rel-Cat 6808 843
- TopK NN 333 -
- Rel-Cat (GNNs only) 6614 324

Total 8208 910

On a CPU, the lightweight text encoder Txn-Bert processes 1, 000 trans-
actions in just 1400 milliseconds. To deliver the Top-5 predictions, Rel-Cat
requires approximately 8 seconds for 1, 000 transactions. In contrast, utilizing a
GPU significantly reduces the processing time to under 1 second for outputting
the Top-5 predictions. This efficiency demonstrates Rel-Cat’s capability to scale
and meet the demands of real-world transaction volumes effectively.

4.6 Prediction cascade

In the Rel-Cat pipeline shown in Figure 2, the processed graph initially enters
the TopK NN module, which serves as an early exit strategy to identify similar
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Fig. 4: Cascade process in Rel-Cat. TopK NN efficiently resolves 68% of transac-
tions when only a Top-1 prediction is needed. However, for more comprehensive
Top-5 predictions, over 96% of transactions necessitate processing by GNNs.

transactions via text embeddings. If this step does not yield sufficient Category
predictions, the pipeline advances to the GNNs for additional predictions.

Our analysis of this cascade, shown in Figure 4, reveals that for Top-1 predic-
tions, TopK NN alone efficiently handles over 68% of transactions. This high per-
centage underscores the prevalence of similar transactions within the database.
However, to generate the Top-5 predictions, more than 96% of transactions re-
quire processing by the GNNs, indicating the need for a more in-depth compu-
tation to fulfill broader prediction requirements.

This flexible approach in Rel-Cat demonstrates the system’s adaptability,
allowing for a balance between efficiency and thoroughness in prediction based
on system demands and user experience considerations.

5 Conclusion

In this study, we introduce Rel-Cat, a unified model designed for transaction
categorization within QuickBooks. Recognizing the unique linguistic character-
istics of transaction data, we train, from scratch, a Txn-Bert text encoder, to
grasp the semantic nuances of financial transaction descriptions. Subsequently,
we employ a GNN-based model to capture the relationships among the tables
in a relational database, redefining transaction categorization as a link predic-
tion task over a heterogeneous graph. To address the challenges posed by the
high volume of transactions and the specific demands of the categorization task,
we integrate several innovative components that significantly boost Rel-Cat’s
predictive capabilities. Our experimental results demonstrate that Rel-Cat not
only surpasses previous production models in terms of performance but also
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offers remarkable scalability and efficiency, making it well-suited for handling
large-scale transaction data in real-world settings. Having proved its merit in
offline testing, our approach is currently in the process of being implemented for
deployment in production due to its improved metrics, improved customer expe-
rience providing multiple options for categories to choose from (top-k), and the
simplified overall architecture allowing the company to move away from running
and maintaining million plus models in production for supporting personalized
transaction categorization.
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